3 Author: Tobias Nipkow, Cambridge University Computer Laboratory
4 Copyright 1991 University of Cambridge
6 For nat.thy. Type nat is defined as a set (Nat) over the type ind.
11 goal Nat.thy "mono(%X. {Zero_Rep} Un (Suc_Rep``X))";
12 by (REPEAT (ares_tac [monoI, subset_refl, image_mono, Un_mono] 1));
15 val Nat_unfold = Nat_fun_mono RS (Nat_def RS def_lfp_Tarski);
17 (* Zero is a natural number -- this also justifies the type definition*)
18 goal Nat.thy "Zero_Rep: Nat";
19 by (rtac (Nat_unfold RS ssubst) 1);
20 by (rtac (singletonI RS UnI1) 1);
23 val prems = goal Nat.thy "i: Nat ==> Suc_Rep(i) : Nat";
24 by (rtac (Nat_unfold RS ssubst) 1);
25 by (rtac (imageI RS UnI2) 1);
26 by (resolve_tac prems 1);
31 val major::prems = goal Nat.thy
32 "[| i: Nat; P(Zero_Rep); \
33 \ !!j. [| j: Nat; P(j) |] ==> P(Suc_Rep(j)) |] ==> P(i)";
34 by (rtac ([Nat_def, Nat_fun_mono, major] MRS def_induct) 1);
35 by (fast_tac (!claset addIs prems) 1);
38 val prems = goalw Nat.thy [Zero_def,Suc_def]
40 \ !!k. P(k) ==> P(Suc(k)) |] ==> P(n)";
41 by (rtac (Rep_Nat_inverse RS subst) 1); (*types force good instantiation*)
42 by (rtac (Rep_Nat RS Nat_induct) 1);
43 by (REPEAT (ares_tac prems 1
44 ORELSE eresolve_tac [Abs_Nat_inverse RS subst] 1));
47 (*Perform induction on n. *)
49 EVERY [res_inst_tac [("n",a)] nat_induct i,
50 rename_last_tac a ["1"] (i+1)];
52 (*A special form of induction for reasoning about m<n and m-n*)
53 val prems = goal Nat.thy
56 \ !!x y. [| P x y |] ==> P (Suc x) (Suc y) \
58 by (res_inst_tac [("x","m")] spec 1);
59 by (nat_ind_tac "n" 1);
61 by (nat_ind_tac "x" 2);
62 by (REPEAT (ares_tac (prems@[allI]) 1 ORELSE etac spec 1));
65 (*Case analysis on the natural numbers*)
66 val prems = goal Nat.thy
67 "[| n=0 ==> P; !!x. n = Suc(x) ==> P |] ==> P";
68 by (subgoal_tac "n=0 | (EX x. n = Suc(x))" 1);
69 by (fast_tac (!claset addSEs prems) 1);
70 by (nat_ind_tac "n" 1);
71 by (rtac (refl RS disjI1) 1);
75 (*** Isomorphisms: Abs_Nat and Rep_Nat ***)
77 (*We can't take these properties as axioms, or take Abs_Nat==Inv(Rep_Nat),
78 since we assume the isomorphism equations will one day be given by Isabelle*)
80 goal Nat.thy "inj(Rep_Nat)";
81 by (rtac inj_inverseI 1);
82 by (rtac Rep_Nat_inverse 1);
85 goal Nat.thy "inj_onto Abs_Nat Nat";
86 by (rtac inj_onto_inverseI 1);
87 by (etac Abs_Nat_inverse 1);
88 qed "inj_onto_Abs_Nat";
90 (*** Distinctness of constructors ***)
92 goalw Nat.thy [Zero_def,Suc_def] "Suc(m) ~= 0";
93 by (rtac (inj_onto_Abs_Nat RS inj_onto_contraD) 1);
94 by (rtac Suc_Rep_not_Zero_Rep 1);
95 by (REPEAT (resolve_tac [Rep_Nat, Suc_RepI, Zero_RepI] 1));
98 bind_thm ("Zero_not_Suc", (Suc_not_Zero RS not_sym));
100 Addsimps [Suc_not_Zero,Zero_not_Suc];
102 bind_thm ("Suc_neq_Zero", (Suc_not_Zero RS notE));
103 val Zero_neq_Suc = sym RS Suc_neq_Zero;
105 (** Injectiveness of Suc **)
107 goalw Nat.thy [Suc_def] "inj(Suc)";
109 by (dtac (inj_onto_Abs_Nat RS inj_ontoD) 1);
110 by (REPEAT (resolve_tac [Rep_Nat, Suc_RepI] 1));
111 by (dtac (inj_Suc_Rep RS injD) 1);
