src/HOL/Tools/inductive.ML
author wenzelm
Fri Mar 29 22:14:27 2013 +0100 (2013-03-29)
changeset 51580 64ef8260dc60
parent 51551 88d1d19fb74f
child 51584 98029ceda8ce
permissions -rw-r--r--
Pretty.item markup for improved readability of lists of items;
     1 (*  Title:      HOL/Tools/inductive.ML
     2     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     3     Author:     Stefan Berghofer and Markus Wenzel, TU Muenchen
     4 
     5 (Co)Inductive Definition module for HOL.
     6 
     7 Features:
     8   * least or greatest fixedpoints
     9   * mutually recursive definitions
    10   * definitions involving arbitrary monotone operators
    11   * automatically proves introduction and elimination rules
    12 
    13   Introduction rules have the form
    14   [| M Pj ti, ..., Q x, ... |] ==> Pk t
    15   where M is some monotone operator (usually the identity)
    16   Q x is any side condition on the free variables
    17   ti, t are any terms
    18   Pj, Pk are two of the predicates being defined in mutual recursion
    19 *)
    20 
    21 signature BASIC_INDUCTIVE =
    22 sig
    23   type inductive_result =
    24     {preds: term list, elims: thm list, raw_induct: thm,
    25      induct: thm, inducts: thm list, intrs: thm list, eqs: thm list}
    26   val transform_result: morphism -> inductive_result -> inductive_result
    27   type inductive_info = {names: string list, coind: bool} * inductive_result
    28   val the_inductive: Proof.context -> string -> inductive_info
    29   val print_inductives: Proof.context -> unit
    30   val get_monos: Proof.context -> thm list
    31   val mono_add: attribute
    32   val mono_del: attribute
    33   val mk_cases: Proof.context -> term -> thm
    34   val inductive_forall_def: thm
    35   val rulify: thm -> thm
    36   val inductive_cases: (Attrib.binding * string list) list -> local_theory ->
    37     thm list list * local_theory
    38   val inductive_cases_i: (Attrib.binding * term list) list -> local_theory ->
    39     thm list list * local_theory
    40   type inductive_flags =
    41     {quiet_mode: bool, verbose: bool, alt_name: binding, coind: bool,
    42       no_elim: bool, no_ind: bool, skip_mono: bool}
    43   val add_inductive_i:
    44     inductive_flags -> ((binding * typ) * mixfix) list ->
    45     (string * typ) list -> (Attrib.binding * term) list -> thm list -> local_theory ->
    46     inductive_result * local_theory
    47   val add_inductive: bool -> bool ->
    48     (binding * string option * mixfix) list ->
    49     (binding * string option * mixfix) list ->
    50     (Attrib.binding * string) list ->
    51     (Facts.ref * Attrib.src list) list ->
    52     local_theory -> inductive_result * local_theory
    53   val add_inductive_global: inductive_flags ->
    54     ((binding * typ) * mixfix) list -> (string * typ) list -> (Attrib.binding * term) list ->
    55     thm list -> theory -> inductive_result * theory
    56   val arities_of: thm -> (string * int) list
    57   val params_of: thm -> term list
    58   val partition_rules: thm -> thm list -> (string * thm list) list
    59   val partition_rules': thm -> (thm * 'a) list -> (string * (thm * 'a) list) list
    60   val unpartition_rules: thm list -> (string * 'a list) list -> 'a list
    61   val infer_intro_vars: thm -> int -> thm list -> term list list
    62   val setup: theory -> theory
    63 end;
    64 
    65 signature INDUCTIVE =
    66 sig
    67   include BASIC_INDUCTIVE
    68   type add_ind_def =
    69     inductive_flags ->
    70     term list -> (Attrib.binding * term) list -> thm list ->
    71     term list -> (binding * mixfix) list ->
    72     local_theory -> inductive_result * local_theory
    73   val declare_rules: binding -> bool -> bool -> string list -> term list ->
    74     thm list -> binding list -> Attrib.src list list -> (thm * string list * int) list ->
    75     thm list -> thm -> local_theory -> thm list * thm list * thm list * thm * thm list * local_theory
    76   val add_ind_def: add_ind_def
    77   val gen_add_inductive_i: add_ind_def -> inductive_flags ->
    78     ((binding * typ) * mixfix) list -> (string * typ) list -> (Attrib.binding * term) list ->
    79     thm list -> local_theory -> inductive_result * local_theory
    80   val gen_add_inductive: add_ind_def -> bool -> bool ->
    81     (binding * string option * mixfix) list ->
    82     (binding * string option * mixfix) list ->
    83     (Attrib.binding * string) list -> (Facts.ref * Attrib.src list) list ->
    84     local_theory -> inductive_result * local_theory
    85   val gen_ind_decl: add_ind_def -> bool -> (local_theory -> local_theory) parser
    86 end;
    87 
    88 structure Inductive: INDUCTIVE =
    89 struct
    90 
    91 (** theory context references **)
    92 
    93 val inductive_forall_def = @{thm induct_forall_def};
    94 val inductive_conj_name = "HOL.induct_conj";
    95 val inductive_conj_def = @{thm induct_conj_def};
    96 val inductive_conj = @{thms induct_conj};
    97 val inductive_atomize = @{thms induct_atomize};
    98 val inductive_rulify = @{thms induct_rulify};
    99 val inductive_rulify_fallback = @{thms induct_rulify_fallback};
   100 
   101 val simp_thms1 =
   102   map mk_meta_eq
   103     @{lemma "(~ True) = False" "(~ False) = True"
   104         "(True --> P) = P" "(False --> P) = True"
   105         "(P & True) = P" "(True & P) = P"
   106       by (fact simp_thms)+};
   107 
   108 val simp_thms2 =
   109   map mk_meta_eq [@{thm inf_fun_def}, @{thm inf_bool_def}] @ simp_thms1;
   110 
   111 val simp_thms3 =
   112   map mk_meta_eq [@{thm le_fun_def}, @{thm le_bool_def}, @{thm sup_fun_def}, @{thm sup_bool_def}];
   113 
   114 
   115 
   116 (** misc utilities **)
   117 
   118 fun message quiet_mode s = if quiet_mode then () else writeln s;
   119 fun clean_message quiet_mode s = if ! quick_and_dirty then () else message quiet_mode s;
   120 
   121 fun coind_prefix true = "co"
   122   | coind_prefix false = "";
   123 
   124 fun log (b: int) m n = if m >= n then 0 else 1 + log b (b * m) n;
   125 
   126 fun make_bool_args f g [] i = []
   127   | make_bool_args f g (x :: xs) i =
   128       (if i mod 2 = 0 then f x else g x) :: make_bool_args f g xs (i div 2);
   129 
   130 fun make_bool_args' xs =
   131   make_bool_args (K @{term False}) (K @{term True}) xs;
   132 
   133 fun arg_types_of k c = drop k (binder_types (fastype_of c));
   134 
   135 fun find_arg T x [] = raise Fail "find_arg"
   136   | find_arg T x ((p as (_, (SOME _, _))) :: ps) =
   137       apsnd (cons p) (find_arg T x ps)
   138   | find_arg T x ((p as (U, (NONE, y))) :: ps) =
