1 (* Title: HOL/Tools/refute.ML
6 Finite model generation for HOL formulas, using a SAT solver.
9 (* ------------------------------------------------------------------------- *)
10 (* Declares the 'REFUTE' signature as well as a structure 'Refute'. *)
11 (* Documentation is available in the Isabelle/Isar theory 'HOL/Refute.thy'. *)
12 (* ------------------------------------------------------------------------- *)
17 exception REFUTE of string * string
19 (* ------------------------------------------------------------------------- *)
20 (* Model/interpretation related code (translation HOL -> propositional logic *)
21 (* ------------------------------------------------------------------------- *)
28 exception MAXVARS_EXCEEDED
30 val add_interpreter : string -> (theory -> model -> arguments -> Term.term ->
31 (interpretation * model * arguments) option) -> theory -> theory
32 val add_printer : string -> (theory -> model -> Term.term ->
33 interpretation -> (int -> bool) -> Term.term option) -> theory -> theory
35 val interpret : theory -> model -> arguments -> Term.term ->
36 (interpretation * model * arguments)
38 val print : theory -> model -> Term.term -> interpretation ->
39 (int -> bool) -> Term.term
40 val print_model : theory -> model -> (int -> bool) -> string
42 (* ------------------------------------------------------------------------- *)
44 (* ------------------------------------------------------------------------- *)
46 val set_default_param : (string * string) -> theory -> theory
47 val get_default_param : theory -> string -> string option
48 val get_default_params : theory -> (string * string) list
49 val actual_params : theory -> (string * string) list -> params
51 val find_model : theory -> params -> Term.term -> bool -> unit
53 (* tries to find a model for a formula: *)
54 val satisfy_term : theory -> (string * string) list -> Term.term -> unit
55 (* tries to find a model that refutes a formula: *)
56 val refute_term : theory -> (string * string) list -> Term.term -> unit
58 theory -> (string * string) list -> Thm.thm -> int -> unit
60 val setup : theory -> theory
62 end; (* signature REFUTE *)
64 structure Refute : REFUTE =
69 (* We use 'REFUTE' only for internal error conditions that should *)
70 (* never occur in the first place (i.e. errors caused by bugs in our *)
71 (* code). Otherwise (e.g. to indicate invalid input data) we use *)
73 exception REFUTE of string * string; (* ("in function", "cause") *)
75 (* should be raised by an interpreter when more variables would be *)
76 (* required than allowed by 'maxvars' *)
77 exception MAXVARS_EXCEEDED;
79 (* ------------------------------------------------------------------------- *)
81 (* ------------------------------------------------------------------------- *)
83 (* ------------------------------------------------------------------------- *)
84 (* tree: implements an arbitrarily (but finitely) branching tree as a list *)
85 (* of (lists of ...) elements *)
86 (* ------------------------------------------------------------------------- *)
90 | Node of ('a tree) list;
92 (* ('a -> 'b) -> 'a tree -> 'b tree *)
97 | Node xs => Node (map (tree_map f) xs);
99 (* ('a * 'b -> 'a) -> 'a * ('b tree) -> 'a *)
103 fun itl (e, Leaf x) = f(e,x)
104 | itl (e, Node xs) = Library.foldl (tree_foldl f) (e,xs)
109 (* 'a tree * 'b tree -> ('a * 'b) tree *)
111 fun tree_pair (t1, t2) =
116 | Node _ => raise REFUTE ("tree_pair",
117 "trees are of different height (second tree is higher)"))
120 (* '~~' will raise an exception if the number of branches in *)
121 (* both trees is different at the current node *)
122 Node ys => Node (map tree_pair (xs ~~ ys))
123 | Leaf _ => raise REFUTE ("tree_pair",
124 "trees are of different height (first tree is higher)"));
126 (* ------------------------------------------------------------------------- *)
127 (* params: parameters that control the translation into a propositional *)
128 (* formula/model generation *)
130 (* The following parameters are supported (and required (!), except for *)
133 (* Name Type Description *)
135 (* "sizes" (string * int) list *)
136 (* Size of ground types (e.g. 'a=2), or depth of IDTs. *)
137 (* "minsize" int If >0, minimal size of each ground type/IDT depth. *)
138 (* "maxsize" int If >0, maximal size of each ground type/IDT depth. *)
139 (* "maxvars" int If >0, use at most 'maxvars' Boolean variables *)
140 (* when transforming the term into a propositional *)
142 (* "maxtime" int If >0, terminate after at most 'maxtime' seconds. *)
143 (* "satsolver" string SAT solver to be used. *)
144 (* ------------------------------------------------------------------------- *)
148 sizes : (string * int) list,
156 (* ------------------------------------------------------------------------- *)
157 (* interpretation: a term's interpretation is given by a variable of type *)
158 (* 'interpretation' *)
159 (* ------------------------------------------------------------------------- *)
161 type interpretation =
162 prop_formula list tree;
164 (* ------------------------------------------------------------------------- *)
165 (* model: a model specifies the size of types and the interpretation of *)
167 (* ------------------------------------------------------------------------- *)
170 (Term.typ * int) list * (Term.term * interpretation) list;
172 (* ------------------------------------------------------------------------- *)
173 (* arguments: additional arguments required during interpretation of terms *)
174 (* ------------------------------------------------------------------------- *)
178 (* just passed unchanged from 'params': *)
180 (* whether to use 'make_equality' or 'make_def_equality': *)
182 (* the following may change during the translation: *)
184 bounds : interpretation list,
185 wellformed: prop_formula
189 structure RefuteData = TheoryDataFun
192 {interpreters: (string * (theory -> model -> arguments -> Term.term ->
193 (interpretation * model * arguments) option)) list,
194 printers: (string * (theory -> model -> Term.term -> interpretation ->
195 (int -> bool) -> Term.term option)) list,
196 parameters: string Symtab.table};
197 val empty = {interpreters = [], printers = [], parameters = Symtab.empty};
201 ({interpreters = in1, printers = pr1, parameters = pa1},
202 {interpreters = in2, printers = pr2, parameters = pa2}) =
203 {interpreters = AList.merge (op =) (K true) (in1, in2),
204 printers = AList.merge (op =) (K true) (pr1, pr2),
205 parameters = Symtab.merge (op=) (pa1, pa2)};
209 (* ------------------------------------------------------------------------- *)
210 (* interpret: interprets the term 't' using a suitable interpreter; returns *)
211 (* the interpretation and a (possibly extended) model that keeps *)
212 (* track of the interpretation of subterms *)
213 (* ------------------------------------------------------------------------- *)
215 (* theory -> model -> arguments -> Term.term ->
216 (interpretation * model * arguments) *)
218 fun interpret thy model args t =
219 case get_first (fn (_, f) => f thy model args t)
220 (#interpreters (RefuteData.get thy)) of
221 NONE => raise REFUTE ("interpret",
222 "no interpreter for term " ^ quote (Sign.string_of_term thy t))
225 (* ------------------------------------------------------------------------- *)
226 (* print: converts the constant denoted by the term 't' into a term using a *)
227 (* suitable printer *)
228 (* ------------------------------------------------------------------------- *)
230 (* theory -> model -> Term.term -> interpretation -> (int -> bool) ->
233 fun print thy model t intr assignment =
234 case get_first (fn (_, f) => f thy model t intr assignment)
235 (#printers (RefuteData.get thy)) of
236 NONE => raise REFUTE ("print",
237 "no printer for term " ^ quote (Sign.string_of_term thy t))
240 (* ------------------------------------------------------------------------- *)
241 (* print_model: turns the model into a string, using a fixed interpretation *)
242 (* (given by an assignment for Boolean variables) and suitable *)
244 (* ------------------------------------------------------------------------- *)
246 (* theory -> model -> (int -> bool) -> string *)
248 fun print_model thy model assignment =
250 val (typs, terms) = model
253 "empty universe (no type variables in term)\n"
255 "Size of types: " ^ commas (map (fn (T, i) =>
256 Sign.string_of_typ thy T ^ ": " ^ string_of_int i) typs) ^ "\n"
257 val show_consts_msg =
258 if not (!show_consts) andalso Library.exists (is_Const o fst) terms then
259 "set \"show_consts\" to show the interpretation of constants\n"
264 "empty interpretation (no free variables in term)\n"
266 space_implode "\n" (List.mapPartial (fn (t, intr) =>
267 (* print constants only if 'show_consts' is true *)
268 if (!show_consts) orelse not (is_Const t) then
269 SOME (Sign.string_of_term thy t ^ ": " ^
270 Sign.string_of_term thy (print thy model t intr assignment))
274 typs_msg ^ show_consts_msg ^ terms_msg
278 (* ------------------------------------------------------------------------- *)
279 (* PARAMETER MANAGEMENT *)
280 (* ------------------------------------------------------------------------- *)
282 (* string -> (theory -> model -> arguments -> Term.term ->
283 (interpretation * model * arguments) option) -> theory -> theory *)
285 fun add_interpreter name f thy =
287 val {interpreters, printers, parameters} = RefuteData.get thy
289 case AList.lookup (op =) interpreters name of
290 NONE => RefuteData.put {interpreters = (name, f) :: interpreters,
291 printers = printers, parameters = parameters} thy
292 | SOME _ => error ("Interpreter " ^ name ^ " already declared")
295 (* string -> (theory -> model -> Term.term -> interpretation ->
296 (int -> bool) -> Term.term option) -> theory -> theory *)
298 fun add_printer name f thy =
300 val {interpreters, printers, parameters} = RefuteData.get thy
302 case AList.lookup (op =) printers name of
303 NONE => RefuteData.put {interpreters = interpreters,
304 printers = (name, f) :: printers, parameters = parameters} thy
305 | SOME _ => error ("Printer " ^ name ^ " already declared")
308 (* ------------------------------------------------------------------------- *)
309 (* set_default_param: stores the '(name, value)' pair in RefuteData's *)
310 (* parameter table *)
311 (* ------------------------------------------------------------------------- *)
313 (* (string * string) -> theory -> theory *)
315 fun set_default_param (name, value) thy =
317 val {interpreters, printers, parameters} = RefuteData.get thy
319 RefuteData.put (case Symtab.lookup parameters name of
321 {interpreters = interpreters, printers = printers,
322 parameters = Symtab.extend (parameters, [(name, value)])}
324 {interpreters = interpreters, printers = printers,
325 parameters = Symtab.update (name, value) parameters}) thy
328 (* ------------------------------------------------------------------------- *)
329 (* get_default_param: retrieves the value associated with 'name' from *)
330 (* RefuteData's parameter table *)
331 (* ------------------------------------------------------------------------- *)
333 (* theory -> string -> string option *)
335 val get_default_param = Symtab.lookup o #parameters o RefuteData.get;
337 (* ------------------------------------------------------------------------- *)
338 (* get_default_params: returns a list of all '(name, value)' pairs that are *)
339 (* stored in RefuteData's parameter table *)
340 (* ------------------------------------------------------------------------- *)
342 (* theory -> (string * string) list *)
344 val get_default_params = Symtab.dest o #parameters o RefuteData.get;
346 (* ------------------------------------------------------------------------- *)
347 (* actual_params: takes a (possibly empty) list 'params' of parameters that *)
348 (* override the default parameters currently specified in 'thy', and *)
349 (* returns a record that can be passed to 'find_model'. *)
350 (* ------------------------------------------------------------------------- *)
352 (* theory -> (string * string) list -> params *)
354 fun actual_params thy override =
356 (* (string * string) list * string -> int *)
357 fun read_int (parms, name) =
358 case AList.lookup (op =) parms name of
359 SOME s => (case Int.fromString s of
361 | NONE => error ("parameter " ^ quote name ^
362 " (value is " ^ quote s ^ ") must be an integer value"))
363 | NONE => error ("parameter " ^ quote name ^
364 " must be assigned a value")
365 (* (string * string) list * string -> string *)
366 fun read_string (parms, name) =
367 case AList.lookup (op =) parms name of
369 | NONE => error ("parameter " ^ quote name ^
370 " must be assigned a value")
371 (* 'override' first, defaults last: *)
372 (* (string * string) list *)
373 val allparams = override @ (get_default_params thy)
375 val minsize = read_int (allparams, "minsize")
376 val maxsize = read_int (allparams, "maxsize")
377 val maxvars = read_int (allparams, "maxvars")
378 val maxtime = read_int (allparams, "maxtime")
380 val satsolver = read_string (allparams, "satsolver")
381 (* all remaining parameters of the form "string=int" are collected in *)
383 (* TODO: it is currently not possible to specify a size for a type *)
384 (* whose name is one of the other parameters (e.g. 'maxvars') *)
385 (* (string * int) list *)
386 val sizes = List.mapPartial
387 (fn (name, value) => Option.map (pair name) (Int.fromString value))