112 by (etac (inj_Rep_Nat RS injD) 1);
115 val Suc_inject = inj_Suc RS injD;
117 goal Nat.thy "(Suc(m)=Suc(n)) = (m=n)";
118 by (EVERY1 [rtac iffI, etac Suc_inject, etac arg_cong]);
121 goal Nat.thy "n ~= Suc(n)";
122 by (nat_ind_tac "n" 1);
123 by (ALLGOALS(asm_simp_tac (!simpset addsimps [Suc_Suc_eq])));
126 bind_thm ("Suc_n_not_n", n_not_Suc_n RS not_sym);
128 (*** nat_case -- the selection operator for nat ***)
130 goalw Nat.thy [nat_case_def] "nat_case a f 0 = a";
131 by (fast_tac (!claset addIs [select_equality] addEs [Zero_neq_Suc]) 1);
134 goalw Nat.thy [nat_case_def] "nat_case a f (Suc k) = f(k)";
135 by (fast_tac (!claset addIs [select_equality]
136 addEs [make_elim Suc_inject, Suc_neq_Zero]) 1);
139 (** Introduction rules for 'pred_nat' **)
141 goalw Nat.thy [pred_nat_def] "(n, Suc(n)) : pred_nat";
145 val major::prems = goalw Nat.thy [pred_nat_def]
146 "[| p : pred_nat; !!x n. [| p = (n, Suc(n)) |] ==> R \
148 by (rtac (major RS CollectE) 1);
149 by (REPEAT (eresolve_tac ([asm_rl,exE]@prems) 1));
152 goalw Nat.thy [wf_def] "wf(pred_nat)";
154 by (nat_ind_tac "x" 1);
155 by (fast_tac (!claset addSEs [mp, pred_natE, Pair_inject,
156 make_elim Suc_inject]) 2);
157 by (fast_tac (!claset addSEs [mp, pred_natE, Pair_inject, Zero_neq_Suc]) 1);
161 (*** nat_rec -- by wf recursion on pred_nat ***)
163 (* The unrolling rule for nat_rec *)
165 "(%n. nat_rec n c d) = wfrec pred_nat (%f. nat_case ?c (%m. ?d m (f m)))";
166 by (simp_tac (HOL_ss addsimps [nat_rec_def]) 1);
167 bind_thm("nat_rec_unfold", wf_pred_nat RS
168 ((result() RS eq_reflection) RS def_wfrec));
170 (*---------------------------------------------------------------------------
172 * bind_thm ("nat_rec_unfold", (wf_pred_nat RS (nat_rec_def RS def_wfrec)));
173 *---------------------------------------------------------------------------*)
175 (** conversion rules **)
177 goal Nat.thy "nat_rec 0 c h = c";
178 by (rtac (nat_rec_unfold RS trans) 1);
179 by (simp_tac (!simpset addsimps [nat_case_0]) 1);
182 goal Nat.thy "nat_rec (Suc n) c h = h n (nat_rec n c h)";
183 by (rtac (nat_rec_unfold RS trans) 1);
184 by (simp_tac (!simpset addsimps [nat_case_Suc, pred_natI, cut_apply]) 1);
187 (*These 2 rules ease the use of primitive recursion. NOTE USE OF == *)
188 val [rew] = goal Nat.thy
189 "[| !!n. f(n) == nat_rec n c h |] ==> f(0) = c";
191 by (rtac nat_rec_0 1);
194 val [rew] = goal Nat.thy
195 "[| !!n. f(n) == nat_rec n c h |] ==> f(Suc(n)) = h n (f n)";
197 by (rtac nat_rec_Suc 1);
198 qed "def_nat_rec_Suc";
201 [standard (def RS def_nat_rec_0),
202 standard (def RS def_nat_rec_Suc)];
205 (*** Basic properties of "less than" ***)
207 (** Introduction properties **)
209 val prems = goalw Nat.thy [less_def] "[| i<j; j<k |] ==> i<(k::nat)";
210 by (rtac (trans_trancl RS transD) 1);
211 by (resolve_tac prems 1);
212 by (resolve_tac prems 1);
215 goalw Nat.thy [less_def] "n < Suc(n)";
216 by (rtac (pred_natI RS r_into_trancl) 1);
220 (* i<j ==> i<Suc(j) *)
221 val less_SucI = lessI RSN (2, less_trans);
223 goal Nat.thy "0 < Suc(n)";
