src/ZF/indrule.ML
 author clasohm Tue, 30 Jan 1996 13:42:57 +0100 changeset 1461 6bcb44e4d6e5 parent 1418 f5f97ee67cbb child 1736 fe0b459273f2 permissions -rw-r--r--
expanded tabs
```
(*  Title:      ZF/indrule.ML
ID:         \$Id\$
Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright   1994  University of Cambridge

Induction rule module -- for Inductive/Coinductive Definitions

Proves a strong induction rule and a mutual induction rule
*)

signature INDRULE =
sig
val induct        : thm                       (*main induction rule*)
val mutual_induct : thm                       (*mutual induction rule*)
end;

functor Indrule_Fun
(structure Inductive: sig include INDUCTIVE_ARG INDUCTIVE_I end
and Pr: PR and Su : SU and
Intr_elim: sig include INTR_ELIM INTR_ELIM_AUX end) : INDRULE  =
let

val sign = sign_of Inductive.thy;

val (Const(_,recT),rec_params) = strip_comb (hd Inductive.rec_tms);

val big_rec_name = space_implode "_" Intr_elim.rec_names;
val big_rec_tm = list_comb(Const(big_rec_name,recT), rec_params);

val _ = writeln "  Proving the induction rule...";

(*** Prove the main induction rule ***)

val pred_name = "P";            (*name for predicate variables*)

val big_rec_def::part_rec_defs = Intr_elim.defs;

(*Used to make induction rules;
ind_alist = [(rec_tm1,pred1),...]  -- associates predicates with rec ops
prem is a premise of an intr rule*)
fun add_induct_prem ind_alist (prem as Const("Trueprop",_) \$
(Const("op :",_)\$t\$X), iprems) =
(case gen_assoc (op aconv) (ind_alist, X) of
Some pred => prem :: Ind_Syntax.mk_tprop (pred \$ t) :: iprems
| None => (*possibly membership in M(rec_tm), for M monotone*)
let fun mk_sb (rec_tm,pred) =
(rec_tm, Ind_Syntax.Collect_const\$rec_tm\$pred)
in  subst_free (map mk_sb ind_alist) prem :: iprems  end)
| add_induct_prem ind_alist (prem,iprems) = prem :: iprems;

(*Make a premise of the induction rule.*)
fun induct_prem ind_alist intr =
let val quantfrees = map dest_Free (term_frees intr \\ rec_params)
val iprems = foldr (add_induct_prem ind_alist)
(Logic.strip_imp_prems intr,[])
val (t,X) = Ind_Syntax.rule_concl intr
val (Some pred) = gen_assoc (op aconv) (ind_alist, X)
val concl = Ind_Syntax.mk_tprop (pred \$ t)
in list_all_free (quantfrees, Logic.list_implies (iprems,concl)) end
handle Bind => error"Recursion term not found in conclusion";

(*Reduces backtracking by delivering the correct premise to each goal.
Intro rules with extra Vars in premises still cause some backtracking *)
fun ind_tac [] 0 = all_tac
| ind_tac(prem::prems) i =
DEPTH_SOLVE_1 (ares_tac [prem, refl] i) THEN
ind_tac prems (i-1);

val pred = Free(pred_name, Ind_Syntax.iT --> Ind_Syntax.oT);

val ind_prems = map (induct_prem (map (rpair pred) Inductive.rec_tms))
Inductive.intr_tms;

val quant_induct =
prove_goalw_cterm part_rec_defs
(cterm_of sign
(Logic.list_implies (ind_prems,
Ind_Syntax.mk_tprop (Ind_Syntax.mk_all_imp(big_rec_tm,pred)))))
(fn prems =>
[rtac (impI RS allI) 1,
DETERM (etac Intr_elim.raw_induct 1),
(*Push Part inside Collect*)
asm_full_simp_tac (FOL_ss addsimps [Part_Collect]) 1,
REPEAT (FIRSTGOAL (eresolve_tac [CollectE, exE, conjE, disjE] ORELSE'
hyp_subst_tac)),
ind_tac (rev prems) (length prems) ]);

(*** Prove the simultaneous induction rule ***)

(*Make distinct predicates for each inductive set*)

(*Sigmas and Cartesian products may nest ONLY to the right!*)
fun mk_pred_typ (t \$ A \$ Abs(_,_,B)) =
if t = Pr.sigma  then  Ind_Syntax.iT --> mk_pred_typ B
else  Ind_Syntax.iT --> Ind_Syntax.oT
| mk_pred_typ _           =  Ind_Syntax.iT --> Ind_Syntax.oT

(*For testing whether the inductive set is a relation*)
fun is_sigma (t\$_\$_) = (t = Pr.sigma)
| is_sigma _       =  false;

(*Given a recursive set and its domain, return the "fsplit" predicate
and a conclusion for the simultaneous induction rule.