388 (List.filter (fn (name, _) => name<>"minsize" andalso name<>"maxsize"
389 andalso name<>"maxvars" andalso name<>"maxtime"
390 andalso name<>"satsolver") allparams)
392 {sizes=sizes, minsize=minsize, maxsize=maxsize, maxvars=maxvars,
393 maxtime=maxtime, satsolver=satsolver}
397 (* ------------------------------------------------------------------------- *)
398 (* TRANSLATION HOL -> PROPOSITIONAL LOGIC, BOOLEAN ASSIGNMENT -> MODEL *)
399 (* ------------------------------------------------------------------------- *)
401 (* (''a * 'b) list -> ''a -> 'b *)
404 Option.valOf (AList.lookup (op =) xs key);
406 (* ------------------------------------------------------------------------- *)
407 (* typ_of_dtyp: converts a data type ('DatatypeAux.dtyp') into a type *)
408 (* ('Term.typ'), given type parameters for the data type's type *)
410 (* ------------------------------------------------------------------------- *)
412 (* DatatypeAux.descr -> (DatatypeAux.dtyp * Term.typ) list ->
413 DatatypeAux.dtyp -> Term.typ *)
415 fun typ_of_dtyp descr typ_assoc (DatatypeAux.DtTFree a) =
416 (* replace a 'DtTFree' variable by the associated type *)
417 lookup typ_assoc (DatatypeAux.DtTFree a)
418 | typ_of_dtyp descr typ_assoc (DatatypeAux.DtType (s, ds)) =
419 Type (s, map (typ_of_dtyp descr typ_assoc) ds)
420 | typ_of_dtyp descr typ_assoc (DatatypeAux.DtRec i) =
422 val (s, ds, _) = lookup descr i
424 Type (s, map (typ_of_dtyp descr typ_assoc) ds)
427 (* ------------------------------------------------------------------------- *)
428 (* close_form: universal closure over schematic variables in 't' *)
429 (* ------------------------------------------------------------------------- *)
431 (* Term.term -> Term.term *)
435 (* (Term.indexname * Term.typ) list *)
436 val vars = sort_wrt (fst o fst) (map dest_Var (term_vars t))
438 Library.foldl (fn (t', ((x, i), T)) =>
439 (Term.all T) $ Abs (x, T, abstract_over (Var ((x, i), T), t')))
443 (* ------------------------------------------------------------------------- *)
444 (* monomorphic_term: applies a type substitution 'typeSubs' for all type *)
445 (* variables in a term 't' *)
446 (* ------------------------------------------------------------------------- *)
448 (* Type.tyenv -> Term.term -> Term.term *)
450 fun monomorphic_term typeSubs t =
451 map_types (map_type_tvar
453 case Type.lookup (typeSubs, v) of
455 (* schematic type variable not instantiated *)
456 raise REFUTE ("monomorphic_term",
457 "no substitution for type variable " ^ fst (fst v) ^
458 " in term " ^ Display.raw_string_of_term t)
462 (* ------------------------------------------------------------------------- *)
463 (* specialize_type: given a constant 's' of type 'T', which is a subterm of *)
464 (* 't', where 't' has a (possibly) more general type, the *)
465 (* schematic type variables in 't' are instantiated to *)
466 (* match the type 'T' (may raise Type.TYPE_MATCH) *)
467 (* ------------------------------------------------------------------------- *)
469 (* theory -> (string * Term.typ) -> Term.term -> Term.term *)
471 fun specialize_type thy (s, T) t =
473 fun find_typeSubs (Const (s', T')) =
475 SOME (Sign.typ_match thy (T', T) Vartab.empty)
476 handle Type.TYPE_MATCH => NONE
479 | find_typeSubs (Free _) = NONE
480 | find_typeSubs (Var _) = NONE
481 | find_typeSubs (Bound _) = NONE
482 | find_typeSubs (Abs (_, _, body)) = find_typeSubs body
483 | find_typeSubs (t1 $ t2) =
484 (case find_typeSubs t1 of SOME x => SOME x
485 | NONE => find_typeSubs t2)
487 case find_typeSubs t of
489 monomorphic_term typeSubs t
491 (* no match found - perhaps due to sort constraints *)
492 raise Type.TYPE_MATCH
495 (* ------------------------------------------------------------------------- *)
496 (* is_const_of_class: returns 'true' iff 'Const (s, T)' is a constant that *)
497 (* denotes membership to an axiomatic type class *)
498 (* ------------------------------------------------------------------------- *)
500 (* theory -> string * Term.typ -> bool *)
502 fun is_const_of_class thy (s, T) =
504 val class_const_names = map Logic.const_of_class (Sign.all_classes thy)
506 (* I'm not quite sure if checking the name 's' is sufficient, *)
507 (* or if we should also check the type 'T'. *)
508 s mem_string class_const_names
511 (* ------------------------------------------------------------------------- *)
512 (* is_IDT_constructor: returns 'true' iff 'Const (s, T)' is the constructor *)
513 (* of an inductive datatype in 'thy' *)
514 (* ------------------------------------------------------------------------- *)
516 (* theory -> string * Term.typ -> bool *)
518 fun is_IDT_constructor thy (s, T) =
521 (case DatatypePackage.get_datatype_constrs thy s' of
523 List.exists (fn (cname, cty) =>
524 cname = s andalso Sign.typ_instance thy (T, cty)) constrs
530 (* ------------------------------------------------------------------------- *)
531 (* is_IDT_recursor: returns 'true' iff 'Const (s, T)' is the recursion *)
532 (* operator of an inductive datatype in 'thy' *)
533 (* ------------------------------------------------------------------------- *)
535 (* theory -> string * Term.typ -> bool *)
537 fun is_IDT_recursor thy (s, T) =
539 val rec_names = Symtab.fold (append o #rec_names o snd)
540 (DatatypePackage.get_datatypes thy) []
542 (* I'm not quite sure if checking the name 's' is sufficient, *)
543 (* or if we should also check the type 'T'. *)
544 s mem_string rec_names
547 (* ------------------------------------------------------------------------- *)
548 (* get_def: looks up the definition of a constant, as created by "constdefs" *)
549 (* ------------------------------------------------------------------------- *)
551 (* theory -> string * Term.typ -> (string * Term.term) option *)
553 fun get_def thy (s, T) =
555 (* maps f ?t1 ... ?tn == rhs to %t1...tn. rhs *)
558 fun lambda (v as Var ((x, _), T)) t = Abs (x, T, abstract_over (v, t))
559 | lambda v t = raise TERM ("lambda", [v, t])
560 val (lhs, rhs) = Logic.dest_equals eqn
561 val (_, args) = Term.strip_comb lhs
563 fold lambda (rev args) rhs
565 (* (string * Term.term) list -> (string * Term.term) option *)
566 fun get_def_ax [] = NONE
567 | get_def_ax ((axname, ax) :: axioms) =
569 val (lhs, _) = Logic.dest_equals ax (* equations only *)
570 val c = Term.head_of lhs
571 val (s', T') = Term.dest_Const c
575 val typeSubs = Sign.typ_match thy (T', T) Vartab.empty
576 val ax' = monomorphic_term typeSubs ax
577 val rhs = norm_rhs ax'
583 end handle ERROR _ => get_def_ax axioms
584 | TERM _ => get_def_ax axioms
585 | Type.TYPE_MATCH => get_def_ax axioms)
587 get_def_ax (Theory.all_axioms_of thy)
590 (* ------------------------------------------------------------------------- *)
591 (* get_typedef: looks up the definition of a type, as created by "typedef" *)
592 (* ------------------------------------------------------------------------- *)
594 (* theory -> (string * Term.typ) -> (string * Term.term) option *)
596 fun get_typedef thy T =
598 (* (string * Term.term) list -> (string * Term.term) option *)
599 fun get_typedef_ax [] = NONE
600 | get_typedef_ax ((axname, ax) :: axioms) =
602 (* Term.term -> Term.typ option *)
603 fun type_of_type_definition (Const (s', T')) =
604 if s'="Typedef.type_definition" then
608 | type_of_type_definition (Free _) = NONE
609 | type_of_type_definition (Var _) = NONE
610 | type_of_type_definition (Bound _) = NONE
611 | type_of_type_definition (Abs (_, _, body)) =
612 type_of_type_definition body
613 | type_of_type_definition (t1 $ t2) =
614 (case type_of_type_definition t1 of
616 | NONE => type_of_type_definition t2)
618 case type_of_type_definition ax of
621 val T'' = (domain_type o domain_type) T'
622 val typeSubs = Sign.typ_match thy (T'', T) Vartab.empty
624 SOME (axname, monomorphic_term typeSubs ax)
627 get_typedef_ax axioms
628 end handle ERROR _ => get_typedef_ax axioms
629 | MATCH => get_typedef_ax axioms
630 | Type.TYPE_MATCH => get_typedef_ax axioms)
632 get_typedef_ax (Theory.all_axioms_of thy)
635 (* ------------------------------------------------------------------------- *)
636 (* get_classdef: looks up the defining axiom for an axiomatic type class, as *)
637 (* created by the "axclass" command *)
638 (* ------------------------------------------------------------------------- *)
640 (* theory -> string -> (string * Term.term) option *)
642 fun get_classdef thy class =
644 val axname = class ^ "_class_def"
646 Option.map (pair axname)
647 (AList.lookup (op =) (Theory.all_axioms_of thy) axname)
650 (* ------------------------------------------------------------------------- *)
651 (* unfold_defs: unfolds all defined constants in a term 't', beta-eta *)
652 (* normalizes the result term; certain constants are not *)
653 (* unfolded (cf. 'collect_axioms' and the various interpreters *)
654 (* below): if the interpretation respects a definition anyway, *)
655 (* that definition does not need to be unfolded *)
656 (* ------------------------------------------------------------------------- *)
658 (* theory -> Term.term -> Term.term *)
660 (* Note: we could intertwine unfolding of constants and beta-(eta-) *)
661 (* normalization; this would save some unfolding for terms where *)
662 (* constants are eliminated by beta-reduction (e.g. 'K c1 c2'). On *)
663 (* the other hand, this would cause additional work for terms where *)
664 (* constants are duplicated by beta-reduction (e.g. 'S c1 c2 c3'). *)
666 fun unfold_defs thy t =
668 (* Term.term -> Term.term *)
672 Const ("all", _) => t
673 | Const ("==", _) => t
674 | Const ("==>", _) => t
675 | Const ("TYPE", _) => t (* axiomatic type classes *)
677 | Const ("Trueprop", _) => t
678 | Const ("Not", _) => t
679 | (* redundant, since 'True' is also an IDT constructor *)
680 Const ("True", _) => t
681 | (* redundant, since 'False' is also an IDT constructor *)
682 Const ("False", _) => t
683 | Const ("arbitrary", _) => t
684 | Const ("The", _) => t
685 | Const ("Hilbert_Choice.Eps", _) => t
686 | Const ("All", _) => t
687 | Const ("Ex", _) => t
688 | Const ("op =", _) => t
689 | Const ("op &", _) => t
690 | Const ("op |", _) => t
691 | Const ("op -->", _) => t
693 | Const ("Collect", _) => t
694 | Const ("op :", _) => t
695 (* other optimizations *)
696 | Const ("Finite_Set.card", _) => t
697 | Const ("Finite_Set.Finites", _) => t
698 | Const ("Finite_Set.finite", _) => t
699 | Const (@{const_name Orderings.less}, Type ("fun", [Type ("nat", []),
700 Type ("fun", [Type ("nat", []), Type ("bool", [])])])) => t
701 | Const (@{const_name HOL.plus}, Type ("fun", [Type ("nat", []),
702 Type ("fun", [Type ("nat", []), Type ("nat", [])])])) => t
703 | Const (@{const_name HOL.minus}, Type ("fun", [Type ("nat", []),
704 Type ("fun", [Type ("nat", []), Type ("nat", [])])])) => t
705 | Const (@{const_name HOL.times}, Type ("fun", [Type ("nat", []),
706 Type ("fun", [Type ("nat", []), Type ("nat", [])])])) => t
707 | Const ("List.append", _) => t
708 | Const ("Lfp.lfp", _) => t
709 | Const ("Gfp.gfp", _) => t
710 | Const ("fst", _) => t
711 | Const ("snd", _) => t
712 (* simply-typed lambda calculus *)
714 (if is_IDT_constructor thy (s, T)
715 orelse is_IDT_recursor thy (s, T) then
716 t (* do not unfold IDT constructors/recursors *)
717 (* unfold the constant if there is a defining equation *)
718 else case get_def thy (s, T) of
719 SOME (axname, rhs) =>
720 (* Note: if the term to be unfolded (i.e. 'Const (s, T)') *)
721 (* occurs on the right-hand side of the equation, i.e. in *)
722 (* 'rhs', we must not use this equation to unfold, because *)
723 (* that would loop. Here would be the right place to *)
724 (* check this. However, getting this really right seems *)
725 (* difficult because the user may state arbitrary axioms, *)
726 (* which could interact with overloading to create loops. *)
727 ((*Output.immediate_output (" unfolding: " ^ axname);*)unfold_loop rhs)
732 | Abs (s, T, body) => Abs (s, T, unfold_loop body)
733 | t1 $ t2 => (unfold_loop t1) $ (unfold_loop t2)
734 val result = Envir.beta_eta_contract (unfold_loop t)
739 (* ------------------------------------------------------------------------- *)
740 (* collect_axioms: collects (monomorphic, universally quantified, unfolded *)
741 (* versions of) all HOL axioms that are relevant w.r.t 't' *)
742 (* ------------------------------------------------------------------------- *)
744 (* Note: to make the collection of axioms more easily extensible, this *)
745 (* function could be based on user-supplied "axiom collectors", *)
746 (* similar to 'interpret'/interpreters or 'print'/printers *)
748 (* Note: currently we use "inverse" functions to the definitional *)
749 (* mechanisms provided by Isabelle/HOL, e.g. for "axclass", *)
750 (* "typedef", "constdefs". A more general approach could consider *)
751 (* *every* axiom of the theory and collect it if it has a constant/ *)
752 (* type/typeclass in common with the term 't'. *)
754 (* theory -> Term.term -> Term.term list *)
756 (* Which axioms are "relevant" for a particular term/type goes hand in *)
757 (* hand with the interpretation of that term/type by its interpreter (see *)
758 (* way below): if the interpretation respects an axiom anyway, the axiom *)
759 (* does not need to be added as a constraint here. *)
761 (* To avoid collecting the same axiom multiple times, we use an *)
762 (* accumulator 'axs' which contains all axioms collected so far. *)
764 fun collect_axioms thy t =
766 val _ = Output.immediate_output "Adding axioms..."