   139       if (T: typ) = U then (y, (U, (SOME x, y)) :: ps)
   140       else apsnd (cons p) (find_arg T x ps);
   141 
   142 fun make_args Ts xs =
   143   map (fn (T, (NONE, ())) => Const (@{const_name undefined}, T) | (_, (SOME t, ())) => t)
   144     (fold (fn (t, T) => snd o find_arg T t) xs (map (rpair (NONE, ())) Ts));
   145 
   146 fun make_args' Ts xs Us =
   147   fst (fold_map (fn T => find_arg T ()) Us (Ts ~~ map (pair NONE) xs));
   148 
   149 fun dest_predicate cs params t =
   150   let
   151     val k = length params;
   152     val (c, ts) = strip_comb t;
   153     val (xs, ys) = chop k ts;
   154     val i = find_index (fn c' => c' = c) cs;
   155   in
   156     if xs = params andalso i >= 0 then
   157       SOME (c, i, ys, chop (length ys) (arg_types_of k c))
   158     else NONE
   159   end;
   160 
   161 fun mk_names a 0 = []
   162   | mk_names a 1 = [a]
   163   | mk_names a n = map (fn i => a ^ string_of_int i) (1 upto n);
   164 
   165 fun select_disj 1 1 = []
   166   | select_disj _ 1 = [rtac disjI1]
   167   | select_disj n i = rtac disjI2 :: select_disj (n - 1) (i - 1);
   168 
   169 
   170 
   171 (** context data **)
   172 
   173 type inductive_result =
   174   {preds: term list, elims: thm list, raw_induct: thm,
   175    induct: thm, inducts: thm list, intrs: thm list, eqs: thm list};
   176 
   177 fun transform_result phi {preds, elims, raw_induct: thm, induct, inducts, intrs, eqs} =
   178   let
   179     val term = Morphism.term phi;
   180     val thm = Morphism.thm phi;
   181     val fact = Morphism.fact phi;
   182   in
   183    {preds = map term preds, elims = fact elims, raw_induct = thm raw_induct,
   184     induct = thm induct, inducts = fact inducts, intrs = fact intrs, eqs = fact eqs}
   185   end;
   186 
   187 type inductive_info = {names: string list, coind: bool} * inductive_result;
   188 
   189 val empty_equations =
   190   Item_Net.init Thm.eq_thm_prop
   191     (single o fst o HOLogic.dest_eq o HOLogic.dest_Trueprop o Thm.prop_of);
   192 
   193 datatype data = Data of
   194  {infos: inductive_info Symtab.table,
   195   monos: thm list,
   196   equations: thm Item_Net.T};
   197 
   198 fun make_data (infos, monos, equations) =
   199   Data {infos = infos, monos = monos, equations = equations};
   200 
   201 structure Data = Generic_Data
   202 (
   203   type T = data;
   204   val empty = make_data (Symtab.empty, [], empty_equations);
   205   val extend = I;
   206   fun merge (Data {infos = infos1, monos = monos1, equations = equations1},
   207       Data {infos = infos2, monos = monos2, equations = equations2}) =
   208     make_data (Symtab.merge (K true) (infos1, infos2),
   209       Thm.merge_thms (monos1, monos2),
   210       Item_Net.merge (equations1, equations2));
   211 );
   212 
   213 fun map_data f =
   214   Data.map (fn Data {infos, monos, equations} => make_data (f (infos, monos, equations)));
   215 
   216 fun rep_data ctxt = Data.get (Context.Proof ctxt) |> (fn Data rep => rep);
   217 
   218 fun print_inductives ctxt =
   219   let
   220     val {infos, monos, ...} = rep_data ctxt;
   221     val space = Consts.space_of (Proof_Context.consts_of ctxt);
   222   in
   223     [Pretty.block
   224       (Pretty.breaks
   225         (Pretty.str "(co)inductives:" ::
   226           map (Pretty.mark_str o #1) (Name_Space.extern_table ctxt (space, infos)))),
   227      Pretty.big_list "monotonicity rules:"
   228       (map (Pretty.item o single o Display.pretty_thm ctxt) monos)]
   229   end |> Pretty.chunks |> Pretty.writeln;
   230 
   231 
   232 (* inductive info *)
   233 
   234 fun the_inductive ctxt name =
   235   (case Symtab.lookup (#infos (rep_data ctxt)) name of
   236     NONE => error ("Unknown (co)inductive predicate " ^ quote name)
   237   | SOME info => info);
   238 
   239 fun put_inductives names info =
   240   map_data (fn (infos, monos, equations) =>
   241     (fold (fn name => Symtab.update (name, info)) names infos, monos, equations));
   242 
   243 
   244 (* monotonicity rules *)
   245 
   246 val get_monos = #monos o rep_data;
   247 
   248 fun mk_mono ctxt thm =
   249   let
   250     fun eq_to_mono thm' = thm' RS (thm' RS @{thm eq_to_mono});
   251     fun dest_less_concl thm = dest_less_concl (thm RS @{thm le_funD})
   252       handle THM _ => thm RS @{thm le_boolD}
   253   in
   254     (case concl_of thm of
   255       Const ("==", _) $ _ $ _ => eq_to_mono (thm RS meta_eq_to_obj_eq)
   256     | _ $ (Const (@{const_name HOL.eq}, _) $ _ $ _) => eq_to_mono thm
   257     | _ $ (Const (@{const_name Orderings.less_eq}, _) $ _ $ _) =>
   258       dest_less_concl (Seq.hd (REPEAT (FIRSTGOAL
   259         (resolve_tac [@{thm le_funI}, @{thm le_boolI'}])) thm))
   260     | _ => thm)
   261   end handle THM _ => error ("Bad monotonicity theorem:\n" ^ Display.string_of_thm ctxt thm);
   262 
   263 val mono_add =
   264   Thm.declaration_attribute (fn thm => fn context =>
   265     map_data (fn (infos, monos, equations) =>
   266       (infos, Thm.add_thm (mk_mono (Context.proof_of context) thm) monos, equations)) context);
   267 
   268 val mono_del =
   269   Thm.declaration_attribute (fn thm => fn context =>
   270     map_data (fn (infos, monos, equations) =>
   271       (infos, Thm.del_thm (mk_mono (Context.proof_of context) thm) monos, equations)) context);
   272 
   273 
   274 (* equations *)
   275 
   276 val get_equations = #equations o rep_data;
   277 
   278 val equation_add_permissive =
   279   Thm.declaration_attribute (fn thm =>
   280     map_data (fn (infos, monos, equations) =>
   281       (infos, monos, perhaps (try (Item_Net.update thm)) equations)));
   282 
   283 
   284 
   285 (** process rules **)
   286 
   287 local
   288 
   289 fun err_in_rule ctxt name t msg =
   290   error (cat_lines ["Ill-formed introduction rule " ^ Binding.print name,
   291     Syntax.string_of_term ctxt t, msg]);
   292 
   293 fun err_in_prem ctxt name t p msg =
   294   error (cat_lines ["Ill-formed premise", Syntax.string_of_term ctxt p,
   295     "in introduction rule " ^ Binding.print name, Syntax.string_of_term ctxt t, msg]);
   296 
   297 val bad_concl = "Conclusion of introduction rule must be an inductive predicate";
   298 
   299 val bad_ind_occ = "Inductive predicate occurs in argument of inductive predicate";
   300 
   301 val bad_app = "Inductive predicate must be applied to parameter(s) ";
   302 
   303 fun atomize_term thy = Raw_Simplifier.rewrite_term thy inductive_atomize [];
   304 
   305 in
   306 
   307 fun check_rule ctxt cs params ((binding, att), rule) =
   308   let
