src/HOL/Tools/datatype_abs_proofs.ML
author berghofe
Fri, 16 Oct 1998 18:54:55 +0200
changeset 5661 6ecb6ea25f19
parent 5578 7de426cf179c
child 5891 92e0f5e6fd17
permissions -rw-r--r--
- Changed structure of name spaces - Proofs for datatypes with unneeded parameters are working now - added additional parameter flat_names - added quiet_mode flag

(*  Title:      HOL/Tools/datatype_abs_proofs.ML
    ID:         $Id$
    Author:     Stefan Berghofer
    Copyright   1998  TU Muenchen

Proofs and defintions independent of concrete representation
of datatypes  (i.e. requiring only abstract properties such as
injectivity / distinctness of constructors and induction)

 - case distinction (exhaustion) theorems
 - characteristic equations for primrec combinators
 - characteristic equations for case combinators
 - distinctness of constructors (external version)
 - equations for splitting "P (case ...)" expressions
 - datatype size function
 - "nchotomy" and "case_cong" theorems for TFL

*)

signature DATATYPE_ABS_PROOFS =
sig
  val prove_casedist_thms : string list -> (int * (string * DatatypeAux.dtyp list *
    (string * DatatypeAux.dtyp list) list)) list list -> (string * sort) list ->
      thm -> theory -> theory * thm list
  val prove_primrec_thms : bool -> string list -> (int * (string * DatatypeAux.dtyp list *
    (string * DatatypeAux.dtyp list) list)) list list -> (string * sort) list ->
      DatatypeAux.datatype_info Symtab.table -> thm list list -> thm list list ->
        thm -> theory -> theory * string list * thm list
  val prove_case_thms : bool -> string list -> (int * (string * DatatypeAux.dtyp list *
    (string * DatatypeAux.dtyp list) list)) list list -> (string * sort) list ->
      string list -> thm list -> theory -> theory * string list * thm list list
  val prove_distinctness_thms : bool -> string list -> (int * (string * DatatypeAux.dtyp list *
    (string * DatatypeAux.dtyp list) list)) list list -> (string * sort) list ->
      thm list list -> thm list list -> theory -> theory * thm list list
  val prove_split_thms : string list -> (int * (string * DatatypeAux.dtyp list *
    (string * DatatypeAux.dtyp list) list)) list list -> (string * sort) list ->
      thm list list -> thm list list -> thm list -> thm list list -> theory ->
        theory * (thm * thm) list
  val prove_size_thms : bool -> string list -> (int * (string * DatatypeAux.dtyp list *
    (string * DatatypeAux.dtyp list) list)) list list -> (string * sort) list ->
      string list -> thm list -> theory -> theory * thm list
  val prove_nchotomys : string list -> (int * (string * DatatypeAux.dtyp list *
    (string * DatatypeAux.dtyp list) list)) list list -> (string * sort) list ->
      thm list -> theory -> theory * thm list
  val prove_case_congs : string list -> (int * (string * DatatypeAux.dtyp list *
    (string * DatatypeAux.dtyp list) list)) list list -> (string * sort) list ->
      thm list -> thm list list -> theory -> theory * thm list
end;

structure DatatypeAbsProofs : DATATYPE_ABS_PROOFS =
struct

open DatatypeAux;

val thin = read_instantiate_sg (sign_of Set.thy) [("V", "?X : ?Y")] thin_rl;

val (_ $ (_ $ (_ $ (distinct_f $ _) $ _))) = hd (prems_of distinct_lemma);