767 (* (string * Term.term) list *)
768 val axioms = Theory.all_axioms_of thy
769 (* string * Term.term -> Term.term list -> Term.term list *)
770 fun collect_this_axiom (axname, ax) axs =
772 val ax' = unfold_defs thy ax
774 if member (op aconv) axs ax' then
777 Output.immediate_output (" " ^ axname);
778 collect_term_axioms (ax' :: axs, ax')
781 (* Term.term list * Term.typ -> Term.term list *)
782 and collect_sort_axioms (axs, T) =
785 val sort = (case T of
786 TFree (_, sort) => sort
787 | TVar (_, sort) => sort
788 | _ => raise REFUTE ("collect_axioms", "type " ^
789 Sign.string_of_typ thy T ^ " is not a variable"))
790 (* obtain axioms for all superclasses *)
791 val superclasses = sort @ (maps (Sign.super_classes thy) sort)
792 (* merely an optimization, because 'collect_this_axiom' disallows *)
793 (* duplicate axioms anyway: *)
794 val superclasses = distinct (op =) superclasses
795 val class_axioms = maps (fn class => map (fn ax =>
796 ("<" ^ class ^ ">", Thm.prop_of ax))
797 (#axioms (AxClass.get_definition thy class) handle ERROR _ => []))
799 (* replace the (at most one) schematic type variable in each axiom *)
800 (* by the actual type 'T' *)
801 val monomorphic_class_axioms = map (fn (axname, ax) =>
802 (case Term.term_tvars ax of
806 (axname, monomorphic_term (Vartab.make [(idx, (S, T))]) ax)
808 raise REFUTE ("collect_axioms", "class axiom " ^ axname ^ " (" ^
809 Sign.string_of_term thy ax ^
810 ") contains more than one type variable")))
813 fold collect_this_axiom monomorphic_class_axioms axs
815 (* Term.term list * Term.typ -> Term.term list *)
816 and collect_type_axioms (axs, T) =
819 Type ("prop", []) => axs
820 | Type ("fun", [T1, T2]) => collect_type_axioms
821 (collect_type_axioms (axs, T1), T2)
822 | Type ("set", [T1]) => collect_type_axioms (axs, T1)
823 (* axiomatic type classes *)
824 | Type ("itself", [T1]) => collect_type_axioms (axs, T1)
826 (case DatatypePackage.get_datatype thy s of
827 SOME info => (* inductive datatype *)
828 (* only collect relevant type axioms for the argument types *)
829 Library.foldl collect_type_axioms (axs, Ts)
831 (case get_typedef thy T of
833 collect_this_axiom (axname, ax) axs
835 (* unspecified type, perhaps introduced with "typedecl" *)
836 (* at least collect relevant type axioms for the argument types *)
837 Library.foldl collect_type_axioms (axs, Ts)))
838 (* axiomatic type classes *)
839 | TFree _ => collect_sort_axioms (axs, T)
840 (* axiomatic type classes *)
841 | TVar _ => collect_sort_axioms (axs, T)
842 (* Term.term list * Term.term -> Term.term list *)
843 and collect_term_axioms (axs, t) =
846 Const ("all", _) => axs
847 | Const ("==", _) => axs
848 | Const ("==>", _) => axs
849 (* axiomatic type classes *)
850 | Const ("TYPE", T) => collect_type_axioms (axs, T)
852 | Const ("Trueprop", _) => axs
853 | Const ("Not", _) => axs
854 (* redundant, since 'True' is also an IDT constructor *)
855 | Const ("True", _) => axs
856 (* redundant, since 'False' is also an IDT constructor *)
857 | Const ("False", _) => axs
858 | Const ("arbitrary", T) => collect_type_axioms (axs, T)
859 | Const ("The", T) =>
861 val ax = specialize_type thy ("The", T)
862 (lookup axioms "HOL.the_eq_trivial")
864 collect_this_axiom ("HOL.the_eq_trivial", ax) axs
866 | Const ("Hilbert_Choice.Eps", T) =>
868 val ax = specialize_type thy ("Hilbert_Choice.Eps", T)
869 (lookup axioms "Hilbert_Choice.someI")
871 collect_this_axiom ("Hilbert_Choice.someI", ax) axs
873 | Const ("All", T) => collect_type_axioms (axs, T)
874 | Const ("Ex", T) => collect_type_axioms (axs, T)
875 | Const ("op =", T) => collect_type_axioms (axs, T)
876 | Const ("op &", _) => axs
877 | Const ("op |", _) => axs
878 | Const ("op -->", _) => axs
880 | Const ("Collect", T) => collect_type_axioms (axs, T)
881 | Const ("op :", T) => collect_type_axioms (axs, T)
882 (* other optimizations *)
883 | Const ("Finite_Set.card", T) => collect_type_axioms (axs, T)
884 | Const ("Finite_Set.Finites", T) => collect_type_axioms (axs, T)
885 | Const ("Finite_Set.finite", T) => collect_type_axioms (axs, T)
886 | Const (@{const_name Orderings.less}, T as Type ("fun", [Type ("nat", []),
887 Type ("fun", [Type ("nat", []), Type ("bool", [])])])) =>
888 collect_type_axioms (axs, T)
889 | Const (@{const_name HOL.plus}, T as Type ("fun", [Type ("nat", []),
890 Type ("fun", [Type ("nat", []), Type ("nat", [])])])) =>
891 collect_type_axioms (axs, T)
892 | Const (@{const_name HOL.minus}, T as Type ("fun", [Type ("nat", []),
893 Type ("fun", [Type ("nat", []), Type ("nat", [])])])) =>
894 collect_type_axioms (axs, T)
895 | Const (@{const_name HOL.times}, T as Type ("fun", [Type ("nat", []),
896 Type ("fun", [Type ("nat", []), Type ("nat", [])])])) =>
897 collect_type_axioms (axs, T)
898 | Const ("List.append", T) => collect_type_axioms (axs, T)
899 | Const ("Lfp.lfp", T) => collect_type_axioms (axs, T)
900 | Const ("Gfp.gfp", T) => collect_type_axioms (axs, T)
901 | Const ("fst", T) => collect_type_axioms (axs, T)
902 | Const ("snd", T) => collect_type_axioms (axs, T)
903 (* simply-typed lambda calculus *)
905 if is_const_of_class thy (s, T) then
906 (* axiomatic type classes: add "OFCLASS(?'a::c, c_class)" *)
907 (* and the class definition *)
909 val class = Logic.class_of_const s
910 val inclass = Logic.mk_inclass (TVar (("'a", 0), [class]), class)
911 val ax_in = SOME (specialize_type thy (s, T) inclass)
912 (* type match may fail due to sort constraints *)
913 handle Type.TYPE_MATCH => NONE
914 val ax_1 = Option.map (fn ax => (Sign.string_of_term thy ax, ax))
916 val ax_2 = Option.map (apsnd (specialize_type thy (s, T)))
917 (get_classdef thy class)
919 collect_type_axioms (fold collect_this_axiom
920 (map_filter I [ax_1, ax_2]) axs, T)
922 else if is_IDT_constructor thy (s, T)
923 orelse is_IDT_recursor thy (s, T) then
924 (* only collect relevant type axioms *)
925 collect_type_axioms (axs, T)
927 (* other constants should have been unfolded, with some *)
928 (* exceptions: e.g. Abs_xxx/Rep_xxx functions for *)
929 (* typedefs, or type-class related constants *)
930 (* only collect relevant type axioms *)
931 collect_type_axioms (axs, T)
932 | Free (_, T) => collect_type_axioms (axs, T)
933 | Var (_, T) => collect_type_axioms (axs, T)
935 | Abs (_, T, body) => collect_term_axioms
936 (collect_type_axioms (axs, T), body)
937 | t1 $ t2 => collect_term_axioms
938 (collect_term_axioms (axs, t1), t2)
940 val result = map close_form (collect_term_axioms ([], t))
941 val _ = writeln " ...done."
946 (* ------------------------------------------------------------------------- *)
947 (* ground_types: collects all ground types in a term (including argument *)
948 (* types of other types), suppressing duplicates. Does not *)
949 (* return function types, set types, non-recursive IDTs, or *)
950 (* 'propT'. For IDTs, also the argument types of constructors *)
951 (* are considered. *)
952 (* ------------------------------------------------------------------------- *)
954 (* theory -> Term.term -> Term.typ list *)
956 fun ground_types thy t =
958 (* Term.typ * Term.typ list -> Term.typ list *)
959 fun collect_types (T, acc) =
961 acc (* prevent infinite recursion (for IDTs) *)
964 Type ("fun", [T1, T2]) => collect_types (T1, collect_types (T2, acc))
965 | Type ("prop", []) => acc
966 | Type ("set", [T1]) => collect_types (T1, acc)
968 (case DatatypePackage.get_datatype thy s of
969 SOME info => (* inductive datatype *)
971 val index = #index info
972 val descr = #descr info
973 val (_, dtyps, constrs) = lookup descr index
974 val typ_assoc = dtyps ~~ Ts
975 (* sanity check: every element in 'dtyps' must be a 'DtTFree' *)
976 val _ = (if Library.exists (fn d =>
977 case d of DatatypeAux.DtTFree _ => false | _ => true) dtyps
979 raise REFUTE ("ground_types", "datatype argument (for type "
980 ^ Sign.string_of_typ thy (Type (s, Ts))
981 ^ ") is not a variable")
984 (* if the current type is a recursive IDT (i.e. a depth is *)
985 (* required), add it to 'acc' *)
986 val acc' = (if Library.exists (fn (_, ds) => Library.exists
987 DatatypeAux.is_rec_type ds) constrs then
991 (* collect argument types *)
992 val acc_args = foldr collect_types acc' Ts
993 (* collect constructor types *)
994 val acc_constrs = foldr collect_types acc_args (List.concat
995 (map (fn (_, ds) => map (typ_of_dtyp descr typ_assoc) ds)
1001 (* not an inductive datatype, e.g. defined via "typedef" or *)
1003 insert (op =) T (foldr collect_types acc Ts))
1004 | TFree _ => insert (op =) T acc
1005 | TVar _ => insert (op =) T acc)
1007 it_term_types collect_types (t, [])
1010 (* ------------------------------------------------------------------------- *)
1011 (* string_of_typ: (rather naive) conversion from types to strings, used to *)
1012 (* look up the size of a type in 'sizes'. Parameterized *)
1013 (* types with different parameters (e.g. "'a list" vs. "bool *)
1014 (* list") are identified. *)
1015 (* ------------------------------------------------------------------------- *)
1017 (* Term.typ -> string *)
1019 fun string_of_typ (Type (s, _)) = s
1020 | string_of_typ (TFree (s, _)) = s
1021 | string_of_typ (TVar ((s,_), _)) = s;
1023 (* ------------------------------------------------------------------------- *)
1024 (* first_universe: returns the "first" (i.e. smallest) universe by assigning *)
1025 (* 'minsize' to every type for which no size is specified in *)
1027 (* ------------------------------------------------------------------------- *)
1029 (* Term.typ list -> (string * int) list -> int -> (Term.typ * int) list *)
1031 fun first_universe xs sizes minsize =
1034 case AList.lookup (op =) sizes (string_of_typ T) of
1038 map (fn T => (T, size_of_typ T)) xs
1041 (* ------------------------------------------------------------------------- *)
1042 (* next_universe: enumerates all universes (i.e. assignments of sizes to *)
1043 (* types), where the minimal size of a type is given by *)
1044 (* 'minsize', the maximal size is given by 'maxsize', and a *)
1045 (* type may have a fixed size given in 'sizes' *)
1046 (* ------------------------------------------------------------------------- *)
1048 (* (Term.typ * int) list -> (string * int) list -> int -> int ->
1049 (Term.typ * int) list option *)
1051 fun next_universe xs sizes minsize maxsize =
1053 (* creates the "first" list of length 'len', where the sum of all list *)
1054 (* elements is 'sum', and the length of the list is 'len' *)
1055 (* int -> int -> int -> int list option *)
1056 fun make_first _ 0 sum =
1061 | make_first max len sum =
1062 if sum<=max orelse max<0 then
1063 Option.map (fn xs' => sum :: xs') (make_first max (len-1) 0)
1065 Option.map (fn xs' => max :: xs') (make_first max (len-1) (sum-max))
1066 (* enumerates all int lists with a fixed length, where 0<=x<='max' for *)
1067 (* all list elements x (unless 'max'<0) *)
1068 (* int -> int -> int -> int list -> int list option *)
1069 fun next max len sum [] =
1071 | next max len sum [x] =
1072 (* we've reached the last list element, so there's no shift possible *)
1073 make_first max (len+1) (sum+x+1) (* increment 'sum' by 1 *)
1074 | next max len sum (x1::x2::xs) =
1075 if x1>0 andalso (x2<max orelse max<0) then
1077 SOME (valOf (make_first max (len+1) (sum+x1-1)) @ (x2+1) :: xs)
1079 (* continue search *)
1080 next max (len+1) (sum+x1) (x2::xs)
1081 (* only consider those types for which the size is not fixed *)
1082 val mutables = List.filter
1083 (not o (AList.defined (op =) sizes) o string_of_typ o fst) xs
1084 (* subtract 'minsize' from every size (will be added again at the end) *)
1085 val diffs = map (fn (_, n) => n-minsize) mutables
1087 case next (maxsize-minsize) 0 0 diffs of
1089 (* merge with those types for which the size is fixed *)
1090 SOME (snd (foldl_map (fn (ds, (T, _)) =>
1091 case AList.lookup (op =) sizes (string_of_typ T) of
1092 (* return the fixed size *)
1093 SOME n => (ds, (T, n))
1094 (* consume the head of 'ds', add 'minsize' *)
1095 | NONE => (tl ds, (T, minsize + hd ds)))
1101 (* ------------------------------------------------------------------------- *)
1102 (* toTrue: converts the interpretation of a Boolean value to a propositional *)
1103 (* formula that is true iff the interpretation denotes "true" *)
1104 (* ------------------------------------------------------------------------- *)
1106 (* interpretation -> prop_formula *)
1108 fun toTrue (Leaf [fm, _]) =
1111 raise REFUTE ("toTrue", "interpretation does not denote a Boolean value");
1113 (* ------------------------------------------------------------------------- *)
1114 (* toFalse: converts the interpretation of a Boolean value to a *)
1115 (* propositional formula that is true iff the interpretation *)
1116 (* denotes "false" *)
1117 (* ------------------------------------------------------------------------- *)
1119 (* interpretation -> prop_formula *)
1121 fun toFalse (Leaf [_, fm]) =
1124 raise REFUTE ("toFalse", "interpretation does not denote a Boolean value");
1126 (* ------------------------------------------------------------------------- *)
1127 (* find_model: repeatedly calls 'interpret' with appropriate parameters, *)
1128 (* applies a SAT solver, and (in case a model is found) displays *)
1129 (* the model to the user by calling 'print_model' *)
1130 (* thy : the current theory *)
1131 (* {...} : parameters that control the translation/model generation *)
1132 (* t : term to be translated into a propositional formula *)
1133 (* negate : if true, find a model that makes 't' false (rather than true) *)
1134 (* ------------------------------------------------------------------------- *)
1136 (* theory -> params -> Term.term -> bool -> unit *)
1138 fun find_model thy {sizes, minsize, maxsize, maxvars, maxtime, satsolver} t
1144 val u = unfold_defs thy t
1145 val _ = writeln ("Unfolded term: " ^ Sign.string_of_term thy u)
1146 val axioms = collect_axioms thy u
1148 val types = Library.foldl (fn (acc, t') =>
1149 acc union (ground_types thy t')) ([], u :: axioms)
1150 val _ = writeln ("Ground types: "
1151 ^ (if null types then "none."
1152 else commas (map (Sign.string_of_typ thy) types)))
1153 (* we can only consider fragments of recursive IDTs, so we issue a *)
1154 (* warning if the formula contains a recursive IDT *)
1155 (* TODO: no warning needed for /positive/ occurrences of IDTs *)
1156 val _ = if Library.exists (fn
1158 (case DatatypePackage.get_datatype thy s of
1159 SOME info => (* inductive datatype *)
1161 val index = #index info
1162 val descr = #descr info
1163 val (_, _, constrs) = lookup descr index
1165 (* recursive datatype? *)
1166 Library.exists (fn (_, ds) =>
1167 Library.exists DatatypeAux.is_rec_type ds) constrs
1170 | _ => false) types then
1171 warning ("Term contains a recursive datatype; "
1172 ^ "countermodel(s) may be spurious!")
1175 (* (Term.typ * int) list -> unit *)
1176 fun find_model_loop universe =
1178 val init_model = (universe, [])
1179 val init_args = {maxvars = maxvars, def_eq = false, next_idx = 1,
1180 bounds = [], wellformed = True}
1181 val _ = Output.immediate_output ("Translating term (sizes: "
1182 ^ commas (map (fn (_, n) => string_of_int n) universe) ^ ") ...")
1183 (* translate 'u' and all axioms *)
1184 val ((model, args), intrs) = foldl_map (fn ((m, a), t') =>
1186 val (i, m', a') = interpret thy m a t'
1188 (* set 'def_eq' to 'true' *)
1189 ((m', {maxvars = #maxvars a', def_eq = true,
1190 next_idx = #next_idx a', bounds = #bounds a',
1191 wellformed = #wellformed a'}), i)
1192 end) ((init_model, init_args), u :: axioms)
1193 (* make 'u' either true or false, and make all axioms true, and *)
1194 (* add the well-formedness side condition *)
1195 val fm_u = (if negate then toFalse else toTrue) (hd intrs)
1196 val fm_ax = PropLogic.all (map toTrue (tl intrs))
1197 val fm = PropLogic.all [#wellformed args, fm_ax, fm_u]
1199 Output.immediate_output " invoking SAT solver...";
1200 (case SatSolver.invoke_solver satsolver fm of
1201 SatSolver.SATISFIABLE assignment =>
1202 (writeln " model found!";
1203 writeln ("*** Model found: ***\n" ^ print_model thy model
1204 (fn i => case assignment i of SOME b => b | NONE => true)))
1205 | SatSolver.UNSATISFIABLE _ =>
1206 (Output.immediate_output " no model exists.\n";
1207 case next_universe universe sizes minsize maxsize of
1208 SOME universe' => find_model_loop universe'
1210 "Search terminated, no larger universe within the given limits.")
1211 | SatSolver.UNKNOWN =>
1212 (Output.immediate_output " no model found.\n";
1213 case next_universe universe sizes minsize maxsize of
1214 SOME universe' => find_model_loop universe'
1216 "Search terminated, no larger universe within the given limits.")
1217 ) handle SatSolver.NOT_CONFIGURED =>
1218 error ("SAT solver " ^ quote satsolver ^ " is not configured.")
1219 end handle MAXVARS_EXCEEDED =>
1220 writeln ("\nSearch terminated, number of Boolean variables ("
1221 ^ string_of_int maxvars ^ " allowed) exceeded.")