224 by (nat_ind_tac "n" 1);
226 by (etac less_trans 1);
229 Addsimps [zero_less_Suc];
231 (** Elimination properties **)
233 val prems = goalw Nat.thy [less_def] "n<m ==> ~ m<(n::nat)";
234 by (fast_tac (!claset addIs ([wf_pred_nat, wf_trancl RS wf_asym]@prems))1);
237 (* [| n(m; m(n |] ==> R *)
238 bind_thm ("less_asym", (less_not_sym RS notE));
240 goalw Nat.thy [less_def] "~ n<(n::nat)";
242 by (etac (wf_pred_nat RS wf_trancl RS wf_irrefl) 1);
246 bind_thm ("less_irrefl", (less_not_refl RS notE));
248 goal Nat.thy "!!m. n<m ==> m ~= (n::nat)";
249 by (fast_tac (!claset addEs [less_irrefl]) 1);
250 qed "less_not_refl2";
253 val major::prems = goalw Nat.thy [less_def]
254 "[| i<k; k=Suc(i) ==> P; !!j. [| i<j; k=Suc(j) |] ==> P \
256 by (rtac (major RS tranclE) 1);
257 by (REPEAT_FIRST (bound_hyp_subst_tac ORELSE'
258 eresolve_tac (prems@[pred_natE, Pair_inject])));
262 goal Nat.thy "~ n<0";
265 by (etac Zero_neq_Suc 1);
266 by (etac Zero_neq_Suc 1);
268 Addsimps [not_less0];
271 bind_thm ("less_zeroE", (not_less0 RS notE));
273 val [major,less,eq] = goal Nat.thy
274 "[| m < Suc(n); m<n ==> P; m=n ==> P |] ==> P";
275 by (rtac (major RS lessE) 1);
277 by (fast_tac (!claset addSDs [Suc_inject]) 1);
279 by (fast_tac (!claset addSDs [Suc_inject]) 1);
282 goal Nat.thy "(m < Suc(n)) = (m < n | m = n)";
283 by (fast_tac (!claset addSIs [lessI]
284 addEs [less_trans, less_SucE]) 1);
287 val prems = goal Nat.thy "m<n ==> n ~= 0";
288 by (res_inst_tac [("n","n")] natE 1);
289 by (cut_facts_tac prems 1);
290 by (ALLGOALS Asm_full_simp_tac);
291 qed "gr_implies_not0";
292 Addsimps [gr_implies_not0];
294 qed_goal "zero_less_eq" Nat.thy "0 < n = (n ~= 0)" (fn _ => [
296 etac gr_implies_not0 1,
300 rtac zero_less_Suc 1]);
302 (** Inductive (?) properties **)
304 val [prem] = goal Nat.thy "Suc(m) < n ==> m<n";
305 by (rtac (prem RS rev_mp) 1);
306 by (nat_ind_tac "n" 1);
308 by (etac less_zeroE 1);
309 by (fast_tac (!claset addSIs [lessI RS less_SucI]
311 addEs [less_trans, lessE]) 1);
314 val [major,minor] = goal Nat.thy
315 "[| Suc(i)<k; !!j. [| i<j; k=Suc(j) |] ==> P \
317 by (rtac (major RS lessE) 1);
318 by (etac (lessI RS minor) 1);
319 by (etac (Suc_lessD RS minor) 1);
323 val [major] = goal Nat.thy "Suc(m) < Suc(n) ==> m<n";
324 by (rtac (major RS lessE) 1);
325 by (REPEAT (rtac lessI 1
326 ORELSE eresolve_tac [make_elim Suc_inject, ssubst, Suc_lessD] 1));
329 val prems = goal Nat.thy "m<n ==> Suc(m) < Suc(n)";
330 by (subgoal_tac "m<n --> Suc(m) < Suc(n)" 1);
331 by (fast_tac (!claset addIs prems) 1);
332 by (nat_ind_tac "n" 1);
334 by (etac less_zeroE 1);
335 by (fast_tac (!claset addSIs [lessI]
337 addEs [less_trans, lessE]) 1);
342 goal Nat.thy "(Suc m < n | Suc m = n) = (m < n)";
345 goal Nat.thy "(Suc(m) < Suc(n)) = (m<n)";
346 by(stac less_Suc_eq 1);
350 goal Nat.thy "(Suc(m) < Suc(n)) = (m<n)";
351 by (EVERY1 [rtac iffI, etac Suc_less_SucD, etac Suc_mono]);
353 Addsimps [Suc_less_eq];
355 goal Nat.thy "~(Suc(n) < n)";
356 by (fast_tac (!claset addEs [Suc_lessD RS less_irrefl]) 1);