(************************ case distinction theorems ***************************)

fun prove_casedist_thms new_type_names descr sorts induct thy =
  let
    val _ = message "Proving case distinction theorems...";

    val descr' = flat descr;
    val recTs = get_rec_types descr' sorts;
    val newTs = take (length (hd descr), recTs);

    val induct_Ps = map head_of (dest_conj (HOLogic.dest_Trueprop (concl_of induct)));

    fun prove_casedist_thm ((i, t), T) =
      let
        val dummyPs = map (fn (Var (_, Type (_, [T', T'']))) =>
          Abs ("z", T', Const ("True", T''))) induct_Ps;
        val P = Abs ("z", T, HOLogic.imp $ HOLogic.mk_eq (Var (("a", 0), T), Bound 0) $
          Var (("P", 0), HOLogic.boolT))
        val insts = take (i, dummyPs) @ (P::(drop (i + 1, dummyPs)));
        val cert = cterm_of (sign_of thy);
        val insts' = (map cert induct_Ps) ~~ (map cert insts);
        val induct' = refl RS ((nth_elem (i,
          split_conj_thm (cterm_instantiate insts' induct))) RSN (2, rev_mp))

      in prove_goalw_cterm [] (cert t) (fn prems =>
        [rtac induct' 1,
         REPEAT (rtac TrueI 1),
         REPEAT ((rtac impI 1) THEN (eresolve_tac prems 1)),
         REPEAT (rtac TrueI 1)])
      end;

    val casedist_thms = map prove_casedist_thm ((0 upto (length newTs - 1)) ~~
      (DatatypeProp.make_casedists descr sorts) ~~ newTs)

  in
    (store_thms "exhaust" new_type_names casedist_thms thy, casedist_thms)
  end;

(*************************** primrec combinators ******************************)

fun prove_primrec_thms flat_names new_type_names descr sorts
    (dt_info : datatype_info Symtab.table) constr_inject dist_rewrites induct thy =
  let
    val _ = message "Constructing primrec combinators...";

    val big_name = space_implode "_" new_type_names;
    val thy0 = add_path flat_names big_name thy;

    val descr' = flat descr;
    val recTs = get_rec_types descr' sorts;
    val used = foldr add_typ_tfree_names (recTs, []);
    val newTs = take (length (hd descr), recTs);

    val induct_Ps = map head_of (dest_conj (HOLogic.dest_Trueprop (concl_of induct)));

    val big_rec_name' = big_name ^ "_rec_set";
    val rec_set_names = map (Sign.full_name (sign_of thy0))
      (if length descr' = 1 then [big_rec_name'] else
        (map ((curry (op ^) (big_rec_name' ^ "_")) o string_of_int)
          (1 upto (length descr'))));

    val rec_result_Ts = map TFree (variantlist (replicate (length descr') "'t", used) ~~
      replicate (length descr') HOLogic.termS);

    val reccomb_fn_Ts = flat (map (fn (i, (_, _, constrs)) =>
      map (fn (_, cargs) =>
        let
          val recs = filter is_rec_type cargs;
          val argTs = (map (typ_of_dtyp descr' sorts) cargs) @
            (map (fn r => nth_elem (dest_DtRec r, rec_result_Ts)) recs)
        in argTs ---> nth_elem (i, rec_result_Ts)
        end) constrs) descr');

    val rec_set_Ts = map (fn (T1, T2) => reccomb_fn_Ts ---> HOLogic.mk_setT
      (HOLogic.mk_prodT (T1, T2))) (recTs ~~ rec_result_Ts);

    val rec_fns = map (uncurry (mk_Free "f"))
      (reccomb_fn_Ts ~~ (1 upto (length reccomb_fn_Ts)));
    val rec_sets = map (fn c => list_comb (Const c, rec_fns))
      (rec_set_names ~~ rec_set_Ts);

    (* introduction rules for graph of primrec function *)

    fun make_rec_intr T set_name ((rec_intr_ts, l), (cname, cargs)) =
      let
        fun mk_prem (dt, (j, k, prems, t1s, t2s)) =
          let
            val T = typ_of_dtyp descr' sorts dt;
            val free1 = mk_Free "x" T j
          in (case dt of
             DtRec m =>
               let val free2 = mk_Free "y" (nth_elem (m, rec_result_Ts)) k
               in (j + 1, k + 1, (HOLogic.mk_Trueprop (HOLogic.mk_mem
                 (HOLogic.mk_prod (free1, free2), nth_elem (m, rec_sets))))::prems,
                   free1::t1s, free2::t2s)
               end
           | _ => (j + 1, k, prems, free1::t1s, t2s))
          end;