NOTE.  This will not work for mutually recursive predicates.  Previously
a summand 'domt' was also an argument, but this required the domain of
mutual recursion to invariably be a disjoint sum.*)
fun mk_predpair rec_tm =
let val rec_name = (#1 o dest_Const o head_of) rec_tm
val T = mk_pred_typ Inductive.dom_sum
val pfree = Free(pred_name ^ "_" ^ rec_name, T)
val frees = mk_frees "za" (binder_types T)
val qconcl =
foldr Ind_Syntax.mk_all (frees,
Ind_Syntax.imp \$
(Ind_Syntax.mem_const \$ foldr1 (app Pr.pair) frees \$
rec_tm)
\$ (list_comb (pfree,frees)))
in  (Ind_Syntax.ap_split Pr.fsplit_const pfree (binder_types T),
qconcl)
end;

val (preds,qconcls) = split_list (map mk_predpair Inductive.rec_tms);

(*Used to form simultaneous induction lemma*)
fun mk_rec_imp (rec_tm,pred) =
Ind_Syntax.imp \$ (Ind_Syntax.mem_const \$ Bound 0 \$ rec_tm) \$
(pred \$ Bound 0);

(*To instantiate the main induction rule*)
val induct_concl =
Ind_Syntax.mk_tprop(Ind_Syntax.mk_all_imp(big_rec_tm,
Abs("z", Ind_Syntax.iT,
fold_bal (app Ind_Syntax.conj)
(map mk_rec_imp (Inductive.rec_tms~~preds)))))
and mutual_induct_concl =
Ind_Syntax.mk_tprop(fold_bal (app Ind_Syntax.conj) qconcls);

val lemma = (*makes the link between the two induction rules*)
prove_goalw_cterm part_rec_defs
(cterm_of sign (Logic.mk_implies (induct_concl,mutual_induct_concl)))
(fn prems =>
[cut_facts_tac prems 1,
REPEAT (eresolve_tac [asm_rl, conjE, PartE, mp] 1
ORELSE resolve_tac [allI, impI, conjI, Part_eqI] 1
ORELSE dresolve_tac [spec, mp, Pr.fsplitD] 1)]);

(*Mutual induction follows by freeness of Inl/Inr.*)

(*Simplification largely reduces the mutual induction rule to the
standard rule*)
val mut_ss =
FOL_ss addsimps   [Su.distinct, Su.distinct', Su.inl_iff, Su.inr_iff];

val all_defs = Inductive.con_defs @ part_rec_defs;

(*Removes Collects caused by M-operators in the intro rules.  It is very
hard to simplify
list({v: tf. (v : t --> P_t(v)) & (v : f --> P_f(v))})
where t==Part(tf,Inl) and f==Part(tf,Inr) to  list({v: tf. P_t(v)}).
Instead the following rules extract the relevant conjunct.
*)
val cmonos = [subset_refl RS Collect_mono] RL Inductive.monos RLN (2,[rev_subsetD]);

(*Avoids backtracking by delivering the correct premise to each goal*)
fun mutual_ind_tac [] 0 = all_tac
| mutual_ind_tac(prem::prems) i =
DETERM
(SELECT_GOAL
(
(*Simplify the assumptions and goal by unfolding Part and
using freeness of the Sum constructors; proves all but one
rewrite_goals_tac all_defs  THEN
simp_tac (mut_ss addsimps [Part_iff]) 1  THEN
IF_UNSOLVED (*simp_tac may have finished it off!*)
((*simplify assumptions, but don't accept new rewrite rules!*)
asm_full_simp_tac (mut_ss setmksimps (fn _=>[])) 1  THEN
(*unpackage and use "prem" in the corresponding place*)
REPEAT (rtac impI 1)  THEN
rtac (rewrite_rule all_defs prem) 1  THEN
(*prem must not be REPEATed below: could loop!*)
DEPTH_SOLVE (FIRSTGOAL (ares_tac [impI] ORELSE'
eresolve_tac (conjE::mp::cmonos))))
) i)
THEN mutual_ind_tac prems (i-1);

val _ = writeln "  Proving the mutual induction rule...";

val mutual_induct_fsplit =
prove_goalw_cterm []
(cterm_of sign
(Logic.list_implies
(map (induct_prem (Inductive.rec_tms~~preds)) Inductive.intr_tms,
mutual_induct_concl)))
(fn prems =>
[rtac (quant_induct RS lemma) 1,
mutual_ind_tac (rev prems) (length prems)]);

(*Attempts to remove all occurrences of fsplit*)
val fsplit_tac =
REPEAT (SOMEGOAL (FIRST' [rtac Pr.fsplitI,
dtac Pr.fsplitD,
etac Pr.fsplitE,  (*apparently never used!*)
bound_hyp_subst_tac]))
THEN prune_params_tac

in
struct
(*strip quantifier*)
val induct = standard (quant_induct RS spec RSN (2,rev_mp));

(*Just "True" unless significantly different from induct, with mutual
recursion or because it involves tuples.  This saves storage.*)
val mutual_induct =
if length Intr_elim.rec_names > 1 orelse
is_sigma Inductive.dom_sum
then rule_by_tactic fsplit_tac mutual_induct_fsplit
else TrueI;
end
end;
```