357 qed "not_Suc_n_less_n";
358 Addsimps [not_Suc_n_less_n];
360 goal Nat.thy "!!i. i<j ==> j<k --> Suc i < k";
361 by (nat_ind_tac "k" 1);
362 by (ALLGOALS (asm_simp_tac (!simpset)));
363 by (asm_simp_tac (!simpset addsimps [less_Suc_eq]) 1);
364 by (fast_tac (!claset addDs [Suc_lessD]) 1);
365 qed_spec_mp "less_trans_Suc";
367 (*"Less than" is a linear ordering*)
368 goal Nat.thy "m<n | m=n | n<(m::nat)";
369 by (nat_ind_tac "m" 1);
370 by (nat_ind_tac "n" 1);
371 by (rtac (refl RS disjI1 RS disjI2) 1);
372 by (rtac (zero_less_Suc RS disjI1) 1);
373 by (fast_tac (!claset addIs [lessI, Suc_mono, less_SucI] addEs [lessE]) 1);
376 qed_goal "nat_less_cases" Nat.thy
377 "[| (m::nat)<n ==> P n m; m=n ==> P n m; n<m ==> P n m |] ==> P n m"
380 (res_inst_tac [("m1","n"),("n1","m")] (less_linear RS disjE) 1),
382 (etac (hd (tl (tl prems))) 1),
383 (etac (sym RS hd (tl prems)) 1),
387 (*Can be used with less_Suc_eq to get n=m | n<m *)
388 goal Nat.thy "(~ m < n) = (n < Suc(m))";
389 by (res_inst_tac [("m","m"),("n","n")] diff_induct 1);
390 by (ALLGOALS Asm_simp_tac);
393 (*Complete induction, aka course-of-values induction*)
394 val prems = goalw Nat.thy [less_def]
395 "[| !!n. [| ! m::nat. m<n --> P(m) |] ==> P(n) |] ==> P(n)";
396 by (wf_ind_tac "n" [wf_pred_nat RS wf_trancl] 1);
397 by (eresolve_tac prems 1);
401 (*** Properties of <= ***)
403 goalw Nat.thy [le_def] "0 <= n";
404 by (rtac not_less0 1);
407 goalw Nat.thy [le_def] "~ Suc n <= n";
409 qed "Suc_n_not_le_n";
411 goalw Nat.thy [le_def] "(i <= 0) = (i = 0)";
412 by (nat_ind_tac "i" 1);
413 by (ALLGOALS Asm_simp_tac);
416 Addsimps [less_not_refl,
417 (*less_Suc_eq,*) le0, le_0,
418 Suc_Suc_eq, Suc_n_not_le_n,
419 n_not_Suc_n, Suc_n_not_n,
420 nat_case_0, nat_case_Suc, nat_rec_0, nat_rec_Suc];
422 (*Prevents simplification of f and g: much faster*)
423 qed_goal "nat_case_weak_cong" Nat.thy
424 "m=n ==> nat_case a f m = nat_case a f n"
425 (fn [prem] => [rtac (prem RS arg_cong) 1]);
427 qed_goal "nat_rec_weak_cong" Nat.thy
428 "m=n ==> nat_rec m a f = nat_rec n a f"
429 (fn [prem] => [rtac (prem RS arg_cong) 1]);
431 val prems = goalw Nat.thy [le_def] "~n<m ==> m<=(n::nat)";
432 by (resolve_tac prems 1);
435 val prems = goalw Nat.thy [le_def] "m<=n ==> ~ n < (m::nat)";
436 by (resolve_tac prems 1);
439 val leE = make_elim leD;
441 goal Nat.thy "(~n<m) = (m<=(n::nat))";
442 by (fast_tac (!claset addIs [leI] addEs [leE]) 1);
443 qed "not_less_iff_le";
445 goalw Nat.thy [le_def] "!!m. ~ m <= n ==> n<(m::nat)";
449 goalw Nat.thy [le_def] "!!m. m < n ==> Suc(m) <= n";
450 by (simp_tac (!simpset addsimps [less_Suc_eq]) 1);
451 by (fast_tac (!claset addEs [less_irrefl,less_asym]) 1);
454 goalw Nat.thy [le_def] "!!m. Suc(m) <= n ==> m <= n";
455 by (asm_full_simp_tac (!simpset addsimps [less_Suc_eq]) 1);
459 goalw Nat.thy [le_def] "!!m. m <= n ==> m <= Suc n";
460 by (fast_tac (!claset addDs [Suc_lessD]) 1);
464 goalw Nat.thy [le_def] "!!m. m < n ==> m <= (n::nat)";
465 by (fast_tac (!claset addEs [less_asym]) 1);