        val Ts = map (typ_of_dtyp descr' sorts) cargs;
        val (_, _, prems, t1s, t2s) = foldr mk_prem (cargs, (1, 1, [], [], []))

      in (rec_intr_ts @ [Logic.list_implies (prems, HOLogic.mk_Trueprop (HOLogic.mk_mem
        (HOLogic.mk_prod (list_comb (Const (cname, Ts ---> T), t1s),
          list_comb (nth_elem (l, rec_fns), t1s @ t2s)), set_name)))], l + 1)
      end;

    val (rec_intr_ts, _) = foldl (fn (x, ((d, T), set_name)) =>
      foldl (make_rec_intr T set_name) (x, #3 (snd d)))
        (([], 0), descr' ~~ recTs ~~ rec_sets);

    val (thy1, {intrs = rec_intrs, elims = rec_elims, ...}) =
      setmp InductivePackage.quiet_mode (!quiet_mode)
        (InductivePackage.add_inductive_i false true big_rec_name' false false true
           rec_sets rec_intr_ts [] []) thy0;

    (* prove uniqueness and termination of primrec combinators *)

    val _ = message "Proving termination and uniqueness of primrec functions...";

    fun mk_unique_tac ((tac, intrs), ((((i, (tname, _, constrs)), elim), T), T')) =
      let
        val distinct_tac = (etac Pair_inject 1) THEN
          (if i < length newTs then
             full_simp_tac (HOL_ss addsimps (nth_elem (i, dist_rewrites))) 1
           else full_simp_tac (HOL_ss addsimps
             ((#distinct (the (Symtab.lookup (dt_info, tname)))) @
               [Suc_Suc_eq, Suc_not_Zero, Zero_not_Suc])) 1);

        val inject = map (fn r => r RS iffD1)
          (if i < length newTs then nth_elem (i, constr_inject)
            else #inject (the (Symtab.lookup (dt_info, tname))));

        fun mk_unique_constr_tac n ((tac, intr::intrs, j), (cname, cargs)) =
          let
            val k = length (filter is_rec_type cargs)

          in (EVERY [DETERM tac,
                REPEAT (etac ex1E 1), rtac ex1I 1,
                DEPTH_SOLVE_1 (ares_tac [intr] 1),
                REPEAT_DETERM_N k (etac thin 1),
                etac elim 1,
                REPEAT_DETERM_N j distinct_tac,
                etac Pair_inject 1, TRY (dresolve_tac inject 1),
                REPEAT (etac conjE 1), hyp_subst_tac 1,
                REPEAT (etac allE 1),
                REPEAT (dtac mp 1 THEN atac 1),
                TRY (hyp_subst_tac 1),
                rtac refl 1,
                REPEAT_DETERM_N (n - j - 1) distinct_tac],
              intrs, j + 1)
          end;

        val (tac', intrs', _) = foldl (mk_unique_constr_tac (length constrs))
          ((tac, intrs, 0), constrs);

      in (tac', intrs') end;

    val rec_unique_thms =
      let
        val rec_unique_ts = map (fn (((set_t, T1), T2), i) =>
          Const ("Ex1", (T2 --> HOLogic.boolT) --> HOLogic.boolT) $
            absfree ("y", T2, HOLogic.mk_mem (HOLogic.mk_prod
              (mk_Free "x" T1 i, Free ("y", T2)), set_t)))
                (rec_sets ~~ recTs ~~ rec_result_Ts ~~ (1 upto length recTs));
        val cert = cterm_of (sign_of thy1)
        val insts = map (fn ((i, T), t) => absfree ("x" ^ (string_of_int i), T, t))
          ((1 upto length recTs) ~~ recTs ~~ rec_unique_ts);
        val induct' = cterm_instantiate ((map cert induct_Ps) ~~
          (map cert insts)) induct;
        val (tac, _) = foldl mk_unique_tac
          ((rtac induct' 1, rec_intrs), descr' ~~ rec_elims ~~ recTs ~~ rec_result_Ts)

      in split_conj_thm (prove_goalw_cterm []
        (cert (HOLogic.mk_Trueprop (mk_conj rec_unique_ts))) (K [tac]))
      end;

    val rec_total_thms = map (fn r =>
      r RS ex1_implies_ex RS (select_eq_Ex RS iffD2)) rec_unique_thms;