   309     val params' = Term.variant_frees rule (Logic.strip_params rule);
   310     val frees = rev (map Free params');
   311     val concl = subst_bounds (frees, Logic.strip_assums_concl rule);
   312     val prems = map (curry subst_bounds frees) (Logic.strip_assums_hyp rule);
   313     val rule' = Logic.list_implies (prems, concl);
   314     val aprems = map (atomize_term (Proof_Context.theory_of ctxt)) prems;
   315     val arule = fold_rev (Logic.all o Free) params' (Logic.list_implies (aprems, concl));
   316 
   317     fun check_ind err t =
   318       (case dest_predicate cs params t of
   319         NONE => err (bad_app ^
   320           commas (map (Syntax.string_of_term ctxt) params))
   321       | SOME (_, _, ys, _) =>
   322           if exists (fn c => exists (fn t => Logic.occs (c, t)) ys) cs
   323           then err bad_ind_occ else ());
   324 
   325     fun check_prem' prem t =
   326       if member (op =) cs (head_of t) then
   327         check_ind (err_in_prem ctxt binding rule prem) t
   328       else
   329         (case t of
   330           Abs (_, _, t) => check_prem' prem t
   331         | t $ u => (check_prem' prem t; check_prem' prem u)
   332         | _ => ());
   333 
   334     fun check_prem (prem, aprem) =
   335       if can HOLogic.dest_Trueprop aprem then check_prem' prem prem
   336       else err_in_prem ctxt binding rule prem "Non-atomic premise";
   337 
   338     val _ =
   339       (case concl of
   340         Const (@{const_name Trueprop}, _) $ t =>
   341           if member (op =) cs (head_of t) then
   342            (check_ind (err_in_rule ctxt binding rule') t;
   343             List.app check_prem (prems ~~ aprems))
   344           else err_in_rule ctxt binding rule' bad_concl
   345        | _ => err_in_rule ctxt binding rule' bad_concl);
   346   in
   347     ((binding, att), arule)
   348   end;
   349 
   350 val rulify =
   351   hol_simplify inductive_conj
   352   #> hol_simplify inductive_rulify
   353   #> hol_simplify inductive_rulify_fallback
   354   #> Simplifier.norm_hhf;
   355 
   356 end;
   357 
   358 
   359 
   360 (** proofs for (co)inductive predicates **)
   361 
   362 (* prove monotonicity *)
   363 
   364 fun prove_mono quiet_mode skip_mono predT fp_fun monos ctxt =
   365  (message (quiet_mode orelse skip_mono andalso ! quick_and_dirty)
   366     "  Proving monotonicity ...";
   367   (if skip_mono then Goal.prove_sorry else Goal.prove_future) ctxt
   368     [] []
   369     (HOLogic.mk_Trueprop
   370       (Const (@{const_name Orderings.mono}, (predT --> predT) --> HOLogic.boolT) $ fp_fun))
   371     (fn _ => EVERY [rtac @{thm monoI} 1,
   372       REPEAT (resolve_tac [@{thm le_funI}, @{thm le_boolI'}] 1),
   373       REPEAT (FIRST
   374         [atac 1,
   375          resolve_tac (map (mk_mono ctxt) monos @ get_monos ctxt) 1,
   376          etac @{thm le_funE} 1, dtac @{thm le_boolD} 1])]));
   377 
   378 
   379 (* prove introduction rules *)
   380 
   381 fun prove_intrs quiet_mode coind mono fp_def k intr_ts rec_preds_defs ctxt ctxt' =
   382   let
   383     val _ = clean_message quiet_mode "  Proving the introduction rules ...";
   384 
   385     val unfold = funpow k (fn th => th RS fun_cong)
   386       (mono RS (fp_def RS
   387         (if coind then @{thm def_gfp_unfold} else @{thm def_lfp_unfold})));
   388 
   389     val rules = [refl, TrueI, @{lemma "~ False" by (rule notI)}, exI, conjI];
   390 
   391     val intrs = map_index (fn (i, intr) =>
   392       Goal.prove_sorry ctxt [] [] intr (fn _ => EVERY
   393        [rewrite_goals_tac rec_preds_defs,
   394         rtac (unfold RS iffD2) 1,
   395         EVERY1 (select_disj (length intr_ts) (i + 1)),
   396         (*Not ares_tac, since refl must be tried before any equality assumptions;
   397           backtracking may occur if the premises have extra variables!*)
   398         DEPTH_SOLVE_1 (resolve_tac rules 1 APPEND assume_tac 1)])
   399        |> singleton (Proof_Context.export ctxt ctxt')) intr_ts
   400 
   401   in (intrs, unfold) end;
   402 
   403 
   404 (* prove elimination rules *)
   405 
   406 fun prove_elims quiet_mode cs params intr_ts intr_names unfold rec_preds_defs ctxt ctxt''' =
   407   let
   408     val _ = clean_message quiet_mode "  Proving the elimination rules ...";
   409 
   410     val ([pname], ctxt') = Variable.variant_fixes ["P"] ctxt;
   411     val P = HOLogic.mk_Trueprop (Free (pname, HOLogic.boolT));
   412 
   413     fun dest_intr r =
   414       (the (dest_predicate cs params (HOLogic.dest_Trueprop (Logic.strip_assums_concl r))),
   415        Logic.strip_assums_hyp r, Logic.strip_params r);
   416 
   417     val intrs = map dest_intr intr_ts ~~ intr_names;
   418 
   419     val rules1 = [disjE, exE, FalseE];
   420     val rules2 = [conjE, FalseE, @{lemma "~ True ==> R" by (rule notE [OF _ TrueI])}];
   421 
   422     fun prove_elim c =
   423       let
   424         val Ts = arg_types_of (length params) c;
   425         val (anames, ctxt'') = Variable.variant_fixes (mk_names "a" (length Ts)) ctxt';
   426         val frees = map Free (anames ~~ Ts);
   427 
   428         fun mk_elim_prem ((_, _, us, _), ts, params') =
   429           Logic.list_all (params',
   430             Logic.list_implies (map (HOLogic.mk_Trueprop o HOLogic.mk_eq)
   431               (frees ~~ us) @ ts, P));
   432         val c_intrs = filter (equal c o #1 o #1 o #1) intrs;
   433         val prems = HOLogic.mk_Trueprop (list_comb (c, params @ frees)) ::
   434            map mk_elim_prem (map #1 c_intrs)
   435       in
   436         (Goal.prove_sorry ctxt'' [] prems P
   437           (fn {prems, ...} => EVERY
   438             [cut_tac (hd prems) 1,
   439              rewrite_goals_tac rec_preds_defs,
   440              dtac (unfold RS iffD1) 1,
   441              REPEAT (FIRSTGOAL (eresolve_tac rules1)),
   442              REPEAT (FIRSTGOAL (eresolve_tac rules2)),
   443              EVERY (map (fn prem =>
   444                DEPTH_SOLVE_1 (ares_tac [rewrite_rule rec_preds_defs prem, conjI] 1)) (tl prems))])
   445           |> singleton (Proof_Context.export ctxt'' ctxt'''),
   446          map #2 c_intrs, length Ts)
   447       end
   448 
   449    in map prove_elim cs end;
   450 
   451 
   452 (* prove simplification equations *)
   453 
   454 fun prove_eqs quiet_mode cs params intr_ts intrs
   455     (elims: (thm * bstring list * int) list) ctxt ctxt'' =  (* FIXME ctxt'' ?? *)
   456   let
   457     val _ = clean_message quiet_mode "  Proving the simplification rules ...";
   458 
   459     fun dest_intr r =