1223 find_model_loop (first_universe types sizes minsize)
1226 (* some parameter sanity checks *)
1228 error ("\"minsize\" is " ^ string_of_int minsize ^ ", must be at least 1");
1230 error ("\"maxsize\" is " ^ string_of_int maxsize ^ ", must be at least 1");
1231 maxsize>=minsize orelse
1232 error ("\"maxsize\" (=" ^ string_of_int maxsize ^
1233 ") is less than \"minsize\" (=" ^ string_of_int minsize ^ ").");
1235 error ("\"maxvars\" is " ^ string_of_int maxvars ^ ", must be at least 0");
1237 error ("\"maxtime\" is " ^ string_of_int maxtime ^ ", must be at least 0");
1238 (* enter loop with or without time limit *)
1239 writeln ("Trying to find a model that "
1240 ^ (if negate then "refutes" else "satisfies") ^ ": "
1241 ^ Sign.string_of_term thy t);
1243 interrupt_timeout (Time.fromSeconds (Int.toLarge maxtime))
1246 writeln ("\nSearch terminated, time limit (" ^ string_of_int maxtime
1247 ^ (if maxtime=1 then " second" else " seconds") ^ ") exceeded.")
1253 (* ------------------------------------------------------------------------- *)
1254 (* INTERFACE, PART 2: FINDING A MODEL *)
1255 (* ------------------------------------------------------------------------- *)
1257 (* ------------------------------------------------------------------------- *)
1258 (* satisfy_term: calls 'find_model' to find a model that satisfies 't' *)
1259 (* params : list of '(name, value)' pairs used to override default *)
1261 (* ------------------------------------------------------------------------- *)
1263 (* theory -> (string * string) list -> Term.term -> unit *)
1265 fun satisfy_term thy params t =
1266 find_model thy (actual_params thy params) t false;
1268 (* ------------------------------------------------------------------------- *)
1269 (* refute_term: calls 'find_model' to find a model that refutes 't' *)
1270 (* params : list of '(name, value)' pairs used to override default *)
1272 (* ------------------------------------------------------------------------- *)
1274 (* theory -> (string * string) list -> Term.term -> unit *)
1276 fun refute_term thy params t =
1278 (* disallow schematic type variables, since we cannot properly negate *)
1279 (* terms containing them (their logical meaning is that there EXISTS a *)
1280 (* type s.t. ...; to refute such a formula, we would have to show that *)
1281 (* for ALL types, not ...) *)
1282 val _ = null (term_tvars t) orelse
1283 error "Term to be refuted contains schematic type variables"
1285 (* existential closure over schematic variables *)
1286 (* (Term.indexname * Term.typ) list *)
1287 val vars = sort_wrt (fst o fst) (map dest_Var (term_vars t))
1289 val ex_closure = Library.foldl (fn (t', ((x, i), T)) =>
1290 (HOLogic.exists_const T) $
1291 Abs (x, T, abstract_over (Var ((x, i), T), t')))
1293 (* Note: If 't' is of type 'propT' (rather than 'boolT'), applying *)
1294 (* 'HOLogic.exists_const' is not type-correct. However, this is not *)
1295 (* really a problem as long as 'find_model' still interprets the *)
1296 (* resulting term correctly, without checking its type. *)
1298 (* replace outermost universally quantified variables by Free's: *)
1299 (* refuting a term with Free's is generally faster than refuting a *)
1300 (* term with (nested) quantifiers, because quantifiers are expanded, *)
1301 (* while the SAT solver searches for an interpretation for Free's. *)
1302 (* Also we get more information back that way, namely an *)
1303 (* interpretation which includes values for the (formerly) *)
1304 (* quantified variables. *)
1305 (* maps !!x1...xn. !xk...xm. t to t *)
1306 fun strip_all_body (Const ("all", _) $ Abs (_, _, t)) = strip_all_body t
1307 | strip_all_body (Const ("Trueprop", _) $ t) = strip_all_body t
1308 | strip_all_body (Const ("All", _) $ Abs (_, _, t)) = strip_all_body t
1309 | strip_all_body t = t
1310 (* maps !!x1...xn. !xk...xm. t to [x1, ..., xn, xk, ..., xm] *)
1311 fun strip_all_vars (Const ("all", _) $ Abs (a, T, t)) =
1312 (a, T) :: strip_all_vars t
1313 | strip_all_vars (Const ("Trueprop", _) $ t) =
1315 | strip_all_vars (Const ("All", _) $ Abs (a, T, t)) =
1316 (a, T) :: strip_all_vars t
1317 | strip_all_vars t =
1318 [] : (string * typ) list
1319 val strip_t = strip_all_body ex_closure
1320 val frees = Term.rename_wrt_term strip_t (strip_all_vars ex_closure)
1321 val subst_t = Term.subst_bounds (map Free frees, strip_t)
1323 find_model thy (actual_params thy params) subst_t true
1326 (* ------------------------------------------------------------------------- *)
1327 (* refute_subgoal: calls 'refute_term' on a specific subgoal *)
1328 (* params : list of '(name, value)' pairs used to override default *)
1330 (* subgoal : 0-based index specifying the subgoal number *)
1331 (* ------------------------------------------------------------------------- *)
1333 (* theory -> (string * string) list -> Thm.thm -> int -> unit *)
1335 fun refute_subgoal thy params thm subgoal =
1336 refute_term thy params (List.nth (Thm.prems_of thm, subgoal));
1339 (* ------------------------------------------------------------------------- *)
1340 (* INTERPRETERS: Auxiliary Functions *)
1341 (* ------------------------------------------------------------------------- *)
1343 (* ------------------------------------------------------------------------- *)
1344 (* make_constants: returns all interpretations that have the same tree *)
1345 (* structure as 'intr', but consist of unit vectors with *)
1346 (* 'True'/'False' only (no Boolean variables) *)
1347 (* ------------------------------------------------------------------------- *)
1349 (* interpretation -> interpretation list *)
1351 fun make_constants intr =
1353 (* returns a list with all unit vectors of length n *)
1354 (* int -> interpretation list *)
1355 fun unit_vectors n =
1357 (* returns the k-th unit vector of length n *)
1358 (* int * int -> interpretation *)
1359 fun unit_vector (k,n) =
1360 Leaf ((replicate (k-1) False) @ (True :: (replicate (n-k) False)))
1361 (* int -> interpretation list -> interpretation list *)
1362 fun unit_vectors_acc k vs =
1363 if k>n then [] else (unit_vector (k,n))::(unit_vectors_acc (k+1) vs)
1365 unit_vectors_acc 1 []
1367 (* returns a list of lists, each one consisting of n (possibly *)
1368 (* identical) elements from 'xs' *)
1369 (* int -> 'a list -> 'a list list *)
1373 let val rec_pick = pick_all (n-1) xs in
1374 Library.foldl (fn (acc, x) => map (cons x) rec_pick @ acc) ([], xs)
1378 Leaf xs => unit_vectors (length xs)
1379 | Node xs => map (fn xs' => Node xs') (pick_all (length xs)
1380 (make_constants (hd xs)))
1383 (* ------------------------------------------------------------------------- *)
1384 (* size_of_type: returns the number of constants in a type (i.e. 'length *)
1385 (* (make_constants intr)', but implemented more efficiently) *)
1386 (* ------------------------------------------------------------------------- *)
1388 (* interpretation -> int *)
1390 fun size_of_type intr =
1392 (* power (a, b) computes a^b, for a>=0, b>=0 *)
1393 (* int * int -> int *)
1394 fun power (a, 0) = 1
1396 | power (a, b) = let val ab = power(a, b div 2) in
1397 ab * ab * power(a, b mod 2)
1401 Leaf xs => length xs
1402 | Node xs => power (size_of_type (hd xs), length xs)
1405 (* ------------------------------------------------------------------------- *)
1406 (* TT/FF: interpretations that denote "true" or "false", respectively *)
1407 (* ------------------------------------------------------------------------- *)
1409 (* interpretation *)
1411 val TT = Leaf [True, False];
1413 val FF = Leaf [False, True];
1415 (* ------------------------------------------------------------------------- *)
1416 (* make_equality: returns an interpretation that denotes (extensional) *)
1417 (* equality of two interpretations *)
1418 (* - two interpretations are 'equal' iff they are both defined and denote *)
1419 (* the same value *)
1420 (* - two interpretations are 'not_equal' iff they are both defined at least *)
1421 (* partially, and a defined part denotes different values *)
1422 (* - a completely undefined interpretation is neither 'equal' nor *)
1423 (* 'not_equal' to another interpretation *)
1424 (* ------------------------------------------------------------------------- *)
1426 (* We could in principle represent '=' on a type T by a particular *)
1427 (* interpretation. However, the size of that interpretation is quadratic *)
1428 (* in the size of T. Therefore comparing the interpretations 'i1' and *)
1429 (* 'i2' directly is more efficient than constructing the interpretation *)
1430 (* for equality on T first, and "applying" this interpretation to 'i1' *)
1431 (* and 'i2' in the usual way (cf. 'interpretation_apply') then. *)
1433 (* interpretation * interpretation -> interpretation *)
1435 fun make_equality (i1, i2) =
1437 (* interpretation * interpretation -> prop_formula *)
1438 fun equal (i1, i2) =
1442 Leaf ys => PropLogic.dot_product (xs, ys) (* defined and equal *)
1443 | Node _ => raise REFUTE ("make_equality",
1444 "second interpretation is higher"))
1447 Leaf _ => raise REFUTE ("make_equality",
1448 "first interpretation is higher")
1449 | Node ys => PropLogic.all (map equal (xs ~~ ys))))
1450 (* interpretation * interpretation -> prop_formula *)
1451 fun not_equal (i1, i2) =
1455 (* defined and not equal *)
1456 Leaf ys => PropLogic.all ((PropLogic.exists xs)
1457 :: (PropLogic.exists ys)
1458 :: (map (fn (x,y) => SOr (SNot x, SNot y)) (xs ~~ ys)))
1459 | Node _ => raise REFUTE ("make_equality",
1460 "second interpretation is higher"))
1463 Leaf _ => raise REFUTE ("make_equality",
1464 "first interpretation is higher")
1465 | Node ys => PropLogic.exists (map not_equal (xs ~~ ys))))
1467 (* a value may be undefined; therefore 'not_equal' is not just the *)
1468 (* negation of 'equal' *)
1469 Leaf [equal (i1, i2), not_equal (i1, i2)]
1472 (* ------------------------------------------------------------------------- *)
1473 (* make_def_equality: returns an interpretation that denotes (extensional) *)
1474 (* equality of two interpretations *)
1475 (* This function treats undefined/partially defined interpretations *)
1476 (* different from 'make_equality': two undefined interpretations are *)
1477 (* considered equal, while a defined interpretation is considered not equal *)
1478 (* to an undefined interpretation. *)
1479 (* ------------------------------------------------------------------------- *)
1481 (* interpretation * interpretation -> interpretation *)
1483 fun make_def_equality (i1, i2) =
1485 (* interpretation * interpretation -> prop_formula *)
1486 fun equal (i1, i2) =
1490 (* defined and equal, or both undefined *)
1491 Leaf ys => SOr (PropLogic.dot_product (xs, ys),
1492 SAnd (PropLogic.all (map SNot xs), PropLogic.all (map SNot ys)))
1493 | Node _ => raise REFUTE ("make_def_equality",
1494 "second interpretation is higher"))
1497 Leaf _ => raise REFUTE ("make_def_equality",
1498 "first interpretation is higher")
1499 | Node ys => PropLogic.all (map equal (xs ~~ ys))))
1500 (* interpretation *)
1501 val eq = equal (i1, i2)
1506 (* ------------------------------------------------------------------------- *)
1507 (* interpretation_apply: returns an interpretation that denotes the result *)
1508 (* of applying the function denoted by 'i1' to the *)
1509 (* argument denoted by 'i2' *)
1510 (* ------------------------------------------------------------------------- *)
1512 (* interpretation * interpretation -> interpretation *)
1514 fun interpretation_apply (i1, i2) =
1516 (* interpretation * interpretation -> interpretation *)
1517 fun interpretation_disjunction (tr1,tr2) =
1518 tree_map (fn (xs,ys) => map (fn (x,y) => SOr(x,y)) (xs ~~ ys))
1519 (tree_pair (tr1,tr2))
1520 (* prop_formula * interpretation -> interpretation *)
1521 fun prop_formula_times_interpretation (fm,tr) =
1522 tree_map (map (fn x => SAnd (fm,x))) tr
1523 (* prop_formula list * interpretation list -> interpretation *)
1524 fun prop_formula_list_dot_product_interpretation_list ([fm],[tr]) =
1525 prop_formula_times_interpretation (fm,tr)
1526 | prop_formula_list_dot_product_interpretation_list (fm::fms,tr::trees) =
1527 interpretation_disjunction (prop_formula_times_interpretation (fm,tr),
1528 prop_formula_list_dot_product_interpretation_list (fms,trees))
1529 | prop_formula_list_dot_product_interpretation_list (_,_) =
1530 raise REFUTE ("interpretation_apply", "empty list (in dot product)")
1531 (* concatenates 'x' with every list in 'xss', returning a new list of *)
1533 (* 'a -> 'a list list -> 'a list list *)
1534 fun cons_list x xss =
1536 (* returns a list of lists, each one consisting of one element from each *)
1537 (* element of 'xss' *)
1538 (* 'a list list -> 'a list list *)
1541 | pick_all (xs::xss) =
1542 let val rec_pick = pick_all xss in
1543 Library.foldl (fn (acc, x) => (cons_list x rec_pick) @ acc) ([], xs)
1546 raise REFUTE ("interpretation_apply", "empty list (in pick_all)")
1547 (* interpretation -> prop_formula list *)
1548 fun interpretation_to_prop_formula_list (Leaf xs) =
1550 | interpretation_to_prop_formula_list (Node trees) =
1551 map PropLogic.all (pick_all
1552 (map interpretation_to_prop_formula_list trees))
1556 raise REFUTE ("interpretation_apply", "first interpretation is a leaf")
1558 prop_formula_list_dot_product_interpretation_list
1559 (interpretation_to_prop_formula_list i2, xs)
1562 (* ------------------------------------------------------------------------- *)
1563 (* eta_expand: eta-expands a term 't' by adding 'i' lambda abstractions *)
1564 (* ------------------------------------------------------------------------- *)
1566 (* Term.term -> int -> Term.term *)
1568 fun eta_expand t i =
1570 val Ts = Term.binder_types (Term.fastype_of t)
1571 val t' = Term.incr_boundvars i t