    (* define primrec combinators *)

    val big_reccomb_name = (space_implode "_" new_type_names) ^ "_rec";
    val reccomb_names = map (Sign.full_name (sign_of thy1))
      (if length descr' = 1 then [big_reccomb_name] else
        (map ((curry (op ^) (big_reccomb_name ^ "_")) o string_of_int)
          (1 upto (length descr'))));
    val reccombs = map (fn ((name, T), T') => list_comb
      (Const (name, reccomb_fn_Ts @ [T] ---> T'), rec_fns))
        (reccomb_names ~~ recTs ~~ rec_result_Ts);

    val thy2 = thy1 |>
      Theory.add_consts_i (map (fn ((name, T), T') =>
        (Sign.base_name name, reccomb_fn_Ts @ [T] ---> T', NoSyn))
          (reccomb_names ~~ recTs ~~ rec_result_Ts)) |>
      Theory.add_defs_i (map (fn ((((name, comb), set), T), T') =>
        ((Sign.base_name name) ^ "_def", Logic.mk_equals
          (comb $ Free ("x", T),
           Const ("Eps", (T' --> HOLogic.boolT) --> T') $ absfree ("y", T',
             HOLogic.mk_mem (HOLogic.mk_prod (Free ("x", T), Free ("y", T')), set)))))
               (reccomb_names ~~ reccombs ~~ rec_sets ~~ recTs ~~ rec_result_Ts)) |>
      parent_path flat_names;

    val reccomb_defs = map ((get_def thy2) o Sign.base_name) reccomb_names;

    (* prove characteristic equations for primrec combinators *)

    val _ = message "Proving characteristic theorems for primrec combinators..."

    val rec_thms = map (fn t => prove_goalw_cterm reccomb_defs
      (cterm_of (sign_of thy2) t) (fn _ =>
        [rtac select1_equality 1,
         resolve_tac rec_unique_thms 1,
         resolve_tac rec_intrs 1,
         REPEAT (resolve_tac rec_total_thms 1)]))
           (DatatypeProp.make_primrecs new_type_names descr sorts thy2)

  in
    (thy2 |> Theory.add_path (space_implode "_" new_type_names) |>
             PureThy.add_tthmss [(("recs", map Attribute.tthm_of rec_thms), [])] |>
             Theory.parent_path,
     reccomb_names, rec_thms)
  end;

(***************************** case combinators *******************************)

fun prove_case_thms flat_names new_type_names descr sorts reccomb_names primrec_thms thy =
  let
    val _ = message "Proving characteristic theorems for case combinators...";

    val thy1 = add_path flat_names (space_implode "_" new_type_names) thy;

    val descr' = flat descr;
    val recTs = get_rec_types descr' sorts;
    val used = foldr add_typ_tfree_names (recTs, []);
    val newTs = take (length (hd descr), recTs);
    val T' = TFree (variant used "'t", HOLogic.termS);

    val case_dummy_fns = map (fn (_, (_, _, constrs)) => map (fn (_, cargs) =>
      let
        val Ts = map (typ_of_dtyp descr' sorts) cargs;
        val Ts' = replicate (length (filter is_rec_type cargs)) T'
      in Const ("arbitrary", Ts @ Ts' ---> T')
      end) constrs) descr';

    val case_names = map (fn s =>
      Sign.full_name (sign_of thy1) (s ^ "_case")) new_type_names;