   460       (the (dest_predicate cs params (HOLogic.dest_Trueprop (Logic.strip_assums_concl r))),
   461        Logic.strip_assums_hyp r, Logic.strip_params r);
   462     val intr_ts' = map dest_intr intr_ts;
   463 
   464     fun prove_eq c (elim: thm * 'a * 'b) =
   465       let
   466         val Ts = arg_types_of (length params) c;
   467         val (anames, ctxt') = Variable.variant_fixes (mk_names "a" (length Ts)) ctxt;
   468         val frees = map Free (anames ~~ Ts);
   469         val c_intrs = filter (equal c o #1 o #1 o #1) (intr_ts' ~~ intrs);
   470         fun mk_intr_conj (((_, _, us, _), ts, params'), _) =
   471           let
   472             fun list_ex ([], t) = t
   473               | list_ex ((a, T) :: vars, t) =
   474                   HOLogic.exists_const T $ Abs (a, T, list_ex (vars, t));
   475             val conjs = map2 (curry HOLogic.mk_eq) frees us @ map HOLogic.dest_Trueprop ts;
   476           in
   477             list_ex (params', if null conjs then @{term True} else foldr1 HOLogic.mk_conj conjs)
   478           end;
   479         val lhs = list_comb (c, params @ frees);
   480         val rhs =
   481           if null c_intrs then @{term False}
   482           else foldr1 HOLogic.mk_disj (map mk_intr_conj c_intrs);
   483         val eq = HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs));
   484         fun prove_intr1 (i, _) = Subgoal.FOCUS_PREMS (fn {params, prems, ...} =>
   485             EVERY1 (select_disj (length c_intrs) (i + 1)) THEN
   486             EVERY (replicate (length params) (rtac @{thm exI} 1)) THEN
   487             (if null prems then rtac @{thm TrueI} 1
   488              else
   489               let
   490                 val (prems', last_prem) = split_last prems;
   491               in
   492                 EVERY (map (fn prem => (rtac @{thm conjI} 1 THEN rtac prem 1)) prems') THEN
   493                 rtac last_prem 1
   494               end)) ctxt' 1;
   495         fun prove_intr2 (((_, _, us, _), ts, params'), intr) =
   496           EVERY (replicate (length params') (etac @{thm exE} 1)) THEN
   497           (if null ts andalso null us then rtac intr 1
   498            else
   499             EVERY (replicate (length ts + length us - 1) (etac @{thm conjE} 1)) THEN
   500             Subgoal.FOCUS_PREMS (fn {params, prems, ...} =>
   501               let
   502                 val (eqs, prems') = chop (length us) prems;
   503                 val rew_thms = map (fn th => th RS @{thm eq_reflection}) eqs;
   504               in
   505                 rewrite_goal_tac rew_thms 1 THEN
   506                 rtac intr 1 THEN
   507                 EVERY (map (fn p => rtac p 1) prems')
   508               end) ctxt' 1);
   509       in
   510         Goal.prove_sorry ctxt' [] [] eq (fn _ =>
   511           rtac @{thm iffI} 1 THEN etac (#1 elim) 1 THEN
   512           EVERY (map_index prove_intr1 c_intrs) THEN
   513           (if null c_intrs then etac @{thm FalseE} 1
   514            else
   515             let val (c_intrs', last_c_intr) = split_last c_intrs in
   516               EVERY (map (fn ci => etac @{thm disjE} 1 THEN prove_intr2 ci) c_intrs') THEN
   517               prove_intr2 last_c_intr
   518             end))
   519         |> rulify
   520         |> singleton (Proof_Context.export ctxt' ctxt'')
   521       end;
   522   in
   523     map2 prove_eq cs elims
   524   end;
   525 
   526 
   527 (* derivation of simplified elimination rules *)
   528 
   529 local
   530 
   531 (*delete needless equality assumptions*)
   532 val refl_thin = Goal.prove_global @{theory HOL} [] [] @{prop "!!P. a = a ==> P ==> P"}
   533   (fn _ => assume_tac 1);
   534 val elim_rls = [asm_rl, FalseE, refl_thin, conjE, exE];
   535 val elim_tac = REPEAT o Tactic.eresolve_tac elim_rls;
   536 
   537 fun simp_case_tac ss i =
   538   EVERY' [elim_tac, asm_full_simp_tac ss, elim_tac, REPEAT o bound_hyp_subst_tac] i;
   539 
   540 in
   541 
   542 fun mk_cases ctxt prop =
   543   let
   544     val thy = Proof_Context.theory_of ctxt;
   545     val ss = simpset_of ctxt;
   546 
   547     fun err msg =
   548       error (Pretty.string_of (Pretty.block
   549         [Pretty.str msg, Pretty.fbrk, Syntax.pretty_term ctxt prop]));
   550 
   551     val elims = Induct.find_casesP ctxt prop;
   552 
   553     val cprop = Thm.cterm_of thy prop;
   554     val tac = ALLGOALS (simp_case_tac ss) THEN prune_params_tac;
   555     fun mk_elim rl =
   556       Thm.implies_intr cprop (Tactic.rule_by_tactic ctxt tac (Thm.assume cprop RS rl))
   557       |> singleton (Variable.export (Variable.auto_fixes prop ctxt) ctxt);
   558   in
   559     (case get_first (try mk_elim) elims of
   560       SOME r => r
   561     | NONE => err "Proposition not an inductive predicate:")
   562   end;
   563 
   564 end;
   565 
   566 
   567 (* inductive_cases *)
   568 
   569 fun gen_inductive_cases prep_att prep_prop args lthy =
   570   let
   571     val thy = Proof_Context.theory_of lthy;
   572     val thmss =
   573       map snd args
   574       |> burrow (grouped 10 Par_List.map (mk_cases lthy o prep_prop lthy));
   575     val facts =
   576       map2 (fn ((a, atts), _) => fn thms => ((a, map (prep_att thy) atts), [(thms, [])]))
   577         args thmss;
   578   in lthy |> Local_Theory.notes facts |>> map snd end;
   579 
   580 val inductive_cases = gen_inductive_cases Attrib.intern_src Syntax.read_prop;
   581 val inductive_cases_i = gen_inductive_cases (K I) Syntax.check_prop;
   582 
   583 
   584 val ind_cases_setup =
   585   Method.setup @{binding ind_cases}
   586     (Scan.lift (Scan.repeat1 Args.name_source --
   587       Scan.optional (Args.$$$ "for" |-- Scan.repeat1 Args.binding) []) >>
   588       (fn (raw_props, fixes) => fn ctxt =>
   589         let
   590           val (_, ctxt') = Variable.add_fixes_binding fixes ctxt;
   591           val props = Syntax.read_props ctxt' raw_props;
   592           val ctxt'' = fold Variable.declare_term props ctxt';
   593           val rules = Proof_Context.export ctxt'' ctxt (map (mk_cases ctxt'') props)
   594         in Method.erule 0 rules end))
   595     "dynamic case analysis on predicates";
   596 
   597 
   598 (* derivation of simplified equation *)
   599 
   600 fun mk_simp_eq ctxt prop =
   601   let
   602     val thy = Proof_Context.theory_of ctxt;
   603     val ctxt' = Variable.auto_fixes prop ctxt;
   604     val lhs_of = fst o HOLogic.dest_eq o HOLogic.dest_Trueprop o Thm.prop_of;
   605     val substs =
   606       Item_Net.retrieve (get_equations ctxt) (HOLogic.dest_Trueprop prop)
   607       |> map_filter