1573 foldr (fn (T, term) => Abs ("<eta_expand>", T, term))
1574 (Term.list_comb (t', map Bound (i-1 downto 0))) (List.take (Ts, i))
1577 (* ------------------------------------------------------------------------- *)
1578 (* sum: returns the sum of a list 'xs' of integers *)
1579 (* ------------------------------------------------------------------------- *)
1581 (* int list -> int *)
1583 fun sum xs = foldl op+ 0 xs;
1585 (* ------------------------------------------------------------------------- *)
1586 (* product: returns the product of a list 'xs' of integers *)
1587 (* ------------------------------------------------------------------------- *)
1589 (* int list -> int *)
1591 fun product xs = foldl op* 1 xs;
1593 (* ------------------------------------------------------------------------- *)
1594 (* size_of_dtyp: the size of (an initial fragment of) an inductive data type *)
1595 (* is the sum (over its constructors) of the product (over *)
1596 (* their arguments) of the size of the argument types *)
1597 (* ------------------------------------------------------------------------- *)
1599 (* theory -> (Term.typ * int) list -> DatatypeAux.descr ->
1600 (DatatypeAux.dtyp * Term.typ) list ->
1601 (string * DatatypeAux.dtyp list) list -> int *)
1603 fun size_of_dtyp thy typ_sizes descr typ_assoc constructors =
1604 sum (map (fn (_, dtyps) =>
1605 product (map (fn dtyp =>
1607 val T = typ_of_dtyp descr typ_assoc dtyp
1608 val (i, _, _) = interpret thy (typ_sizes, [])
1609 {maxvars=0, def_eq=false, next_idx=1, bounds=[], wellformed=True}
1613 end) dtyps)) constructors);
1616 (* ------------------------------------------------------------------------- *)
1617 (* INTERPRETERS: Actual Interpreters *)
1618 (* ------------------------------------------------------------------------- *)
1620 (* theory -> model -> arguments -> Term.term ->
1621 (interpretation * model * arguments) option *)
1623 (* simply typed lambda calculus: Isabelle's basic term syntax, with type *)
1624 (* variables, function types, and propT *)
1626 fun stlc_interpreter thy model args t =
1628 val (typs, terms) = model
1629 val {maxvars, def_eq, next_idx, bounds, wellformed} = args
1630 (* Term.typ -> (interpretation * model * arguments) option *)
1631 fun interpret_groundterm T =
1633 (* unit -> (interpretation * model * arguments) option *)
1634 fun interpret_groundtype () =
1636 (* the model must specify a size for ground types *)
1637 val size = (if T = Term.propT then 2 else lookup typs T)
1638 val next = next_idx+size
1639 (* check if 'maxvars' is large enough *)
1640 val _ = (if next-1>maxvars andalso maxvars>0 then
1641 raise MAXVARS_EXCEEDED else ())
1642 (* prop_formula list *)
1643 val fms = map BoolVar (next_idx upto (next_idx+size-1))
1644 (* interpretation *)
1646 (* prop_formula list -> prop_formula *)
1647 fun one_of_two_false [] = True
1648 | one_of_two_false (x::xs) = SAnd (PropLogic.all (map (fn x' =>
1649 SOr (SNot x, SNot x')) xs), one_of_two_false xs)
1651 val wf = one_of_two_false fms
1653 (* extend the model, increase 'next_idx', add well-formedness *)
1655 SOME (intr, (typs, (t, intr)::terms), {maxvars = maxvars,
1656 def_eq = def_eq, next_idx = next, bounds = bounds,
1657 wellformed = SAnd (wellformed, wf)})
1661 Type ("fun", [T1, T2]) =>
1663 (* we create 'size_of_type (interpret (... T1))' different copies *)
1664 (* of the interpretation for 'T2', which are then combined into a *)
1665 (* single new interpretation *)
1666 val (i1, _, _) = interpret thy model {maxvars=0, def_eq=false,
1667 next_idx=1, bounds=[], wellformed=True} (Free ("dummy", T1))
1668 (* make fresh copies, with different variable indices *)
1669 (* 'idx': next variable index *)
1670 (* 'n' : number of copies *)
1671 (* int -> int -> (int * interpretation list * prop_formula *)
1672 fun make_copies idx 0 =
1674 | make_copies idx n =
1676 val (copy, _, new_args) = interpret thy (typs, [])
1677 {maxvars = maxvars, def_eq = false, next_idx = idx,
1678 bounds = [], wellformed = True} (Free ("dummy", T2))
1679 val (idx', copies, wf') = make_copies (#next_idx new_args) (n-1)
1681 (idx', copy :: copies, SAnd (#wellformed new_args, wf'))
1683 val (next, copies, wf) = make_copies next_idx (size_of_type i1)
1684 (* combine copies into a single interpretation *)
1685 val intr = Node copies
1687 (* extend the model, increase 'next_idx', add well-formedness *)
1689 SOME (intr, (typs, (t, intr)::terms), {maxvars = maxvars,
1690 def_eq = def_eq, next_idx = next, bounds = bounds,
1691 wellformed = SAnd (wellformed, wf)})
1693 | Type _ => interpret_groundtype ()
1694 | TFree _ => interpret_groundtype ()
1695 | TVar _ => interpret_groundtype ()
1698 case AList.lookup (op =) terms t of
1700 (* return an existing interpretation *)
1701 SOME (intr, model, args)
1705 interpret_groundterm T
1707 interpret_groundterm T
1709 interpret_groundterm T
1711 SOME (List.nth (#bounds args, i), model, args)
1712 | Abs (x, T, body) =>
1714 (* create all constants of type 'T' *)
1715 val (i, _, _) = interpret thy model {maxvars=0, def_eq=false,
1716 next_idx=1, bounds=[], wellformed=True} (Free ("dummy", T))
1717 val constants = make_constants i
1718 (* interpret the 'body' separately for each constant *)
1719 val ((model', args'), bodies) = foldl_map
1722 (* add 'c' to 'bounds' *)
1723 val (i', m', a') = interpret thy m {maxvars = #maxvars a,
1724 def_eq = #def_eq a, next_idx = #next_idx a,
1725 bounds = (c :: #bounds a), wellformed = #wellformed a} body
1727 (* keep the new model m' and 'next_idx' and 'wellformed', *)
1728 (* but use old 'bounds' *)
1729 ((m', {maxvars = maxvars, def_eq = def_eq,
1730 next_idx = #next_idx a', bounds = bounds,
1731 wellformed = #wellformed a'}), i')
1733 ((model, args), constants)
1735 SOME (Node bodies, model', args')
1739 (* interpret 't1' and 't2' separately *)
1740 val (intr1, model1, args1) = interpret thy model args t1
1741 val (intr2, model2, args2) = interpret thy model1 args1 t2
1743 SOME (interpretation_apply (intr1, intr2), model2, args2)
1747 (* theory -> model -> arguments -> Term.term ->
1748 (interpretation * model * arguments) option *)
1750 fun Pure_interpreter thy model args t =
1752 Const ("all", _) $ t1 =>
1754 val (i, m, a) = interpret thy model args t1
1758 (* 3-valued logic *)
1760 val fmTrue = PropLogic.all (map toTrue xs)
1761 val fmFalse = PropLogic.exists (map toFalse xs)
1763 SOME (Leaf [fmTrue, fmFalse], m, a)
1766 raise REFUTE ("Pure_interpreter",
1767 "\"all\" is followed by a non-function")
1769 | Const ("all", _) =>
1770 SOME (interpret thy model args (eta_expand t 1))
1771 | Const ("==", _) $ t1 $ t2 =>
1773 val (i1, m1, a1) = interpret thy model args t1
1774 val (i2, m2, a2) = interpret thy m1 a1 t2
1776 (* we use either 'make_def_equality' or 'make_equality' *)
1777 SOME ((if #def_eq args then make_def_equality else make_equality)
1780 | Const ("==", _) $ t1 =>
1781 SOME (interpret thy model args (eta_expand t 1))
1782 | Const ("==", _) =>
1783 SOME (interpret thy model args (eta_expand t 2))
1784 | Const ("==>", _) $ t1 $ t2 =>
1785 (* 3-valued logic *)
1787 val (i1, m1, a1) = interpret thy model args t1
1788 val (i2, m2, a2) = interpret thy m1 a1 t2
1789 val fmTrue = PropLogic.SOr (toFalse i1, toTrue i2)
1790 val fmFalse = PropLogic.SAnd (toTrue i1, toFalse i2)
1792 SOME (Leaf [fmTrue, fmFalse], m2, a2)
1794 | Const ("==>", _) $ t1 =>
1795 SOME (interpret thy model args (eta_expand t 1))
1796 | Const ("==>", _) =>
1797 SOME (interpret thy model args (eta_expand t 2))
1800 (* theory -> model -> arguments -> Term.term ->
1801 (interpretation * model * arguments) option *)
1803 fun HOLogic_interpreter thy model args t =
1804 (* Providing interpretations directly is more efficient than unfolding the *)
1805 (* logical constants. In HOL however, logical constants can themselves be *)
1806 (* arguments. They are then translated using eta-expansion. *)
1808 Const ("Trueprop", _) =>
1809 SOME (Node [TT, FF], model, args)
1810 | Const ("Not", _) =>
1811 SOME (Node [FF, TT], model, args)
1812 (* redundant, since 'True' is also an IDT constructor *)
1813 | Const ("True", _) =>
1814 SOME (TT, model, args)
1815 (* redundant, since 'False' is also an IDT constructor *)
1816 | Const ("False", _) =>
1817 SOME (FF, model, args)
1818 | Const ("All", _) $ t1 => (* similar to "all" (Pure) *)
1820 val (i, m, a) = interpret thy model args t1
1824 (* 3-valued logic *)
1826 val fmTrue = PropLogic.all (map toTrue xs)
1827 val fmFalse = PropLogic.exists (map toFalse xs)
1829 SOME (Leaf [fmTrue, fmFalse], m, a)
1832 raise REFUTE ("HOLogic_interpreter",
1833 "\"All\" is followed by a non-function")
1835 | Const ("All", _) =>
1836 SOME (interpret thy model args (eta_expand t 1))
1837 | Const ("Ex", _) $ t1 =>
1839 val (i, m, a) = interpret thy model args t1
1843 (* 3-valued logic *)
1845 val fmTrue = PropLogic.exists (map toTrue xs)
1846 val fmFalse = PropLogic.all (map toFalse xs)
1848 SOME (Leaf [fmTrue, fmFalse], m, a)
1851 raise REFUTE ("HOLogic_interpreter",
1852 "\"Ex\" is followed by a non-function")
1854 | Const ("Ex", _) =>
1855 SOME (interpret thy model args (eta_expand t 1))
1856 | Const ("op =", _) $ t1 $ t2 => (* similar to "==" (Pure) *)
1858 val (i1, m1, a1) = interpret thy model args t1
1859 val (i2, m2, a2) = interpret thy m1 a1 t2
1861 SOME (make_equality (i1, i2), m2, a2)
1863 | Const ("op =", _) $ t1 =>
1864 SOME (interpret thy model args (eta_expand t 1))
1865 | Const ("op =", _) =>
1866 SOME (interpret thy model args (eta_expand t 2))
1867 | Const ("op &", _) $ t1 $ t2 =>
1868 (* 3-valued logic *)
1870 val (i1, m1, a1) = interpret thy model args t1
1871 val (i2, m2, a2) = interpret thy m1 a1 t2
1872 val fmTrue = PropLogic.SAnd (toTrue i1, toTrue i2)
1873 val fmFalse = PropLogic.SOr (toFalse i1, toFalse i2)
1875 SOME (Leaf [fmTrue, fmFalse], m2, a2)
1877 | Const ("op &", _) $ t1 =>
1878 SOME (interpret thy model args (eta_expand t 1))
1879 | Const ("op &", _) =>
1880 SOME (interpret thy model args (eta_expand t 2))
1881 (* this would make "undef" propagate, even for formulae like *)
1882 (* "False & undef": *)
1883 (* SOME (Node [Node [TT, FF], Node [FF, FF]], model, args) *)
1884 | Const ("op |", _) $ t1 $ t2 =>
1885 (* 3-valued logic *)
1887 val (i1, m1, a1) = interpret thy model args t1
1888 val (i2, m2, a2) = interpret thy m1 a1 t2
1889 val fmTrue = PropLogic.SOr (toTrue i1, toTrue i2)
1890 val fmFalse = PropLogic.SAnd (toFalse i1, toFalse i2)
1892 SOME (Leaf [fmTrue, fmFalse], m2, a2)
1894 | Const ("op |", _) $ t1 =>
1895 SOME (interpret thy model args (eta_expand t 1))
1896 | Const ("op |", _) =>
1897 SOME (interpret thy model args (eta_expand t 2))
1898 (* this would make "undef" propagate, even for formulae like *)
1899 (* "True | undef": *)
1900 (* SOME (Node [Node [TT, TT], Node [TT, FF]], model, args) *)
1901 | Const ("op -->", _) $ t1 $ t2 => (* similar to "==>" (Pure) *)
1902 (* 3-valued logic *)
1904 val (i1, m1, a1) = interpret thy model args t1
1905 val (i2, m2, a2) = interpret thy m1 a1 t2
1906 val fmTrue = PropLogic.SOr (toFalse i1, toTrue i2)
1907 val fmFalse = PropLogic.SAnd (toTrue i1, toFalse i2)
1909 SOME (Leaf [fmTrue, fmFalse], m2, a2)
1911 | Const ("op -->", _) $ t1 =>
1912 SOME (interpret thy model args (eta_expand t 1))
1913 | Const ("op -->", _) =>
1914 SOME (interpret thy model args (eta_expand t 2))
1915 (* this would make "undef" propagate, even for formulae like *)
1916 (* "False --> undef": *)
1917 (* SOME (Node [Node [TT, FF], Node [TT, TT]], model, args) *)
1920 (* theory -> model -> arguments -> Term.term ->
1921 (interpretation * model * arguments) option *)
1923 fun set_interpreter thy model args t =
1924 (* "T set" is isomorphic to "T --> bool" *)
1926 val (typs, terms) = model
1928 case AList.lookup (op =) terms t of
1930 (* return an existing interpretation *)
1931 SOME (intr, model, args)
1934 Free (x, Type ("set", [T])) =>
1936 val (intr, _, args') =
1937 interpret thy (typs, []) args (Free (x, T --> HOLogic.boolT))
1939 SOME (intr, (typs, (t, intr)::terms), args')
1941 | Var ((x, i), Type ("set", [T])) =>
1943 val (intr, _, args') =
1944 interpret thy (typs, []) args (Var ((x,i), T --> HOLogic.boolT))
1946 SOME (intr, (typs, (t, intr)::terms), args')
1948 | Const (s, Type ("set", [T])) =>
1950 val (intr, _, args') =
1951 interpret thy (typs, []) args (Const (s, T --> HOLogic.boolT))
1953 SOME (intr, (typs, (t, intr)::terms), args')
1955 (* 'Collect' == identity *)
1956 | Const ("Collect", _) $ t1 =>
1957 SOME (interpret thy model args t1)
1958 | Const ("Collect", _) =>
1959 SOME (interpret thy model args (eta_expand t 1))
1960 (* 'op :' == application *)
1961 | Const ("op :", _) $ t1 $ t2 =>
1962 SOME (interpret thy model args (t2 $ t1))
1963 | Const ("op :", _) $ t1 =>
1964 SOME (interpret thy model args (eta_expand t 1))
1965 | Const ("op :", _) =>
1966 SOME (interpret thy model args (eta_expand t 2))
1970 (* theory -> model -> arguments -> Term.term ->
1971 (interpretation * model * arguments) option *)
1973 (* interprets variables and constants whose type is an IDT; *)
1974 (* constructors of IDTs however are properly interpreted by *)
1975 (* 'IDT_constructor_interpreter' *)
1977 fun IDT_interpreter thy model args t =
1979 val (typs, terms) = model
1980 (* Term.typ -> (interpretation * model * arguments) option *)
1981 fun interpret_term (Type (s, Ts)) =
1982 (case DatatypePackage.get_datatype thy s of
1983 SOME info => (* inductive datatype *)
1985 (* int option -- only recursive IDTs have an associated depth *)
1986 val depth = AList.lookup (op =) typs (Type (s, Ts))
1988 (* termination condition to avoid infinite recursion *)
1989 if depth = (SOME 0) then
1990 (* return a leaf of size 0 *)
1991 SOME (Leaf [], model, args)
1994 val index = #index info