    (* define case combinators via primrec combinators *)

    val (case_defs, thy2) = foldl (fn ((defs, thy),
      ((((i, (_, _, constrs)), T), name), recname)) =>
        let
          val (fns1, fns2) = ListPair.unzip (map (fn ((_, cargs), j) =>
            let
              val Ts = map (typ_of_dtyp descr' sorts) cargs;
              val Ts' = Ts @ (replicate (length (filter is_rec_type cargs)) T');
              val frees' = map (uncurry (mk_Free "x")) (Ts' ~~ (1 upto length Ts'));
              val frees = take (length cargs, frees');
              val free = mk_Free "f" (Ts ---> T') j
            in
             (free, list_abs_free (map dest_Free frees',
               list_comb (free, frees)))
            end) (constrs ~~ (1 upto length constrs)));

          val caseT = (map (snd o dest_Free) fns1) @ [T] ---> T';
          val fns = (flat (take (i, case_dummy_fns))) @
            fns2 @ (flat (drop (i + 1, case_dummy_fns)));
          val reccomb = Const (recname, (map fastype_of fns) @ [T] ---> T');
          val decl = (Sign.base_name name, caseT, NoSyn);
          val def = ((Sign.base_name name) ^ "_def",
            Logic.mk_equals (list_comb (Const (name, caseT), fns1),
              list_comb (reccomb, (flat (take (i, case_dummy_fns))) @
                fns2 @ (flat (drop (i + 1, case_dummy_fns))) )));
          val thy' = thy |>
            Theory.add_consts_i [decl] |> Theory.add_defs_i [def];

        in (defs @ [get_def thy' (Sign.base_name name)], thy')
        end) (([], thy1), (hd descr) ~~ newTs ~~ case_names ~~
          (take (length newTs, reccomb_names)));

    val case_thms = map (map (fn t => prove_goalw_cterm (case_defs @
      (map mk_meta_eq primrec_thms)) (cterm_of (sign_of thy2) t)
        (fn _ => [rtac refl 1])))
          (DatatypeProp.make_cases new_type_names descr sorts thy2);

    val thy3 = thy2 |> Theory.add_trrules_i
      (DatatypeProp.make_case_trrules new_type_names descr) |>
      parent_path flat_names;

  in
    (store_thmss "cases" new_type_names case_thms thy3, case_names, case_thms)
  end;

(************************ distinctness of constructors ************************)

fun prove_distinctness_thms flat_names new_type_names descr sorts dist_rewrites case_thms thy =
  let
    val thy1 = add_path flat_names (space_implode "_" new_type_names) thy;

    val descr' = flat descr;
    val recTs = get_rec_types descr' sorts;
    val newTs = take (length (hd descr), recTs);

    (*--------------------------------------------------------------------*)
    (* define t_ord - functions for proving distinctness of constructors: *)
    (*  t_ord C_i ... = i                                                 *)
    (*--------------------------------------------------------------------*)

    fun define_ord ((thy, ord_defs), (((_, (_, _, constrs)), T), tname)) =
      if length constrs < DatatypeProp.dtK then (thy, ord_defs)
      else
        let
          val Tss = map ((map (typ_of_dtyp descr' sorts)) o snd) constrs;
          val ts = map HOLogic.mk_nat (0 upto length constrs - 1);
          val mk_abs = foldr (fn (T, t') => Abs ("x", T, t'));
          val fs = map mk_abs (Tss ~~ ts);
          val fTs = map (fn Ts => Ts ---> HOLogic.natT) Tss;
          val ord_name = Sign.full_name (sign_of thy) (tname ^ "_ord");
          val case_name = Sign.intern_const (sign_of thy) (tname ^ "_case");
          val ordT = T --> HOLogic.natT;
          val caseT = fTs ---> ordT;
          val defpair = (tname ^ "_ord_def", Logic.mk_equals
            (Const (ord_name, ordT), list_comb (Const (case_name, caseT), fs)));
          val thy' = thy |>
            Theory.add_consts_i [(tname ^ "_ord", ordT, NoSyn)] |>
            Theory.add_defs_i [defpair];
          val def = get_def thy' (tname ^ "_ord")

        in (thy', ord_defs @ [def]) end;

    val (thy2, ord_defs) =
      foldl define_ord ((thy1, []), (hd descr) ~~ newTs ~~ new_type_names);