468 goalw Nat.thy [le_def] "!!m. m <= n ==> m < n | m=(n::nat)";
469 by (cut_facts_tac [less_linear] 1);
470 by (fast_tac (!claset addEs [less_irrefl,less_asym]) 1);
471 qed "le_imp_less_or_eq";
473 goalw Nat.thy [le_def] "!!m. m<n | m=n ==> m <=(n::nat)";
474 by (cut_facts_tac [less_linear] 1);
475 by (fast_tac (!claset addEs [less_irrefl,less_asym]) 1);
477 qed "less_or_eq_imp_le";
479 goal Nat.thy "(x <= (y::nat)) = (x < y | x=y)";
480 by (REPEAT(ares_tac [iffI,less_or_eq_imp_le,le_imp_less_or_eq] 1));
481 qed "le_eq_less_or_eq";
483 goal Nat.thy "n <= (n::nat)";
484 by (simp_tac (!simpset addsimps [le_eq_less_or_eq]) 1);
487 val prems = goal Nat.thy "!!i. [| i <= j; j < k |] ==> i < (k::nat)";
488 by (dtac le_imp_less_or_eq 1);
489 by (fast_tac (!claset addIs [less_trans]) 1);
492 goal Nat.thy "!!i. [| i < j; j <= k |] ==> i < (k::nat)";
493 by (dtac le_imp_less_or_eq 1);
494 by (fast_tac (!claset addIs [less_trans]) 1);
497 goal Nat.thy "!!i. [| i <= j; j <= k |] ==> i <= (k::nat)";
498 by (EVERY1[dtac le_imp_less_or_eq, dtac le_imp_less_or_eq,
499 rtac less_or_eq_imp_le, fast_tac (!claset addIs [less_trans])]);
502 val prems = goal Nat.thy "!!m. [| m <= n; n <= m |] ==> m = (n::nat)";
503 by (EVERY1[dtac le_imp_less_or_eq, dtac le_imp_less_or_eq,
504 fast_tac (!claset addEs [less_irrefl,less_asym])]);
507 goal Nat.thy "(Suc(n) <= Suc(m)) = (n <= m)";
508 by (simp_tac (!simpset addsimps [le_eq_less_or_eq]) 1);
511 Addsimps [le_refl,Suc_le_mono];
514 (** LEAST -- the least number operator **)
516 val [prem1,prem2] = goalw Nat.thy [Least_def]
517 "[| P(k); !!x. x<k ==> ~P(x) |] ==> (LEAST x.P(x)) = k";
518 by (rtac select_equality 1);
519 by (fast_tac (!claset addSIs [prem1,prem2]) 1);
520 by (cut_facts_tac [less_linear] 1);
521 by (fast_tac (!claset addSIs [prem1] addSDs [prem2]) 1);
522 qed "Least_equality";
524 val [prem] = goal Nat.thy "P(k) ==> P(LEAST x.P(x))";
525 by (rtac (prem RS rev_mp) 1);
526 by (res_inst_tac [("n","k")] less_induct 1);
528 by (rtac classical 1);
529 by (res_inst_tac [("s","n")] (Least_equality RS ssubst) 1);
535 (*Proof is almost identical to the one above!*)
536 val [prem] = goal Nat.thy "P(k) ==> (LEAST x.P(x)) <= k";
537 by (rtac (prem RS rev_mp) 1);
538 by (res_inst_tac [("n","k")] less_induct 1);
540 by (rtac classical 1);
541 by (res_inst_tac [("s","n")] (Least_equality RS ssubst) 1);
544 by (fast_tac (!claset addIs [less_imp_le,le_trans]) 1);
547 val [prem] = goal Nat.thy "k < (LEAST x.P(x)) ==> ~P(k)";
549 by (etac (rewrite_rule [le_def] Least_le RS notE) 1);
551 qed "not_less_Least";
553 qed_goalw "Least_Suc" Nat.thy [Least_def]
554 "[| ? n. P (Suc n); ~ P 0 |] ==> (LEAST n. P n) = Suc (LEAST m. P (Suc m))"
556 cut_facts_tac prems 1,
557 rtac select_equality 1,
558 fold_goals_tac [Least_def],
559 safe_tac (HOL_cs addSEs [LeastI]),
560 res_inst_tac [("n","j")] natE 1,
562 fast_tac (!claset addDs [Suc_less_SucD] addDs [not_less_Least]) 1,
563 res_inst_tac [("n","k")] natE 1,
567 rtac (select_equality RS arg_cong RS sym) 1,
571 cut_facts_tac [less_linear] 1,