   608         (fn eq => SOME (Pattern.match thy (lhs_of eq, HOLogic.dest_Trueprop prop)
   609             (Vartab.empty, Vartab.empty), eq)
   610           handle Pattern.MATCH => NONE);
   611     val (subst, eq) =
   612       (case substs of
   613         [s] => s
   614       | _ => error
   615         ("equations matching pattern " ^ Syntax.string_of_term ctxt prop ^ " is not unique"));
   616     val inst =
   617       map (fn v => (cterm_of thy (Var v), cterm_of thy (Envir.subst_term subst (Var v))))
   618         (Term.add_vars (lhs_of eq) []);
   619   in
   620     Drule.cterm_instantiate inst eq
   621     |> Conv.fconv_rule (Conv.arg_conv (Conv.arg_conv (Simplifier.full_rewrite (simpset_of ctxt))))
   622     |> singleton (Variable.export ctxt' ctxt)
   623   end
   624 
   625 
   626 (* inductive simps *)
   627 
   628 fun gen_inductive_simps prep_att prep_prop args lthy =
   629   let
   630     val thy = Proof_Context.theory_of lthy;
   631     val facts = args |> map (fn ((a, atts), props) =>
   632       ((a, map (prep_att thy) atts),
   633         map (Thm.no_attributes o single o mk_simp_eq lthy o prep_prop lthy) props));
   634   in lthy |> Local_Theory.notes facts |>> map snd end;
   635 
   636 val inductive_simps = gen_inductive_simps Attrib.intern_src Syntax.read_prop;
   637 val inductive_simps_i = gen_inductive_simps (K I) Syntax.check_prop;
   638 
   639 
   640 (* prove induction rule *)
   641 
   642 fun prove_indrule quiet_mode cs argTs bs xs rec_const params intr_ts mono
   643     fp_def rec_preds_defs ctxt ctxt''' =  (* FIXME ctxt''' ?? *)
   644   let
   645     val _ = clean_message quiet_mode "  Proving the induction rule ...";
   646 
   647     (* predicates for induction rule *)
   648 
   649     val (pnames, ctxt') = Variable.variant_fixes (mk_names "P" (length cs)) ctxt;
   650     val preds =
   651       map2 (curry Free) pnames
   652         (map (fn c => arg_types_of (length params) c ---> HOLogic.boolT) cs);
   653 
   654     (* transform an introduction rule into a premise for induction rule *)
   655 
   656     fun mk_ind_prem r =
   657       let
   658         fun subst s =
   659           (case dest_predicate cs params s of
   660             SOME (_, i, ys, (_, Ts)) =>
   661               let
   662                 val k = length Ts;
   663                 val bs = map Bound (k - 1 downto 0);
   664                 val P = list_comb (nth preds i, map (incr_boundvars k) ys @ bs);
   665                 val Q =
   666                   fold_rev Term.abs (mk_names "x" k ~~ Ts)
   667                     (HOLogic.mk_binop inductive_conj_name
   668                       (list_comb (incr_boundvars k s, bs), P));
   669               in (Q, case Ts of [] => SOME (s, P) | _ => NONE) end
   670           | NONE =>
   671               (case s of
   672                 t $ u => (fst (subst t) $ fst (subst u), NONE)
   673               | Abs (a, T, t) => (Abs (a, T, fst (subst t)), NONE)
   674               | _ => (s, NONE)));
   675 
   676         fun mk_prem s prems =
   677           (case subst s of
   678             (_, SOME (t, u)) => t :: u :: prems
   679           | (t, _) => t :: prems);
   680 
   681         val SOME (_, i, ys, _) =
   682           dest_predicate cs params (HOLogic.dest_Trueprop (Logic.strip_assums_concl r));
   683       in
   684         fold_rev (Logic.all o Free) (Logic.strip_params r)
   685           (Logic.list_implies (map HOLogic.mk_Trueprop (fold_rev mk_prem
   686             (map HOLogic.dest_Trueprop (Logic.strip_assums_hyp r)) []),
   687               HOLogic.mk_Trueprop (list_comb (nth preds i, ys))))
   688       end;
   689 
   690     val ind_prems = map mk_ind_prem intr_ts;
   691 
   692 
   693     (* make conclusions for induction rules *)
   694 
   695     val Tss = map (binder_types o fastype_of) preds;
   696     val (xnames, ctxt'') = Variable.variant_fixes (mk_names "x" (length (flat Tss))) ctxt';
   697     val mutual_ind_concl =
   698       HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj
   699         (map (fn (((xnames, Ts), c), P) =>
   700           let val frees = map Free (xnames ~~ Ts)
   701           in HOLogic.mk_imp (list_comb (c, params @ frees), list_comb (P, frees)) end)
   702         (unflat Tss xnames ~~ Tss ~~ cs ~~ preds)));
   703 
   704 
   705     (* make predicate for instantiation of abstract induction rule *)
   706 
   707     val ind_pred =
   708       fold_rev lambda (bs @ xs) (foldr1 HOLogic.mk_conj
   709         (map_index (fn (i, P) => fold_rev (curry HOLogic.mk_imp)
   710            (make_bool_args HOLogic.mk_not I bs i)
   711            (list_comb (P, make_args' argTs xs (binder_types (fastype_of P))))) preds));
   712 
   713     val ind_concl =
   714       HOLogic.mk_Trueprop
   715         (HOLogic.mk_binrel @{const_name Orderings.less_eq} (rec_const, ind_pred));
   716 
   717     val raw_fp_induct = mono RS (fp_def RS @{thm def_lfp_induct});
   718 
   719     val induct = Goal.prove_sorry ctxt'' [] ind_prems ind_concl
   720       (fn {prems, ...} => EVERY
   721         [rewrite_goals_tac [inductive_conj_def],
   722          DETERM (rtac raw_fp_induct 1),
   723          REPEAT (resolve_tac [@{thm le_funI}, @{thm le_boolI}] 1),
   724          rewrite_goals_tac simp_thms2,
   725          (*This disjE separates out the introduction rules*)
   726          REPEAT (FIRSTGOAL (eresolve_tac [disjE, exE, FalseE])),
   727          (*Now break down the individual cases.  No disjE here in case
   728            some premise involves disjunction.*)
   729          REPEAT (FIRSTGOAL (etac conjE ORELSE' bound_hyp_subst_tac)),
   730          REPEAT (FIRSTGOAL
   731            (resolve_tac [conjI, impI] ORELSE' (etac notE THEN' atac))),
   732          EVERY (map (fn prem => DEPTH_SOLVE_1 (ares_tac [rewrite_rule
   733              (inductive_conj_def :: rec_preds_defs @ simp_thms2) prem,
   734            conjI, refl] 1)) prems)]);
   735 
   736     val lemma = Goal.prove_sorry ctxt'' [] []
   737       (Logic.mk_implies (ind_concl, mutual_ind_concl)) (fn _ => EVERY
   738         [rewrite_goals_tac rec_preds_defs,
   739          REPEAT (EVERY
   740            [REPEAT (resolve_tac [conjI, impI] 1),
   741             REPEAT (eresolve_tac [@{thm le_funE}, @{thm le_boolE}] 1),
   742             atac 1,
   743             rewrite_goals_tac simp_thms1,
   744             atac 1])]);
   745 
   746   in singleton (Proof_Context.export ctxt'' ctxt''') (induct RS lemma) end;
   747 
   748 
   749 
   750 (** specification of (co)inductive predicates **)
   751 
   752 fun mk_ind_def quiet_mode skip_mono alt_name coind cs intr_ts monos params cnames_syn lthy =