1995 val descr = #descr info
1996 val (_, dtyps, constrs) = lookup descr index
1997 val typ_assoc = dtyps ~~ Ts
1998 (* sanity check: every element in 'dtyps' must be a 'DtTFree' *)
1999 val _ = (if Library.exists (fn d =>
2000 case d of DatatypeAux.DtTFree _ => false | _ => true) dtyps
2002 raise REFUTE ("IDT_interpreter",
2003 "datatype argument (for type "
2004 ^ Sign.string_of_typ thy (Type (s, Ts))
2005 ^ ") is not a variable")
2008 (* if the model specifies a depth for the current type, *)
2009 (* decrement it to avoid infinite recursion *)
2010 val typs' = case depth of NONE => typs | SOME n =>
2011 AList.update (op =) (Type (s, Ts), n-1) typs
2012 (* recursively compute the size of the datatype *)
2013 val size = size_of_dtyp thy typs' descr typ_assoc constrs
2014 val next_idx = #next_idx args
2015 val next = next_idx+size
2016 (* check if 'maxvars' is large enough *)
2017 val _ = (if next-1 > #maxvars args andalso
2018 #maxvars args > 0 then raise MAXVARS_EXCEEDED else ())
2019 (* prop_formula list *)
2020 val fms = map BoolVar (next_idx upto (next_idx+size-1))
2021 (* interpretation *)
2023 (* prop_formula list -> prop_formula *)
2024 fun one_of_two_false [] = True
2025 | one_of_two_false (x::xs) = SAnd (PropLogic.all (map (fn x' =>
2026 SOr (SNot x, SNot x')) xs), one_of_two_false xs)
2028 val wf = one_of_two_false fms
2030 (* extend the model, increase 'next_idx', add well-formedness *)
2032 SOME (intr, (typs, (t, intr)::terms), {maxvars = #maxvars args,
2033 def_eq = #def_eq args, next_idx = next, bounds = #bounds args,
2034 wellformed = SAnd (#wellformed args, wf)})
2037 | NONE => (* not an inductive datatype *)
2039 | interpret_term _ = (* a (free or schematic) type variable *)
2042 case AList.lookup (op =) terms t of
2044 (* return an existing interpretation *)
2045 SOME (intr, model, args)
2048 Free (_, T) => interpret_term T
2049 | Var (_, T) => interpret_term T
2050 | Const (_, T) => interpret_term T
2054 (* theory -> model -> arguments -> Term.term ->
2055 (interpretation * model * arguments) option *)
2057 fun IDT_constructor_interpreter thy model args t =
2059 val (typs, terms) = model
2061 case AList.lookup (op =) terms t of
2063 (* return an existing interpretation *)
2064 SOME (intr, model, args)
2068 (case body_type T of
2070 (case DatatypePackage.get_datatype thy s' of
2071 SOME info => (* body type is an inductive datatype *)
2073 val index = #index info
2074 val descr = #descr info
2075 val (_, dtyps, constrs) = lookup descr index
2076 val typ_assoc = dtyps ~~ Ts'
2077 (* sanity check: every element in 'dtyps' must be a 'DtTFree' *)
2078 val _ = (if Library.exists (fn d =>
2079 case d of DatatypeAux.DtTFree _ => false | _ => true) dtyps
2081 raise REFUTE ("IDT_constructor_interpreter",
2082 "datatype argument (for type "
2083 ^ Sign.string_of_typ thy (Type (s', Ts'))
2084 ^ ") is not a variable")
2087 (* split the constructors into those occuring before/after *)
2088 (* 'Const (s, T)' *)
2089 val (constrs1, constrs2) = take_prefix (fn (cname, ctypes) =>
2090 not (cname = s andalso Sign.typ_instance thy (T,
2091 map (typ_of_dtyp descr typ_assoc) ctypes
2092 ---> Type (s', Ts')))) constrs
2096 (* 'Const (s, T)' is not a constructor of this datatype *)
2098 | (_, ctypes)::cs =>
2100 (* compute the total size of the datatype (with the *)
2101 (* current depth) *)
2102 val (i, _, _) = interpret thy (typs, []) {maxvars=0,
2103 def_eq=false, next_idx=1, bounds=[], wellformed=True}
2104 (Free ("dummy", Type (s', Ts')))
2105 val total = size_of_type i
2106 (* int option -- only /recursive/ IDTs have an associated *)
2108 val depth = AList.lookup (op =) typs (Type (s', Ts'))
2109 val typs' = (case depth of NONE => typs | SOME n =>
2110 AList.update (op =) (Type (s', Ts'), n-1) typs)
2111 (* returns an interpretation where everything is mapped to *)
2113 (* DatatypeAux.dtyp list -> interpretation *)
2115 Leaf (replicate total False)
2116 | make_undef (d::ds) =
2118 (* compute the current size of the type 'd' *)
2119 val T = typ_of_dtyp descr typ_assoc d
2120 val (i, _, _) = interpret thy (typs, []) {maxvars=0,
2121 def_eq=false, next_idx=1, bounds=[], wellformed=True}
2123 val size = size_of_type i
2125 Node (replicate size (make_undef ds))
2127 (* returns the interpretation for a constructor at depth 1 *)
2128 (* int * DatatypeAux.dtyp list -> int * interpretation *)
2129 fun make_constr (offset, []) =
2130 if offset<total then
2131 (offset+1, Leaf ((replicate offset False) @ True ::
2132 (replicate (total-offset-1) False)))
2134 raise REFUTE ("IDT_constructor_interpreter",
2136 | make_constr (offset, d::ds) =
2138 (* compute the current and the old size of the type 'd' *)
2139 val T = typ_of_dtyp descr typ_assoc d
2140 val (i, _, _) = interpret thy (typs, []) {maxvars=0,
2141 def_eq=false, next_idx=1, bounds=[], wellformed=True}
2143 val size = size_of_type i
2144 val (i', _, _) = interpret thy (typs', []) {maxvars=0,
2145 def_eq=false, next_idx=1, bounds=[], wellformed=True}
2147 val size' = size_of_type i'
2149 val _ = if size < size' then
2150 raise REFUTE ("IDT_constructor_interpreter",
2151 "current size is less than old size")
2153 (* int * interpretation list *)
2154 val (new_offset, intrs) = foldl_map make_constr
2155 (offset, replicate size' ds)
2156 (* interpretation list *)
2157 val undefs = replicate (size - size') (make_undef ds)
2159 (* elements that exist at the previous depth are *)
2160 (* mapped to a defined value, while new elements are *)
2161 (* mapped to "undefined" by the recursive constructor *)
2162 (new_offset, Node (intrs @ undefs))
2164 (* extends the interpretation for a constructor (both *)
2165 (* recursive and non-recursive) obtained at depth n (n>=1) *)
2167 (* int * DatatypeAux.dtyp list * interpretation
2168 -> int * interpretation *)
2169 fun extend_constr (offset, [], Leaf xs) =
2171 (* returns the k-th unit vector of length n *)
2172 (* int * int -> interpretation *)
2173 fun unit_vector (k, n) =
2174 Leaf ((replicate (k-1) False) @ True ::
2175 (replicate (n-k) False))
2177 val k = find_index_eq True xs
2180 (* if the element was mapped to "undefined" before, *)
2181 (* map it to the value given by 'offset' now (and *)
2182 (* extend the length of the leaf) *)
2183 (offset+1, unit_vector (offset+1, total))
2185 (* if the element was already mapped to a defined *)
2186 (* value, map it to the same value again, just *)
2187 (* extend the length of the leaf, do not increment *)
2189 (offset, unit_vector (k+1, total))
2191 | extend_constr (_, [], Node _) =
2192 raise REFUTE ("IDT_constructor_interpreter",
2193 "interpretation for constructor (with no arguments left)"
2195 | extend_constr (offset, d::ds, Node xs) =
2197 (* compute the size of the type 'd' *)
2198 val T = typ_of_dtyp descr typ_assoc d
2199 val (i, _, _) = interpret thy (typs, []) {maxvars=0,
2200 def_eq=false, next_idx=1, bounds=[], wellformed=True}
2202 val size = size_of_type i
2204 val _ = if size < length xs then
2205 raise REFUTE ("IDT_constructor_interpreter",
2206 "new size of type is less than old size")
2208 (* extend the existing interpretations *)
2209 (* int * interpretation list *)
2210 val (new_offset, intrs) = foldl_map (fn (off, i) =>
2211 extend_constr (off, ds, i)) (offset, xs)
2212 (* new elements of the type 'd' are mapped to *)
2214 val undefs = replicate (size - length xs) (make_undef ds)
2216 (new_offset, Node (intrs @ undefs))
2218 | extend_constr (_, d::ds, Leaf _) =
2219 raise REFUTE ("IDT_constructor_interpreter",
2220 "interpretation for constructor (with arguments left)"
2222 (* returns 'true' iff the constructor has a recursive *)
2224 (* DatatypeAux.dtyp list -> bool *)
2225 fun is_rec_constr ds =
2226 Library.exists DatatypeAux.is_rec_type ds
2227 (* constructors before 'Const (s, T)' generate elements of *)
2229 val offset = size_of_dtyp thy typs' descr typ_assoc constrs1
2232 NONE => (* equivalent to a depth of 1 *)
2233 SOME (snd (make_constr (offset, ctypes)), model, args)
2235 raise REFUTE ("IDT_constructor_interpreter", "depth is 0")
2237 SOME (snd (make_constr (offset, ctypes)), model, args)
2238 | SOME n => (* n > 1 *)
2240 (* interpret the constructor at depth-1 *)
2241 val (iC, _, _) = interpret thy (typs', []) {maxvars=0,
2242 def_eq=false, next_idx=1, bounds=[], wellformed=True}
2244 (* elements generated by the constructor at depth-1 *)
2245 (* must be added to 'offset' *)
2246 (* interpretation -> int *)
2247 fun number_of_defined_elements (Leaf xs) =
2248 if find_index_eq True xs = (~1) then 0 else 1
2249 | number_of_defined_elements (Node xs) =
2250 sum (map number_of_defined_elements xs)
2252 val offset' = offset + number_of_defined_elements iC
2254 SOME (snd (extend_constr (offset', ctypes, iC)), model,
2259 | NONE => (* body type is not an inductive datatype *)
2261 | _ => (* body type is a (free or schematic) type variable *)
2263 | _ => (* term is not a constant *)
2267 (* theory -> model -> arguments -> Term.term ->
2268 (interpretation * model * arguments) option *)
2270 (* Difficult code ahead. Make sure you understand the *)
2271 (* 'IDT_constructor_interpreter' and the order in which it enumerates *)
2272 (* elements of an IDT before you try to understand this function. *)
2274 fun IDT_recursion_interpreter thy model args t =
2275 (* careful: here we descend arbitrarily deep into 't', possibly before *)
2276 (* any other interpreter for atomic terms has had a chance to look at *)
2278 case strip_comb t of
2279 (Const (s, T), params) =>
2280 (* iterate over all datatypes in 'thy' *)
2281 Symtab.fold (fn (_, info) => fn result =>
2284 result (* just keep 'result' *)
2286 if member (op =) (#rec_names info) s then
2287 (* we do have a recursion operator of the datatype given by *)
2288 (* 'info', or of a mutually recursive datatype *)
2290 val index = #index info
2291 val descr = #descr info
2292 val (dtname, dtyps, _) = lookup descr index
2293 (* number of all constructors, including those of different *)
2294 (* (mutually recursive) datatypes within the same descriptor *)
2296 val mconstrs_count = sum (map (fn (_, (_, _, cs)) => length cs)
2298 val params_count = length params
2299 (* the type of a recursion operator: *)
2300 (* [T1, ..., Tn, IDT] ---> Tresult *)
2301 val IDT = List.nth (binder_types T, mconstrs_count)
2303 if (fst o dest_Type) IDT <> dtname then
2304 (* recursion operator of a mutually recursive datatype *)
2306 else if mconstrs_count < params_count then
2307 (* too many actual parameters; for now we'll use the *)
2308 (* 'stlc_interpreter' to strip off one application *)
2310 else if mconstrs_count > params_count then
2311 (* too few actual parameters; we use eta expansion *)
2312 (* Note that the resulting expansion of lambda abstractions *)
2313 (* by the 'stlc_interpreter' may be rather slow (depending *)
2314 (* on the argument types and the size of the IDT, of *)
2316 SOME (interpret thy model args (eta_expand t
2317 (mconstrs_count - params_count)))
2318 else (* mconstrs_count = params_count *)
2320 (* interpret each parameter separately *)
2321 val ((model', args'), p_intrs) = foldl_map (fn ((m, a), p) =>
2323 val (i, m', a') = interpret thy m a p
2326 end) ((model, args), params)
2327 val (typs, _) = model'
2328 val typ_assoc = dtyps ~~ (snd o dest_Type) IDT
2329 (* interpret each constructor in the descriptor (including *)
2330 (* those of mutually recursive datatypes) *)
2331 (* (int * interpretation list) list *)
2332 val mc_intrs = map (fn (idx, (_, _, cs)) =>
2334 val c_return_typ = typ_of_dtyp descr typ_assoc
2335 (DatatypeAux.DtRec idx)
2337 (idx, map (fn (cname, cargs) =>
2338 (#1 o interpret thy (typs, []) {maxvars=0,
2339 def_eq=false, next_idx=1, bounds=[],
2340 wellformed=True}) (Const (cname, map (typ_of_dtyp
2341 descr typ_assoc) cargs ---> c_return_typ))) cs)
2343 (* the recursion operator is a function that maps every *)
2344 (* element of the inductive datatype (and of mutually *)
2345 (* recursive types) to an element of some result type; an *)
2346 (* array entry of NONE means that the actual result has *)
2347 (* not been computed yet *)
2348 (* (int * interpretation option Array.array) list *)
2349 val INTRS = map (fn (idx, _) =>
2351 val T = typ_of_dtyp descr typ_assoc
2352 (DatatypeAux.DtRec idx)
2353 val (i, _, _) = interpret thy (typs, []) {maxvars=0,
2354 def_eq=false, next_idx=1, bounds=[], wellformed=True}
2356 val size = size_of_type i
2358 (idx, Array.array (size, NONE))
2360 (* takes an interpretation, and if some leaf of this *)
2361 (* interpretation is the 'elem'-th element of the type, *)
2362 (* the indices of the arguments leading to this leaf are *)
2364 (* interpretation -> int -> int list option *)
2365 fun get_args (Leaf xs) elem =
2366 if find_index_eq True xs = elem then
2370 | get_args (Node xs) elem =
2372 (* interpretation * int -> int list option *)
2373 fun search ([], _) =
2375 | search (x::xs, n) =
2376 (case get_args x elem of
2377 SOME result => SOME (n::result)
2378 | NONE => search (xs, n+1))
2382 (* returns the index of the constructor and indices for *)
2383 (* its arguments that generate the 'elem'-th element of *)
2384 (* the datatype given by 'idx' *)
2385 (* int -> int -> int * int list *)
2386 fun get_cargs idx elem =
2388 (* int * interpretation list -> int * int list *)
2389 fun get_cargs_rec (_, []) =
2390 raise REFUTE ("IDT_recursion_interpreter",
2391 "no matching constructor found for element "
2392 ^ string_of_int elem ^ " in datatype "
2393 ^ Sign.string_of_typ thy IDT ^ " (datatype index "
2394 ^ string_of_int idx ^ ")")
2395 | get_cargs_rec (n, x::xs) =
2396 (case get_args x elem of
2397 SOME args => (n, args)
2398 | NONE => get_cargs_rec (n+1, xs))
2400 get_cargs_rec (0, lookup mc_intrs idx)
2402 (* returns the number of constructors in datatypes that *)