    (**** number of constructors < dtK ****)

    fun prove_distinct_thms _ [] = []
      | prove_distinct_thms dist_rewrites' (t::_::ts) =
          let
            val dist_thm = prove_goalw_cterm [] (cterm_of (sign_of thy2) t) (fn _ =>
              [simp_tac (HOL_ss addsimps dist_rewrites') 1])
          in dist_thm::(standard (dist_thm RS not_sym))::
            (prove_distinct_thms dist_rewrites' ts)
          end;

    val distinct_thms = map (fn ((((_, (_, _, constrs)), ts),
      dist_rewrites'), case_thms) =>
        if length constrs < DatatypeProp.dtK then
          prove_distinct_thms dist_rewrites' ts
        else 
          let
            val t::ts' = rev ts;
            val (_ $ (_ $ (_ $ (f $ _) $ _))) = hd (Logic.strip_imp_prems t);
            val cert = cterm_of (sign_of thy2);
            val distinct_lemma' = cterm_instantiate
              [(cert distinct_f, cert f)] distinct_lemma;
            val rewrites = ord_defs @ (map mk_meta_eq case_thms)
          in
            (map (fn t => prove_goalw_cterm rewrites (cert t)
              (fn _ => [rtac refl 1])) (rev ts')) @ [standard distinct_lemma']
          end) ((hd descr) ~~ (DatatypeProp.make_distincts new_type_names
            descr sorts thy2) ~~ dist_rewrites ~~ case_thms)

  in
    (thy2 |> parent_path flat_names |>
             store_thmss "distinct" new_type_names distinct_thms,
     distinct_thms)
  end;

(******************************* case splitting *******************************)

fun prove_split_thms new_type_names descr sorts constr_inject dist_rewrites
    casedist_thms case_thms thy =
  let
    val _ = message "Proving equations for case splitting...";

    val descr' = flat descr;
    val recTs = get_rec_types descr' sorts;
    val newTs = take (length (hd descr), recTs);

    fun prove_split_thms ((((((t1, t2), inject), dist_rewrites'),
        exhaustion), case_thms'), T) =
      let
        val cert = cterm_of (sign_of thy);
        val _ $ (_ $ lhs $ _) = hd (Logic.strip_assums_hyp (hd (prems_of exhaustion)));
        val exhaustion' = cterm_instantiate
          [(cert lhs, cert (Free ("x", T)))] exhaustion;
        val tacsf = K [rtac exhaustion' 1, ALLGOALS (asm_simp_tac
          (HOL_ss addsimps (dist_rewrites' @ inject @ case_thms')))]
      in
        (prove_goalw_cterm [] (cert t1) tacsf,
         prove_goalw_cterm [] (cert t2) tacsf)
      end;

    val split_thm_pairs = map prove_split_thms
      ((DatatypeProp.make_splits new_type_names descr sorts thy) ~~ constr_inject ~~
        dist_rewrites ~~ casedist_thms ~~ case_thms ~~ newTs);

    val (split_thms, split_asm_thms) = ListPair.unzip split_thm_pairs

  in
    (thy |> store_thms "split" new_type_names split_thms |>
            store_thms "split_asm" new_type_names split_asm_thms,
     split_thm_pairs)
  end;

(******************************* size functions *******************************)

fun prove_size_thms flat_names new_type_names descr sorts reccomb_names primrec_thms thy =
  let
    val _ = message "Proving equations for size function...";

    val big_name = space_implode "_" new_type_names;
    val thy1 = add_path flat_names big_name thy;

    val descr' = flat descr;
    val recTs = get_rec_types descr' sorts;

    val big_size_name = space_implode "_" new_type_names ^ "_size";
    val size_name = Sign.intern_const (sign_of (the (get_thy "Arith" thy1))) "size";
    val size_names = replicate (length (hd descr)) size_name @
      map (Sign.full_name (sign_of thy1))
        (if length (flat (tl descr)) = 1 then [big_size_name] else
          map (fn i => big_size_name ^ "_" ^ string_of_int i)
            (1 upto length (flat (tl descr))));
    val def_names = map (fn i => big_size_name ^ "_def_" ^ string_of_int i)
      (1 upto length recTs);

    val plus_t = Const ("op +", [HOLogic.natT, HOLogic.natT] ---> HOLogic.natT);