   753   let
   754     val fp_name = if coind then @{const_name Inductive.gfp} else @{const_name Inductive.lfp};
   755 
   756     val argTs = fold (combine (op =) o arg_types_of (length params)) cs [];
   757     val k = log 2 1 (length cs);
   758     val predT = replicate k HOLogic.boolT ---> argTs ---> HOLogic.boolT;
   759     val p :: xs =
   760       map Free (Variable.variant_frees lthy intr_ts
   761         (("p", predT) :: (mk_names "x" (length argTs) ~~ argTs)));
   762     val bs =
   763       map Free (Variable.variant_frees lthy (p :: xs @ intr_ts)
   764         (map (rpair HOLogic.boolT) (mk_names "b" k)));
   765 
   766     fun subst t =
   767       (case dest_predicate cs params t of
   768         SOME (_, i, ts, (Ts, Us)) =>
   769           let
   770             val l = length Us;
   771             val zs = map Bound (l - 1 downto 0);
   772           in
   773             fold_rev (Term.abs o pair "z") Us
   774               (list_comb (p,
   775                 make_bool_args' bs i @ make_args argTs
   776                   ((map (incr_boundvars l) ts ~~ Ts) @ (zs ~~ Us))))
   777           end
   778       | NONE =>
   779           (case t of
   780             t1 $ t2 => subst t1 $ subst t2
   781           | Abs (x, T, u) => Abs (x, T, subst u)
   782           | _ => t));
   783 
   784     (* transform an introduction rule into a conjunction  *)
   785     (*   [| p_i t; ... |] ==> p_j u                       *)
   786     (* is transformed into                                *)
   787     (*   b_j & x_j = u & p b_j t & ...                    *)
   788 
   789     fun transform_rule r =
   790       let
   791         val SOME (_, i, ts, (Ts, _)) =
   792           dest_predicate cs params (HOLogic.dest_Trueprop (Logic.strip_assums_concl r));
   793         val ps =
   794           make_bool_args HOLogic.mk_not I bs i @
   795           map HOLogic.mk_eq (make_args' argTs xs Ts ~~ ts) @
   796           map (subst o HOLogic.dest_Trueprop) (Logic.strip_assums_hyp r);
   797       in
   798         fold_rev (fn (x, T) => fn P => HOLogic.exists_const T $ Abs (x, T, P))
   799           (Logic.strip_params r)
   800           (if null ps then @{term True} else foldr1 HOLogic.mk_conj ps)
   801       end;
   802 
   803     (* make a disjunction of all introduction rules *)
   804 
   805     val fp_fun =
   806       fold_rev lambda (p :: bs @ xs)
   807         (if null intr_ts then @{term False}
   808          else foldr1 HOLogic.mk_disj (map transform_rule intr_ts));
   809 
   810     (* add definiton of recursive predicates to theory *)
   811 
   812     val rec_name =
   813       if Binding.is_empty alt_name then
   814         Binding.name (space_implode "_" (map (Binding.name_of o fst) cnames_syn))
   815       else alt_name;
   816 
   817     val ((rec_const, (_, fp_def)), lthy') = lthy
   818       |> Local_Theory.conceal
   819       |> Local_Theory.define
   820         ((rec_name, case cnames_syn of [(_, syn)] => syn | _ => NoSyn),
   821          ((Thm.def_binding rec_name, @{attributes [nitpick_unfold]}),
   822            fold_rev lambda params
   823              (Const (fp_name, (predT --> predT) --> predT) $ fp_fun)))
   824       ||> Local_Theory.restore_naming lthy;
   825     val fp_def' =
   826       Simplifier.rewrite (HOL_basic_ss addsimps [fp_def])
   827         (cterm_of (Proof_Context.theory_of lthy') (list_comb (rec_const, params)));
   828     val specs =
   829       if length cs < 2 then []
   830       else
   831         map_index (fn (i, (name_mx, c)) =>
   832           let
   833             val Ts = arg_types_of (length params) c;
   834             val xs =
   835               map Free (Variable.variant_frees lthy intr_ts (mk_names "x" (length Ts) ~~ Ts));
   836           in
   837             (name_mx, (apfst Binding.conceal Attrib.empty_binding, fold_rev lambda (params @ xs)
   838               (list_comb (rec_const, params @ make_bool_args' bs i @
   839                 make_args argTs (xs ~~ Ts)))))
   840           end) (cnames_syn ~~ cs);
   841     val (consts_defs, lthy'') = lthy'
   842       |> fold_map Local_Theory.define specs;
   843     val preds = (case cs of [_] => [rec_const] | _ => map #1 consts_defs);
   844 
   845     val (_, lthy''') = Variable.add_fixes (map (fst o dest_Free) params) lthy'';
   846     val mono = prove_mono quiet_mode skip_mono predT fp_fun monos lthy''';
   847     val (_, lthy'''') =
   848       Local_Theory.note (apfst Binding.conceal Attrib.empty_binding,
   849         Proof_Context.export lthy''' lthy'' [mono]) lthy'';
   850 
   851   in (lthy'''', lthy''', rec_name, mono, fp_def', map (#2 o #2) consts_defs,
   852     list_comb (rec_const, params), preds, argTs, bs, xs)
   853   end;
   854 
   855 fun declare_rules rec_binding coind no_ind cnames
   856     preds intrs intr_bindings intr_atts elims eqs raw_induct lthy =
   857   let
   858     val rec_name = Binding.name_of rec_binding;
   859     fun rec_qualified qualified = Binding.qualify qualified rec_name;
   860     val intr_names = map Binding.name_of intr_bindings;
   861     val ind_case_names = Rule_Cases.case_names intr_names;
   862     val induct =
   863       if coind then
   864         (raw_induct,
   865          [Rule_Cases.case_names [rec_name],
   866           Rule_Cases.case_conclusion (rec_name, intr_names),
   867           Rule_Cases.consumes (1 - Thm.nprems_of raw_induct),
   868           Induct.coinduct_pred (hd cnames)])
   869       else if no_ind orelse length cnames > 1 then
   870         (raw_induct,
   871           [ind_case_names, Rule_Cases.consumes (~ (Thm.nprems_of raw_induct))])
   872       else
   873         (raw_induct RSN (2, rev_mp),
   874           [ind_case_names, Rule_Cases.consumes (~ (Thm.nprems_of raw_induct))]);
   875 
   876     val (intrs', lthy1) =
   877       lthy |>
   878       Spec_Rules.add
   879         (if coind then Spec_Rules.Co_Inductive else Spec_Rules.Inductive) (preds, intrs) |>
   880       Local_Theory.notes
   881         (map (rec_qualified false) intr_bindings ~~ intr_atts ~~
   882           map (fn th => [([th],
   883            [Attrib.internal (K (Context_Rules.intro_query NONE))])]) intrs) |>>
   884       map (hd o snd);
   885     val (((_, elims'), (_, [induct'])), lthy2) =
   886       lthy1 |>
   887       Local_Theory.note ((rec_qualified true (Binding.name "intros"), []), intrs') ||>>
   888       fold_map (fn (name, (elim, cases, k)) =>
   889         Local_Theory.note
   890           ((Binding.qualify true (Long_Name.base_name name) (Binding.name "cases"),