2403 (* occur in the descriptor 'descr' before the datatype *)
2404 (* given by 'idx' *)
2405 fun get_coffset idx =
2407 fun get_coffset_acc _ [] =
2408 raise REFUTE ("IDT_recursion_interpreter", "index "
2409 ^ string_of_int idx ^ " not found in descriptor")
2410 | get_coffset_acc sum ((i, (_, _, cs))::descr') =
2414 get_coffset_acc (sum + length cs) descr'
2416 get_coffset_acc 0 descr
2418 (* computes one entry in INTRS, and recursively all *)
2419 (* entries needed for it, where 'idx' gives the datatype *)
2420 (* and 'elem' the element of it *)
2421 (* int -> int -> interpretation *)
2422 fun compute_array_entry idx elem =
2423 case Array.sub (lookup INTRS idx, elem) of
2425 (* simply return the previously computed result *)
2429 (* int * int list *)
2430 val (c, args) = get_cargs idx elem
2431 (* interpretation * int list -> interpretation *)
2432 fun select_subtree (tr, []) =
2433 tr (* return the whole tree *)
2434 | select_subtree (Leaf _, _) =
2435 raise REFUTE ("IDT_recursion_interpreter",
2436 "interpretation for parameter is a leaf; "
2437 ^ "cannot select a subtree")
2438 | select_subtree (Node tr, x::xs) =
2439 select_subtree (List.nth (tr, x), xs)
2440 (* select the correct subtree of the parameter *)
2441 (* corresponding to constructor 'c' *)
2442 val p_intr = select_subtree (List.nth
2443 (p_intrs, get_coffset idx + c), args)
2444 (* find the indices of the constructor's recursive *)
2446 val (_, _, constrs) = lookup descr idx
2447 val constr_args = (snd o List.nth) (constrs, c)
2448 val rec_args = List.filter
2449 (DatatypeAux.is_rec_type o fst) (constr_args ~~ args)
2450 val rec_args' = map (fn (dtyp, elem) =>
2451 (DatatypeAux.dest_DtRec dtyp, elem)) rec_args
2452 (* apply 'p_intr' to recursively computed results *)
2453 val result = foldl (fn ((idx, elem), intr) =>
2454 interpretation_apply (intr,
2455 compute_array_entry idx elem)) p_intr rec_args'
2456 (* update 'INTRS' *)
2457 val _ = Array.update (lookup INTRS idx, elem,
2462 (* compute all entries in INTRS for the current datatype *)
2463 (* (given by 'index') *)
2464 (* TODO: we can use Array.modifyi instead once PolyML's *)
2465 (* Array signature conforms to the ML standard *)
2466 (* (int * 'a -> 'a) -> 'a array -> unit *)
2469 val size = Array.length arr
2470 fun modifyi_loop i =
2472 Array.update (arr, i, f (i, Array.sub (arr, i)));
2479 val _ = modifyi (fn (i, _) =>
2480 SOME (compute_array_entry index i)) (lookup INTRS index)
2481 (* 'a Array.array -> 'a list *)
2483 Array.foldr op:: [] arr
2485 (* return the part of 'INTRS' that corresponds to the *)
2486 (* current datatype *)
2487 SOME ((Node o map Option.valOf o toList o lookup INTRS)
2488 index, model', args')
2492 NONE (* not a recursion operator of this datatype *)
2493 ) (DatatypePackage.get_datatypes thy) NONE
2494 | _ => (* head of term is not a constant *)
2497 (* theory -> model -> arguments -> Term.term ->
2498 (interpretation * model * arguments) option *)
2500 (* only an optimization: 'card' could in principle be interpreted with *)
2501 (* interpreters available already (using its definition), but the code *)
2502 (* below is more efficient *)
2504 fun Finite_Set_card_interpreter thy model args t =
2506 Const ("Finite_Set.card",
2507 Type ("fun", [Type ("set", [T]), Type ("nat", [])])) =>
2509 val (i_nat, _, _) = interpret thy model
2510 {maxvars=0, def_eq=false, next_idx=1, bounds=[], wellformed=True}
2511 (Free ("dummy", Type ("nat", [])))
2512 val size_nat = size_of_type i_nat
2513 val (i_set, _, _) = interpret thy model
2514 {maxvars=0, def_eq=false, next_idx=1, bounds=[], wellformed=True}
2515 (Free ("dummy", Type ("set", [T])))
2516 val constants = make_constants i_set
2517 (* interpretation -> int *)
2518 fun number_of_elements (Node xs) =
2519 Library.foldl (fn (n, x) =>
2525 raise REFUTE ("Finite_Set_card_interpreter",
2526 "interpretation for set type does not yield a Boolean"))
2528 | number_of_elements (Leaf _) =
2529 raise REFUTE ("Finite_Set_card_interpreter",
2530 "interpretation for set type is a leaf")
2531 (* takes an interpretation for a set and returns an interpretation *)
2533 (* interpretation -> interpretation *)
2536 val n = number_of_elements i
2539 Leaf ((replicate n False) @ True ::
2540 (replicate (size_nat-n-1) False))
2542 Leaf (replicate size_nat False)
2545 SOME (Node (map card constants), model, args)
2550 (* theory -> model -> arguments -> Term.term ->
2551 (interpretation * model * arguments) option *)
2553 (* only an optimization: 'Finites' could in principle be interpreted with *)
2554 (* interpreters available already (using its definition), but the code *)
2555 (* below is more efficient *)
2557 fun Finite_Set_Finites_interpreter thy model args t =
2559 Const ("Finite_Set.Finites", Type ("set", [Type ("set", [T])])) =>
2561 val (i_set, _, _) = interpret thy model
2562 {maxvars=0, def_eq=false, next_idx=1, bounds=[], wellformed=True}
2563 (Free ("dummy", Type ("set", [T])))
2564 val size_set = size_of_type i_set
2566 (* we only consider finite models anyway, hence EVERY set is in *)
2568 SOME (Node (replicate size_set TT), model, args)
2573 (* theory -> model -> arguments -> Term.term ->
2574 (interpretation * model * arguments) option *)
2576 (* only an optimization: 'finite' could in principle be interpreted with *)
2577 (* interpreters available already (using its definition), but the code *)
2578 (* below is more efficient *)
2580 fun Finite_Set_finite_interpreter thy model args t =
2582 Const ("Finite_Set.finite",
2583 Type ("fun", [Type ("set", [T]), Type ("bool", [])])) $ _ =>
2584 (* we only consider finite models anyway, hence EVERY set is *)
2586 SOME (TT, model, args)
2587 | Const ("Finite_Set.finite",
2588 Type ("fun", [Type ("set", [T]), Type ("bool", [])])) =>
2590 val (i_set, _, _) = interpret thy model
2591 {maxvars=0, def_eq=false, next_idx=1, bounds=[], wellformed=True}
2592 (Free ("dummy", Type ("set", [T])))
2593 val size_set = size_of_type i_set
2595 (* we only consider finite models anyway, hence EVERY set is *)
2597 SOME (Node (replicate size_set TT), model, args)
2602 (* theory -> model -> arguments -> Term.term ->
2603 (interpretation * model * arguments) option *)
2605 (* only an optimization: 'Orderings.less' could in principle be *)
2606 (* interpreted with interpreters available already (using its definition), *)
2607 (* but the code below is more efficient *)
2609 fun Nat_less_interpreter thy model args t =
2611 Const (@{const_name Orderings.less}, Type ("fun", [Type ("nat", []),
2612 Type ("fun", [Type ("nat", []), Type ("bool", [])])])) =>
2614 val (i_nat, _, _) = interpret thy model
2615 {maxvars=0, def_eq=false, next_idx=1, bounds=[], wellformed=True}
2616 (Free ("dummy", Type ("nat", [])))
2617 val size_nat = size_of_type i_nat
2618 (* int -> interpretation *)
2619 (* the 'n'-th nat is not less than the first 'n' nats, while it *)
2620 (* is less than the remaining 'size_nat - n' nats *)
2621 fun less n = Node ((replicate n FF) @ (replicate (size_nat - n) TT))
2623 SOME (Node (map less (1 upto size_nat)), model, args)
2628 (* theory -> model -> arguments -> Term.term ->
2629 (interpretation * model * arguments) option *)
2631 (* only an optimization: 'HOL.plus' could in principle be interpreted with *)
2632 (* interpreters available already (using its definition), but the code *)
2633 (* below is more efficient *)
2635 fun Nat_plus_interpreter thy model args t =
2637 Const (@{const_name HOL.plus}, Type ("fun", [Type ("nat", []),
2638 Type ("fun", [Type ("nat", []), Type ("nat", [])])])) =>
2640 val (i_nat, _, _) = interpret thy model
2641 {maxvars=0, def_eq=false, next_idx=1, bounds=[], wellformed=True}
2642 (Free ("dummy", Type ("nat", [])))
2643 val size_nat = size_of_type i_nat
2644 (* int -> int -> interpretation *)
2647 val element = (m+n)+1
2649 if element > size_nat then
2650 Leaf (replicate size_nat False)
2652 Leaf ((replicate (element-1) False) @ True ::
2653 (replicate (size_nat - element) False))
2656 SOME (Node (map (fn m => Node (map (plus m) (0 upto size_nat-1)))
2657 (0 upto size_nat-1)), model, args)
2662 (* theory -> model -> arguments -> Term.term ->
2663 (interpretation * model * arguments) option *)
2665 (* only an optimization: 'HOL.minus' could in principle be interpreted *)
2666 (* with interpreters available already (using its definition), but the *)
2667 (* code below is more efficient *)
2669 fun Nat_minus_interpreter thy model args t =
2671 Const (@{const_name HOL.minus}, Type ("fun", [Type ("nat", []),
2672 Type ("fun", [Type ("nat", []), Type ("nat", [])])])) =>
2674 val (i_nat, _, _) = interpret thy model
2675 {maxvars=0, def_eq=false, next_idx=1, bounds=[], wellformed=True}
2676 (Free ("dummy", Type ("nat", [])))
2677 val size_nat = size_of_type i_nat
2678 (* int -> int -> interpretation *)
2681 val element = Int.max (m-n, 0) + 1
2683 Leaf ((replicate (element-1) False) @ True ::
2684 (replicate (size_nat - element) False))
2687 SOME (Node (map (fn m => Node (map (minus m) (0 upto size_nat-1)))
2688 (0 upto size_nat-1)), model, args)
2693 (* theory -> model -> arguments -> Term.term ->
2694 (interpretation * model * arguments) option *)
2696 (* only an optimization: 'HOL.times' could in principle be interpreted with *)
2697 (* interpreters available already (using its definition), but the code *)
2698 (* below is more efficient *)
2700 fun Nat_times_interpreter thy model args t =
2702 Const (@{const_name HOL.times}, Type ("fun", [Type ("nat", []),
2703 Type ("fun", [Type ("nat", []), Type ("nat", [])])])) =>
2705 val (i_nat, _, _) = interpret thy model
2706 {maxvars=0, def_eq=false, next_idx=1, bounds=[], wellformed=True}
2707 (Free ("dummy", Type ("nat", [])))
2708 val size_nat = size_of_type i_nat
2709 (* nat -> nat -> interpretation *)
2712 val element = (m*n)+1
2714 if element > size_nat then
2715 Leaf (replicate size_nat False)
2717 Leaf ((replicate (element-1) False) @ True ::
2718 (replicate (size_nat - element) False))
2721 SOME (Node (map (fn m => Node (map (mult m) (0 upto size_nat-1)))
2722 (0 upto size_nat-1)), model, args)
2727 (* theory -> model -> arguments -> Term.term ->
2728 (interpretation * model * arguments) option *)
2730 (* only an optimization: 'append' could in principle be interpreted with *)
2731 (* interpreters available already (using its definition), but the code *)
2732 (* below is more efficient *)
2734 fun List_append_interpreter thy model args t =
2736 Const ("List.append", Type ("fun", [Type ("List.list", [T]), Type ("fun",
2737 [Type ("List.list", [_]), Type ("List.list", [_])])])) =>
2739 val (i_elem, _, _) = interpret thy model
2740 {maxvars=0, def_eq=false, next_idx=1, bounds=[], wellformed=True}
2742 val size_elem = size_of_type i_elem
2743 val (i_list, _, _) = interpret thy model
2744 {maxvars=0, def_eq=false, next_idx=1, bounds=[], wellformed=True}
2745 (Free ("dummy", Type ("List.list", [T])))
2746 val size_list = size_of_type i_list
2747 (* power (a, b) computes a^b, for a>=0, b>=0 *)
2748 (* int * int -> int *)
2749 fun power (a, 0) = 1
2752 let val ab = power(a, b div 2) in ab * ab * power(a, b mod 2) end
2753 (* log (a, b) computes floor(log_a(b)), i.e. the largest integer x *)
2754 (* s.t. a^x <= b, for a>=2, b>=1 *)
2755 (* int * int -> int *)
2758 fun logloop (ax, x) =
2759 if ax > b then x-1 else logloop (a * ax, x+1)
2763 (* nat -> nat -> interpretation *)
2766 (* The following formula depends on the order in which lists are *)
2767 (* enumerated by the 'IDT_constructor_interpreter'. It took me *)
2768 (* a little while to come up with this formula. *)
2769 val element = n + m * (if size_elem = 1 then 1
2770 else power (size_elem, log (size_elem, n+1))) + 1
2772 if element > size_list then
2773 Leaf (replicate size_list False)
2775 Leaf ((replicate (element-1) False) @ True ::
2776 (replicate (size_list - element) False))
2779 SOME (Node (map (fn m => Node (map (append m) (0 upto size_list-1)))
2780 (0 upto size_list-1)), model, args)
2785 (* theory -> model -> arguments -> Term.term ->
2786 (interpretation * model * arguments) option *)
2788 (* only an optimization: 'lfp' could in principle be interpreted with *)
2789 (* interpreters available already (using its definition), but the code *)
2790 (* below is more efficient *)
2792 fun Lfp_lfp_interpreter thy model args t =
2794 Const ("Lfp.lfp", Type ("fun", [Type ("fun",
2795 [Type ("set", [T]), Type ("set", [_])]), Type ("set", [_])])) =>
2797 val (i_elem, _, _) = interpret thy model
2798 {maxvars=0, def_eq=false, next_idx=1, bounds=[], wellformed=True}
2800 val size_elem = size_of_type i_elem
2801 (* the universe (i.e. the set that contains every element) *)
2802 val i_univ = Node (replicate size_elem TT)
2803 (* all sets with elements from type 'T' *)
2804 val (i_set, _, _) = interpret thy model
2805 {maxvars=0, def_eq=false, next_idx=1, bounds=[], wellformed=True}
2806 (Free ("dummy", Type ("set", [T])))
2807 val i_sets = make_constants i_set
2808 (* all functions that map sets to sets *)
2809 val (i_fun, _, _) = interpret thy model {maxvars=0, def_eq=false,
2810 next_idx=1, bounds=[], wellformed=True} (Free ("dummy",
2811 Type ("fun", [Type ("set", [T]), Type ("set", [T])])))
2812 val i_funs = make_constants i_fun
2813 (* "lfp(f) == Inter({u. f(u) <= u})" *)
2814 (* interpretation * interpretation -> bool *)
2815 fun is_subset (Node subs, Node sups) =
2816 List.all (fn (sub, sup) => (sub = FF) orelse (sup = TT))
2818 | is_subset (_, _) =
2819 raise REFUTE ("Lfp_lfp_interpreter",
2820 "is_subset: interpretation for set is not a node")
2821 (* interpretation * interpretation -> interpretation *)
2822 fun intersection (Node xs, Node ys) =
2823 Node (map (fn (x, y) => if x=TT andalso y=TT then TT else FF)
2825 | intersection (_, _) =
2826 raise REFUTE ("Lfp_lfp_interpreter",