    fun make_sizefun (_, cargs) =
      let
        val Ts = map (typ_of_dtyp descr' sorts) cargs;
        val k = length (filter is_rec_type cargs);
        val t = if k = 0 then HOLogic.zero else
          foldl1 (app plus_t) (map Bound (k - 1 downto 0) @ [HOLogic.mk_nat 1])
      in
        foldr (fn (T, t') => Abs ("x", T, t')) (Ts @ replicate k HOLogic.natT, t)
      end;

    val fs = flat (map (fn (_, (_, _, constrs)) => map make_sizefun constrs) descr');
    val fTs = map fastype_of fs;

    val thy' = thy1 |>
      Theory.add_consts_i (map (fn (s, T) =>
        (Sign.base_name s, T --> HOLogic.natT, NoSyn))
          (drop (length (hd descr), size_names ~~ recTs))) |>
      Theory.add_defs_i (map (fn (((s, T), def_name), rec_name) =>
        (def_name, Logic.mk_equals (Const (s, T --> HOLogic.natT),
          list_comb (Const (rec_name, fTs @ [T] ---> HOLogic.natT), fs))))
            (size_names ~~ recTs ~~ def_names ~~ reccomb_names)) |>
      parent_path flat_names;

    val size_def_thms = map (get_axiom thy') def_names;
    val rewrites = size_def_thms @ map mk_meta_eq primrec_thms;

    val size_thms = map (fn t => prove_goalw_cterm rewrites
      (cterm_of (sign_of thy') t) (fn _ => [rtac refl 1]))
        (DatatypeProp.make_size new_type_names descr sorts thy')

  in
    (thy' |> Theory.add_path big_name |>
             PureThy.add_tthmss [(("size", map Attribute.tthm_of size_thms), [])] |>
             Theory.parent_path,
     size_thms)
  end;

(************************* additional theorems for TFL ************************)

fun prove_nchotomys new_type_names descr sorts casedist_thms thy =
  let
    val _ = message "Proving additional theorems for TFL...";

    fun prove_nchotomy (t, exhaustion) =
      let
        (* For goal i, select the correct disjunct to attack, then prove it *)
        fun tac i 0 = EVERY [TRY (rtac disjI1 i),
              hyp_subst_tac i, REPEAT (rtac exI i), rtac refl i]
          | tac i n = rtac disjI2 i THEN tac i (n - 1)
      in 
        prove_goalw_cterm [] (cterm_of (sign_of thy) t) (fn _ =>
          [rtac allI 1,
           exh_tac (K exhaustion) 1,
           ALLGOALS (fn i => tac i (i-1))])
      end;

    val nchotomys =
      map prove_nchotomy (DatatypeProp.make_nchotomys descr sorts ~~ casedist_thms)

  in
    (store_thms "nchotomy" new_type_names nchotomys thy, nchotomys)
  end;

fun prove_case_congs new_type_names descr sorts nchotomys case_thms thy =
  let
    fun prove_case_cong ((t, nchotomy), case_rewrites) =
      let
        val (Const ("==>", _) $ tm $ _) = t;
        val (Const ("Trueprop", _) $ (Const ("op =", _) $ _ $ Ma)) = tm;
        val cert = cterm_of (sign_of thy);
        val nchotomy' = nchotomy RS spec;
        val nchotomy'' = cterm_instantiate
          [(cert (hd (add_term_vars (concl_of nchotomy', []))), cert Ma)] nchotomy'
      in
        prove_goalw_cterm [] (cert t) (fn prems => 
          let val simplify = asm_simp_tac (HOL_ss addsimps (prems @ case_rewrites))
          in [simp_tac (HOL_ss addsimps [hd prems]) 1,
              cut_facts_tac [nchotomy''] 1,
              REPEAT (etac disjE 1 THEN REPEAT (etac exE 1) THEN simplify 1),
              REPEAT (etac exE 1) THEN simplify 1 (* Get last disjunct *)]
          end)
      end;

    val case_congs = map prove_case_cong (DatatypeProp.make_case_congs
      new_type_names descr sorts thy ~~ nchotomys ~~ case_thms)

  in
    (store_thms "case_cong" new_type_names case_congs thy, case_congs)
  end;

end;