   891             [Attrib.internal (K (Rule_Cases.case_names cases)),
   892              Attrib.internal (K (Rule_Cases.consumes (1 - Thm.nprems_of elim))),
   893              Attrib.internal (K (Rule_Cases.constraints k)),
   894              Attrib.internal (K (Induct.cases_pred name)),
   895              Attrib.internal (K (Context_Rules.elim_query NONE))]), [elim]) #>
   896         apfst (hd o snd)) (if null elims then [] else cnames ~~ elims) ||>>
   897       Local_Theory.note
   898         ((rec_qualified true (Binding.name (coind_prefix coind ^ "induct")),
   899           map (Attrib.internal o K) (#2 induct)), [rulify (#1 induct)]);
   900 
   901     val (eqs', lthy3) = lthy2 |>
   902       fold_map (fn (name, eq) => Local_Theory.note
   903           ((Binding.qualify true (Long_Name.base_name name) (Binding.name "simps"),
   904             [Attrib.internal (K equation_add_permissive)]), [eq])
   905           #> apfst (hd o snd))
   906         (if null eqs then [] else (cnames ~~ eqs))
   907     val (inducts, lthy4) =
   908       if no_ind orelse coind then ([], lthy3)
   909       else
   910         let val inducts = cnames ~~ Project_Rule.projects lthy3 (1 upto length cnames) induct' in
   911           lthy3 |>
   912           Local_Theory.notes [((rec_qualified true (Binding.name "inducts"), []),
   913             inducts |> map (fn (name, th) => ([th],
   914               [Attrib.internal (K ind_case_names),
   915                Attrib.internal (K (Rule_Cases.consumes (1 - Thm.nprems_of th))),
   916                Attrib.internal (K (Induct.induct_pred name))])))] |>> snd o hd
   917         end;
   918   in (intrs', elims', eqs', induct', inducts, lthy4) end;
   919 
   920 type inductive_flags =
   921   {quiet_mode: bool, verbose: bool, alt_name: binding, coind: bool,
   922     no_elim: bool, no_ind: bool, skip_mono: bool};
   923 
   924 type add_ind_def =
   925   inductive_flags ->
   926   term list -> (Attrib.binding * term) list -> thm list ->
   927   term list -> (binding * mixfix) list ->
   928   local_theory -> inductive_result * local_theory;
   929 
   930 fun add_ind_def {quiet_mode, verbose, alt_name, coind, no_elim, no_ind, skip_mono}
   931     cs intros monos params cnames_syn lthy =
   932   let
   933     val _ = null cnames_syn andalso error "No inductive predicates given";
   934     val names = map (Binding.name_of o fst) cnames_syn;
   935     val _ = message (quiet_mode andalso not verbose)
   936       ("Proofs for " ^ coind_prefix coind ^ "inductive predicate(s) " ^ commas_quote names);
   937 
   938     val cnames = map (Local_Theory.full_name lthy o #1) cnames_syn;  (* FIXME *)
   939     val ((intr_names, intr_atts), intr_ts) =
   940       apfst split_list (split_list (map (check_rule lthy cs params) intros));
   941 
   942     val (lthy1, lthy2, rec_name, mono, fp_def, rec_preds_defs, rec_const, preds,
   943       argTs, bs, xs) = mk_ind_def quiet_mode skip_mono alt_name coind cs intr_ts
   944         monos params cnames_syn lthy;
   945 
   946     val (intrs, unfold) = prove_intrs quiet_mode coind mono fp_def (length bs + length xs)
   947       intr_ts rec_preds_defs lthy2 lthy1;
   948     val elims =
   949       if no_elim then []
   950       else
   951         prove_elims quiet_mode cs params intr_ts (map Binding.name_of intr_names)
   952           unfold rec_preds_defs lthy2 lthy1;
   953     val raw_induct = zero_var_indexes
   954       (if no_ind then Drule.asm_rl
   955        else if coind then
   956          singleton (Proof_Context.export lthy2 lthy1)
   957            (rotate_prems ~1 (Object_Logic.rulify
   958              (fold_rule rec_preds_defs
   959                (rewrite_rule simp_thms3
   960                 (mono RS (fp_def RS @{thm def_coinduct}))))))
   961        else
   962          prove_indrule quiet_mode cs argTs bs xs rec_const params intr_ts mono fp_def
   963            rec_preds_defs lthy2 lthy1);
   964     val eqs =
   965       if no_elim then [] else prove_eqs quiet_mode cs params intr_ts intrs elims lthy2 lthy1;
   966 
   967     val elims' = map (fn (th, ns, i) => (rulify th, ns, i)) elims;
   968     val intrs' = map rulify intrs;
   969 
   970     val (intrs'', elims'', eqs', induct, inducts, lthy3) =
   971       declare_rules rec_name coind no_ind
   972         cnames preds intrs' intr_names intr_atts elims' eqs raw_induct lthy1;
   973 
   974     val result =
   975       {preds = preds,
   976        intrs = intrs'',
   977        elims = elims'',
   978        raw_induct = rulify raw_induct,
   979        induct = induct,
   980        inducts = inducts,
   981        eqs = eqs'};
   982 
   983     val lthy4 = lthy3
   984       |> Local_Theory.declaration {syntax = false, pervasive = false} (fn phi =>
   985         let val result' = transform_result phi result;
   986         in put_inductives cnames (*global names!?*) ({names = cnames, coind = coind}, result') end);
   987   in (result, lthy4) end;
   988 
   989 
   990 (* external interfaces *)
   991 
   992 fun gen_add_inductive_i mk_def
   993     (flags as {quiet_mode, verbose, alt_name, coind, no_elim, no_ind, skip_mono})
   994     cnames_syn pnames spec monos lthy =
   995   let
   996     val thy = Proof_Context.theory_of lthy;
   997     val _ = Theory.requires thy "Inductive" (coind_prefix coind ^ "inductive definitions");
   998 
   999 
  1000     (* abbrevs *)
  1001 
  1002     val (_, ctxt1) = Variable.add_fixes (map (Binding.name_of o fst o fst) cnames_syn) lthy;
  1003 
  1004     fun get_abbrev ((name, atts), t) =
  1005       if can (Logic.strip_assums_concl #> Logic.dest_equals) t then
  1006         let
  1007           val _ = Binding.is_empty name andalso null atts orelse
  1008             error "Abbreviations may not have names or attributes";
  1009           val ((x, T), rhs) = Local_Defs.abs_def (snd (Local_Defs.cert_def ctxt1 t));
  1010           val var =
  1011             (case find_first (fn ((c, _), _) => Binding.name_of c = x) cnames_syn of
  1012               NONE => error ("Undeclared head of abbreviation " ^ quote x)
  1013             | SOME ((b, T'), mx) =>
  1014                 if T <> T' then error ("Bad type specification for abbreviation " ^ quote x)
  1015                 else (b, mx));
  1016         in SOME (var, rhs) end
  1017       else NONE;
  1018 
  1019     val abbrevs = map_filter get_abbrev spec;
  1020     val bs = map (Binding.name_of o fst o fst) abbrevs;
  1021 
  1022 
  1023     (* predicates *)
  1024 
  1025     val pre_intros = filter_out (is_some o get_abbrev) spec;
  1026     val cnames_syn' = filter_out (member (op =) bs o Binding.name_of o fst o fst) cnames_syn;