2827 "intersection: interpretation for set is not a node")
2828 (* interpretation -> interpretaion *)
2829 fun lfp (Node resultsets) =
2830 foldl (fn ((set, resultset), acc) =>
2831 if is_subset (resultset, set) then
2832 intersection (acc, set)
2834 acc) i_univ (i_sets ~~ resultsets)
2836 raise REFUTE ("Lfp_lfp_interpreter",
2837 "lfp: interpretation for function is not a node")
2839 SOME (Node (map lfp i_funs), model, args)
2844 (* theory -> model -> arguments -> Term.term ->
2845 (interpretation * model * arguments) option *)
2847 (* only an optimization: 'gfp' could in principle be interpreted with *)
2848 (* interpreters available already (using its definition), but the code *)
2849 (* below is more efficient *)
2851 fun Gfp_gfp_interpreter thy model args t =
2853 Const ("Gfp.gfp", Type ("fun", [Type ("fun",
2854 [Type ("set", [T]), Type ("set", [_])]), Type ("set", [_])])) =>
2855 let nonfix union (* because "union" is used below *)
2856 val (i_elem, _, _) = interpret thy model
2857 {maxvars=0, def_eq=false, next_idx=1, bounds=[], wellformed=True}
2859 val size_elem = size_of_type i_elem
2860 (* the universe (i.e. the set that contains every element) *)
2861 val i_univ = Node (replicate size_elem TT)
2862 (* all sets with elements from type 'T' *)
2863 val (i_set, _, _) = interpret thy model
2864 {maxvars=0, def_eq=false, next_idx=1, bounds=[], wellformed=True}
2865 (Free ("dummy", Type ("set", [T])))
2866 val i_sets = make_constants i_set
2867 (* all functions that map sets to sets *)
2868 val (i_fun, _, _) = interpret thy model {maxvars=0, def_eq=false,
2869 next_idx=1, bounds=[], wellformed=True} (Free ("dummy",
2870 Type ("fun", [Type ("set", [T]), Type ("set", [T])])))
2871 val i_funs = make_constants i_fun
2872 (* "gfp(f) == Union({u. u <= f(u)})" *)
2873 (* interpretation * interpretation -> bool *)
2874 fun is_subset (Node subs, Node sups) =
2875 List.all (fn (sub, sup) => (sub = FF) orelse (sup = TT))
2877 | is_subset (_, _) =
2878 raise REFUTE ("Gfp_gfp_interpreter",
2879 "is_subset: interpretation for set is not a node")
2880 (* interpretation * interpretation -> interpretation *)
2881 fun union (Node xs, Node ys) =
2882 Node (map (fn (x,y) => if x=TT orelse y=TT then TT else FF)
2885 raise REFUTE ("Gfp_gfp_interpreter",
2886 "union: interpretation for set is not a node")
2887 (* interpretation -> interpretaion *)
2888 fun gfp (Node resultsets) =
2889 foldl (fn ((set, resultset), acc) =>
2890 if is_subset (set, resultset) then
2893 acc) i_univ (i_sets ~~ resultsets)
2895 raise REFUTE ("Gfp_gfp_interpreter",
2896 "gfp: interpretation for function is not a node")
2898 SOME (Node (map gfp i_funs), model, args)
2903 (* theory -> model -> arguments -> Term.term ->
2904 (interpretation * model * arguments) option *)
2906 (* only an optimization: 'fst' could in principle be interpreted with *)
2907 (* interpreters available already (using its definition), but the code *)
2908 (* below is more efficient *)
2910 fun Product_Type_fst_interpreter thy model args t =
2912 Const ("fst", Type ("fun", [Type ("*", [T, U]), _])) =>
2914 val (iT, _, _) = interpret thy model {maxvars=0, def_eq=false,
2915 next_idx=1, bounds=[], wellformed=True} (Free ("dummy", T))
2916 val is_T = make_constants iT
2917 val (iU, _, _) = interpret thy model {maxvars=0, def_eq=false,
2918 next_idx=1, bounds=[], wellformed=True} (Free ("dummy", U))
2919 val size_U = size_of_type iU
2921 SOME (Node (List.concat (map (replicate size_U) is_T)), model, args)
2926 (* theory -> model -> arguments -> Term.term ->
2927 (interpretation * model * arguments) option *)
2929 (* only an optimization: 'snd' could in principle be interpreted with *)
2930 (* interpreters available already (using its definition), but the code *)
2931 (* below is more efficient *)
2933 fun Product_Type_snd_interpreter thy model args t =
2935 Const ("snd", Type ("fun", [Type ("*", [T, U]), _])) =>
2937 val (iT, _, _) = interpret thy model {maxvars=0, def_eq=false,
2938 next_idx=1, bounds=[], wellformed=True} (Free ("dummy", T))
2939 val size_T = size_of_type iT
2940 val (iU, _, _) = interpret thy model {maxvars=0, def_eq=false,
2941 next_idx=1, bounds=[], wellformed=True} (Free ("dummy", U))
2942 val is_U = make_constants iU
2944 SOME (Node (List.concat (replicate size_T is_U)), model, args)
2950 (* ------------------------------------------------------------------------- *)
2952 (* ------------------------------------------------------------------------- *)
2954 (* theory -> model -> Term.term -> interpretation -> (int -> bool) ->
2957 fun stlc_printer thy model t intr assignment =
2959 (* Term.term -> Term.typ option *)
2960 fun typeof (Free (_, T)) = SOME T
2961 | typeof (Var (_, T)) = SOME T
2962 | typeof (Const (_, T)) = SOME T
2964 (* string -> string *)
2965 fun strip_leading_quote s =
2966 (implode o (fn [] => [] | x::xs => if x="'" then xs else x::xs)
2968 (* Term.typ -> string *)
2969 fun string_of_typ (Type (s, _)) = s
2970 | string_of_typ (TFree (x, _)) = strip_leading_quote x
2971 | string_of_typ (TVar ((x,i), _)) =
2972 strip_leading_quote x ^ string_of_int i
2973 (* interpretation -> int *)
2974 fun index_from_interpretation (Leaf xs) =
2975 find_index (PropLogic.eval assignment) xs
2976 | index_from_interpretation _ =
2977 raise REFUTE ("stlc_printer",
2978 "interpretation for ground type is not a leaf")
2983 Type ("fun", [T1, T2]) =>
2985 (* create all constants of type 'T1' *)
2986 val (i, _, _) = interpret thy model {maxvars=0, def_eq=false,
2987 next_idx=1, bounds=[], wellformed=True} (Free ("dummy", T1))
2988 val constants = make_constants i
2989 (* interpretation list *)
2990 val results = (case intr of
2992 | _ => raise REFUTE ("stlc_printer",
2993 "interpretation for function type is a leaf"))
2994 (* Term.term list *)
2995 val pairs = map (fn (arg, result) =>
2997 (print thy model (Free ("dummy", T1)) arg assignment,
2998 print thy model (Free ("dummy", T2)) result assignment))
2999 (constants ~~ results)
3001 val HOLogic_prodT = HOLogic.mk_prodT (T1, T2)
3002 val HOLogic_setT = HOLogic.mk_setT HOLogic_prodT
3004 val HOLogic_empty_set = Const ("{}", HOLogic_setT)
3005 val HOLogic_insert =
3006 Const ("insert", HOLogic_prodT --> HOLogic_setT --> HOLogic_setT)
3008 SOME (foldr (fn (pair, acc) => HOLogic_insert $ pair $ acc)
3009 HOLogic_empty_set pairs)
3011 | Type ("prop", []) =>
3012 (case index_from_interpretation intr of
3013 ~1 => SOME (HOLogic.mk_Trueprop (Const ("arbitrary", HOLogic.boolT)))
3014 | 0 => SOME (HOLogic.mk_Trueprop HOLogic.true_const)
3015 | 1 => SOME (HOLogic.mk_Trueprop HOLogic.false_const)
3016 | _ => raise REFUTE ("stlc_interpreter",
3017 "illegal interpretation for a propositional value"))
3018 | Type _ => if index_from_interpretation intr = (~1) then
3019 SOME (Const ("arbitrary", T))
3021 SOME (Const (string_of_typ T ^
3022 string_of_int (index_from_interpretation intr), T))
3023 | TFree _ => if index_from_interpretation intr = (~1) then
3024 SOME (Const ("arbitrary", T))
3026 SOME (Const (string_of_typ T ^
3027 string_of_int (index_from_interpretation intr), T))
3028 | TVar _ => if index_from_interpretation intr = (~1) then
3029 SOME (Const ("arbitrary", T))
3031 SOME (Const (string_of_typ T ^
3032 string_of_int (index_from_interpretation intr), T)))
3037 (* theory -> model -> Term.term -> interpretation -> (int -> bool) ->
3040 fun set_printer thy model t intr assignment =
3042 (* Term.term -> Term.typ option *)
3043 fun typeof (Free (_, T)) = SOME T
3044 | typeof (Var (_, T)) = SOME T
3045 | typeof (Const (_, T)) = SOME T
3049 SOME (Type ("set", [T])) =>
3051 (* create all constants of type 'T' *)
3052 val (i, _, _) = interpret thy model {maxvars=0, def_eq=false,
3053 next_idx=1, bounds=[], wellformed=True} (Free ("dummy", T))
3054 val constants = make_constants i
3055 (* interpretation list *)
3056 val results = (case intr of
3058 | _ => raise REFUTE ("set_printer",
3059 "interpretation for set type is a leaf"))
3060 (* Term.term list *)
3061 val elements = List.mapPartial (fn (arg, result) =>
3063 Leaf [fmTrue, fmFalse] =>
3064 if PropLogic.eval assignment fmTrue then
3065 SOME (print thy model (Free ("dummy", T)) arg assignment)
3066 else (* if PropLogic.eval assignment fmFalse then *)
3069 raise REFUTE ("set_printer",
3070 "illegal interpretation for a Boolean value"))
3071 (constants ~~ results)
3073 val HOLogic_setT = HOLogic.mk_setT T
3075 val HOLogic_empty_set = Const ("{}", HOLogic_setT)
3076 val HOLogic_insert =
3077 Const ("insert", T --> HOLogic_setT --> HOLogic_setT)
3079 SOME (Library.foldl (fn (acc, elem) => HOLogic_insert $ elem $ acc)
3080 (HOLogic_empty_set, elements))
3086 (* theory -> model -> Term.term -> interpretation -> (int -> bool) ->
3089 fun IDT_printer thy model t intr assignment =
3091 (* Term.term -> Term.typ option *)
3092 fun typeof (Free (_, T)) = SOME T
3093 | typeof (Var (_, T)) = SOME T
3094 | typeof (Const (_, T)) = SOME T
3098 SOME (Type (s, Ts)) =>
3099 (case DatatypePackage.get_datatype thy s of
3100 SOME info => (* inductive datatype *)
3102 val (typs, _) = model
3103 val index = #index info
3104 val descr = #descr info
3105 val (_, dtyps, constrs) = lookup descr index
3106 val typ_assoc = dtyps ~~ Ts
3107 (* sanity check: every element in 'dtyps' must be a 'DtTFree' *)
3108 val _ = (if Library.exists (fn d =>
3109 case d of DatatypeAux.DtTFree _ => false | _ => true) dtyps
3111 raise REFUTE ("IDT_printer", "datatype argument (for type " ^
3112 Sign.string_of_typ thy (Type (s, Ts)) ^ ") is not a variable")
3115 (* the index of the element in the datatype *)
3116 val element = (case intr of
3117 Leaf xs => find_index (PropLogic.eval assignment) xs
3118 | Node _ => raise REFUTE ("IDT_printer",
3119 "interpretation is not a leaf"))
3122 SOME (Const ("arbitrary", Type (s, Ts)))
3124 (* takes a datatype constructor, and if for some arguments this *)
3125 (* constructor generates the datatype's element that is given by *)
3126 (* 'element', returns the constructor (as a term) as well as the *)
3127 (* indices of the arguments *)
3128 (* string * DatatypeAux.dtyp list ->
3129 (Term.term * int list) option *)
3130 fun get_constr_args (cname, cargs) =
3132 val cTerm = Const (cname,
3133 map (typ_of_dtyp descr typ_assoc) cargs ---> Type (s, Ts))
3134 val (iC, _, _) = interpret thy (typs, []) {maxvars=0,
3135 def_eq=false, next_idx=1, bounds=[], wellformed=True} cTerm
3136 (* interpretation -> int list option *)
3137 fun get_args (Leaf xs) =
3138 if find_index_eq True xs = element then
3142 | get_args (Node xs) =
3144 (* interpretation * int -> int list option *)
3145 fun search ([], _) =
3147 | search (x::xs, n) =
3149 SOME result => SOME (n::result)
3150 | NONE => search (xs, n+1))
3155 Option.map (fn args => (cTerm, cargs, args)) (get_args iC)
3157 (* Term.term * DatatypeAux.dtyp list * int list *)
3158 val (cTerm, cargs, args) =
3159 (case get_first get_constr_args constrs of
3161 | NONE => raise REFUTE ("IDT_printer",
3162 "no matching constructor found for element " ^
3163 string_of_int element))
3164 val argsTerms = map (fn (d, n) =>
3166 val dT = typ_of_dtyp descr typ_assoc d
3167 val (i, _, _) = interpret thy (typs, []) {maxvars=0,
3168 def_eq=false, next_idx=1, bounds=[], wellformed=True}
3169 (Free ("dummy", dT))
3170 (* we only need the n-th element of this list, so there *)
3171 (* might be a more efficient implementation that does not *)
3172 (* generate all constants *)
3173 val consts = make_constants i
3175 print thy (typs, []) (Free ("dummy", dT))
3176 (List.nth (consts, n)) assignment
3177 end) (cargs ~~ args)
3179 SOME (Library.foldl op$ (cTerm, argsTerms))
3182 | NONE => (* not an inductive datatype *)
3184 | _ => (* a (free or schematic) type variable *)
3189 (* ------------------------------------------------------------------------- *)
3190 (* use 'setup Refute.setup' in an Isabelle theory to initialize the 'Refute' *)
3192 (* ------------------------------------------------------------------------- *)
3194 (* ------------------------------------------------------------------------- *)
3195 (* Note: the interpreters and printers are used in reverse order; however, *)
3196 (* an interpreter that can handle non-atomic terms ends up being *)
3197 (* applied before the 'stlc_interpreter' breaks the term apart into *)
3198 (* subterms that are then passed to other interpreters! *)
3199 (* ------------------------------------------------------------------------- *)
3201 (* (theory -> theory) list *)
3204 add_interpreter "stlc" stlc_interpreter #>
3205 add_interpreter "Pure" Pure_interpreter #>
3206 add_interpreter "HOLogic" HOLogic_interpreter #>
3207 add_interpreter "set" set_interpreter #>
3208 add_interpreter "IDT" IDT_interpreter #>
3209 add_interpreter "IDT_constructor" IDT_constructor_interpreter #>
3210 add_interpreter "IDT_recursion" IDT_recursion_interpreter #>
3211 add_interpreter "Finite_Set.card" Finite_Set_card_interpreter #>
3212 add_interpreter "Finite_Set.Finites" Finite_Set_Finites_interpreter #>
3213 add_interpreter "Finite_Set.finite" Finite_Set_finite_interpreter #>
3214 add_interpreter "Nat_Orderings.less" Nat_less_interpreter #>
3215 add_interpreter "Nat_HOL.plus" Nat_plus_interpreter #>
3216 add_interpreter "Nat_HOL.minus" Nat_minus_interpreter #>
3217 add_interpreter "Nat_HOL.times" Nat_times_interpreter #>
3218 add_interpreter "List.append" List_append_interpreter #>
3219 add_interpreter "Lfp.lfp" Lfp_lfp_interpreter #>
3220 add_interpreter "Gfp.gfp" Gfp_gfp_interpreter #>
3221 add_interpreter "fst" Product_Type_fst_interpreter #>
3222 add_interpreter "snd" Product_Type_snd_interpreter #>
3223 add_printer "stlc" stlc_printer #>
3224 add_printer "set" set_printer #>
3225 add_printer "IDT" IDT_printer;
3227 end (* structure Refute *)