  1027     val cs = map (Free o apfst Binding.name_of o fst) cnames_syn';
  1028     val ps = map Free pnames;
  1029 
  1030     val (_, ctxt2) = lthy |> Variable.add_fixes (map (Binding.name_of o fst o fst) cnames_syn');
  1031     val _ = map (fn abbr => Local_Defs.fixed_abbrev abbr ctxt2) abbrevs;
  1032     val ctxt3 = ctxt2 |> fold (snd oo Local_Defs.fixed_abbrev) abbrevs;
  1033     val expand = Assumption.export_term ctxt3 lthy #> Proof_Context.cert_term lthy;
  1034 
  1035     fun close_rule r =
  1036       fold (Logic.all o Free) (fold_aterms
  1037         (fn t as Free (v as (s, _)) =>
  1038             if Variable.is_fixed ctxt1 s orelse
  1039               member (op =) ps t then I else insert (op =) v
  1040           | _ => I) r []) r;
  1041 
  1042     val intros = map (apsnd (Syntax.check_term lthy #> close_rule #> expand)) pre_intros;
  1043     val preds = map (fn ((c, _), mx) => (c, mx)) cnames_syn';
  1044   in
  1045     lthy
  1046     |> mk_def flags cs intros monos ps preds
  1047     ||> fold (snd oo Local_Theory.abbrev Syntax.mode_default) abbrevs
  1048   end;
  1049 
  1050 fun gen_add_inductive mk_def verbose coind cnames_syn pnames_syn intro_srcs raw_monos lthy =
  1051   let
  1052     val ((vars, intrs), _) = lthy
  1053       |> Proof_Context.set_mode Proof_Context.mode_abbrev
  1054       |> Specification.read_spec (cnames_syn @ pnames_syn) intro_srcs;
  1055     val (cs, ps) = chop (length cnames_syn) vars;
  1056     val monos = Attrib.eval_thms lthy raw_monos;
  1057     val flags =
  1058      {quiet_mode = false, verbose = verbose, alt_name = Binding.empty,
  1059       coind = coind, no_elim = false, no_ind = false, skip_mono = false};
  1060   in
  1061     lthy
  1062     |> gen_add_inductive_i mk_def flags cs (map (apfst Binding.name_of o fst) ps) intrs monos
  1063   end;
  1064 
  1065 val add_inductive_i = gen_add_inductive_i add_ind_def;
  1066 val add_inductive = gen_add_inductive add_ind_def;
  1067 
  1068 fun add_inductive_global flags cnames_syn pnames pre_intros monos thy =
  1069   let
  1070     val name = Sign.full_name thy (fst (fst (hd cnames_syn)));
  1071     val ctxt' = thy
  1072       |> Named_Target.theory_init
  1073       |> add_inductive_i flags cnames_syn pnames pre_intros monos |> snd
  1074       |> Local_Theory.exit;
  1075     val info = #2 (the_inductive ctxt' name);
  1076   in (info, Proof_Context.theory_of ctxt') end;
  1077 
  1078 
  1079 (* read off arities of inductive predicates from raw induction rule *)
  1080 fun arities_of induct =
  1081   map (fn (_ $ t $ u) =>
  1082       (fst (dest_Const (head_of t)), length (snd (strip_comb u))))
  1083     (HOLogic.dest_conj (HOLogic.dest_Trueprop (concl_of induct)));
  1084 
  1085 (* read off parameters of inductive predicate from raw induction rule *)
  1086 fun params_of induct =
  1087   let
  1088     val (_ $ t $ u :: _) = HOLogic.dest_conj (HOLogic.dest_Trueprop (concl_of induct));
  1089     val (_, ts) = strip_comb t;
  1090     val (_, us) = strip_comb u;
  1091   in
  1092     List.take (ts, length ts - length us)
  1093   end;
  1094 
  1095 val pname_of_intr =
  1096   concl_of #> HOLogic.dest_Trueprop #> head_of #> dest_Const #> fst;
  1097 
  1098 (* partition introduction rules according to predicate name *)
  1099 fun gen_partition_rules f induct intros =
  1100   fold_rev (fn r => AList.map_entry op = (pname_of_intr (f r)) (cons r)) intros
  1101     (map (rpair [] o fst) (arities_of induct));
  1102 
  1103 val partition_rules = gen_partition_rules I;
  1104 fun partition_rules' induct = gen_partition_rules fst induct;
  1105 
  1106 fun unpartition_rules intros xs =
  1107   fold_map (fn r => AList.map_entry_yield op = (pname_of_intr r)
  1108     (fn x :: xs => (x, xs)) #>> the) intros xs |> fst;
  1109 
  1110 (* infer order of variables in intro rules from order of quantifiers in elim rule *)
  1111 fun infer_intro_vars elim arity intros =
  1112   let
  1113     val thy = theory_of_thm elim;
  1114     val _ :: cases = prems_of elim;
  1115     val used = map (fst o fst) (Term.add_vars (prop_of elim) []);
  1116     fun mtch (t, u) =
  1117       let
  1118         val params = Logic.strip_params t;
  1119         val vars =
  1120           map (Var o apfst (rpair 0))
  1121             (Name.variant_list used (map fst params) ~~ map snd params);
  1122         val ts =
  1123           map (curry subst_bounds (rev vars))
  1124             (List.drop (Logic.strip_assums_hyp t, arity));
  1125         val us = Logic.strip_imp_prems u;
  1126         val tab =
  1127           fold (Pattern.first_order_match thy) (ts ~~ us) (Vartab.empty, Vartab.empty);
  1128       in
  1129         map (Envir.subst_term tab) vars
  1130       end
  1131   in
  1132     map (mtch o apsnd prop_of) (cases ~~ intros)
  1133   end;
  1134 
  1135 
  1136 
  1137 (** package setup **)
  1138 
  1139 (* setup theory *)
  1140 
  1141 val setup =
  1142   ind_cases_setup #>
  1143   Attrib.setup @{binding mono} (Attrib.add_del mono_add mono_del)
  1144     "declaration of monotonicity rule";
  1145 
  1146 
  1147 (* outer syntax *)
  1148 
  1149 fun gen_ind_decl mk_def coind =
  1150   Parse.fixes -- Parse.for_fixes --
  1151   Scan.optional Parse_Spec.where_alt_specs [] --
  1152   Scan.optional (@{keyword "monos"} |-- Parse.!!! Parse_Spec.xthms1) []
  1153   >> (fn (((preds, params), specs), monos) =>
  1154       (snd o gen_add_inductive mk_def true coind preds params specs monos));
  1155 
  1156 val ind_decl = gen_ind_decl add_ind_def;
  1157 
  1158 val _ =
  1159   Outer_Syntax.local_theory @{command_spec "inductive"} "define inductive predicates"
  1160     (ind_decl false);
  1161 
  1162 val _ =
  1163   Outer_Syntax.local_theory @{command_spec "coinductive"} "define coinductive predicates"
  1164     (ind_decl true);
  1165 
  1166 val _ =
  1167   Outer_Syntax.local_theory @{command_spec "inductive_cases"}
  1168     "create simplified instances of elimination rules"
  1169     (Parse.and_list1 Parse_Spec.specs >> (snd oo inductive_cases));
  1170 
  1171 val _ =
  1172   Outer_Syntax.local_theory @{command_spec "inductive_simps"}
  1173     "create simplification rules for inductive predicates"
  1174     (Parse.and_list1 Parse_Spec.specs >> (snd oo inductive_simps));
  1175 
  1176 val _ =
  1177   Outer_Syntax.improper_command @{command_spec "print_inductives"}
  1178     "print (co)inductive definitions and monotonicity rules"
  1179     (Scan.succeed
  1180       (Toplevel.no_timing o Toplevel.unknown_context o
  1181         Toplevel.keep (print_inductives o Toplevel.context_of)));
  1182 
  1183 end;