src/HOL/Tools/record_package.ML
author wenzelm
Wed Apr 13 18:34:22 2005 +0200 (2005-04-13)
changeset 15703 727ef1b8b3ee
parent 15574 b1d1b5bfc464
child 15913 530099d1a73c
permissions -rw-r--r--
*** empty log message ***
     1 (*  Title:      HOL/Tools/record_package.ML
     2     ID:         $Id$
     3     Author:     Wolfgang Naraschewski, Norbert Schirmer and Markus Wenzel, TU Muenchen
     4 
     5 Extensible records with structural subtyping in HOL.
     6 *)
     7 
     8 signature BASIC_RECORD_PACKAGE =
     9 sig
    10   val record_simproc: simproc
    11   val record_eq_simproc: simproc
    12   val record_upd_simproc: simproc
    13   val record_split_simproc: (term -> int) -> simproc
    14   val record_ex_sel_eq_simproc: simproc
    15   val record_split_tac: int -> tactic
    16   val record_split_simp_tac: thm list -> (term -> int) -> int -> tactic
    17   val record_split_name: string
    18   val record_split_wrapper: string * wrapper
    19   val print_record_type_abbr: bool ref
    20   val print_record_type_as_fields: bool ref 
    21 end;
    22 
    23 signature RECORD_PACKAGE =
    24 sig
    25   include BASIC_RECORD_PACKAGE
    26   val quiet_mode: bool ref
    27   val record_quick_and_dirty_sensitive: bool ref
    28   val updateN: string
    29   val ext_typeN: string
    30   val last_extT: typ -> (string * typ list) option
    31   val dest_recTs : typ -> (string * typ list) list
    32   val get_extT_fields:  Sign.sg -> typ -> ((string * typ) list * (string * typ))
    33   val get_recT_fields:  Sign.sg -> typ -> ((string * typ) list * (string * typ))
    34   val get_extension: Sign.sg -> Symtab.key -> (string * typ list) option
    35   val get_extinjects: Sign.sg -> thm list
    36   val get_simpset: Sign.sg -> simpset
    37   val print_records: theory -> unit
    38   val add_record: string list * string -> string option -> (string * string * mixfix) list 
    39                   -> theory -> theory
    40   val add_record_i: string list * string -> (typ list * string) option 
    41                     -> (string * typ * mixfix) list -> theory -> theory
    42   val setup: (theory -> theory) list
    43 end;
    44 
    45 
    46 structure RecordPackage:RECORD_PACKAGE =      
    47 struct
    48 
    49 val rec_UNIV_I = thm "rec_UNIV_I";
    50 val rec_True_simp = thm "rec_True_simp";
    51 val Pair_eq = thm "Product_Type.Pair_eq";
    52 val atomize_all = thm "HOL.atomize_all";
    53 val atomize_imp = thm "HOL.atomize_imp";
    54 val triv_goal   = thm "triv_goal";
    55 val prop_subst  = thm "prop_subst";
    56 val Pair_sel_convs = [fst_conv,snd_conv];
    57 
    58 
    59 
    60 (** name components **)
    61 
    62 val rN = "r";
    63 val wN = "w";
    64 val moreN = "more";
    65 val schemeN = "_scheme";
    66 val ext_typeN = "_ext_type"; 
    67 val extN ="_ext";
    68 val casesN = "_cases";
    69 val ext_dest = "_sel";
    70 val updateN = "_update";
    71 val updN = "_upd";
    72 val schemeN = "_scheme";
    73 val makeN = "make";
    74 val fields_selN = "fields";
    75 val extendN = "extend";
    76 val truncateN = "truncate";
    77 
    78 (*see typedef_package.ML*)
    79 val RepN = "Rep_";
    80 val AbsN = "Abs_";
    81 
    82 (*** utilities ***)
    83 
    84 fun but_last xs = fst (split_last xs);
    85 fun list NONE = []
    86   | list (SOME x) = [x]
    87 
    88 (* messages *)
    89 
    90 val quiet_mode = ref false;
    91 fun message s = if ! quiet_mode then () else writeln s;
    92 
    93 (* timing *)
    94 
    95 fun timeit_msg s x = if !timing then (warning s; timeit x) else x ();
    96  
    97 (* syntax *)
    98 
    99 fun prune n xs = Library.drop (n, xs);
   100 fun prefix_base s = NameSpace.map_base (fn bname => s ^ bname);
   101 
   102 val Trueprop = HOLogic.mk_Trueprop;
   103 fun All xs t = Term.list_all_free (xs, t);
   104 
   105 infix 9 $$;
   106 infix 0 :== ===;
   107 infixr 0 ==>;
   108 
   109 val (op $$) = Term.list_comb;
   110 val (op :==) = Logic.mk_defpair;
   111 val (op ===) = Trueprop o HOLogic.mk_eq;
   112 val (op ==>) = Logic.mk_implies;
   113 
   114 (* morphisms *)
   115 
   116 fun mk_RepN name = suffix ext_typeN (prefix_base RepN name);
   117 fun mk_AbsN name = suffix ext_typeN (prefix_base AbsN name);
   118 
   119 fun mk_Rep name repT absT  =
   120   Const (suffix ext_typeN (prefix_base RepN name),absT --> repT);
   121 
   122 fun mk_Abs name repT absT =
   123   Const (mk_AbsN name,repT --> absT);
   124 
   125 (* constructor *)
   126 
   127 fun mk_extC (name,T) Ts  = (suffix extN name, Ts ---> T);
   128 
   129 fun mk_ext (name,T) ts =
   130   let val Ts = map fastype_of ts
   131   in list_comb (Const (mk_extC (name,T) Ts),ts) end;
   132 
   133 (* cases *)
   134 
   135 fun mk_casesC (name,T,vT) Ts = (suffix casesN name, (Ts ---> vT) --> T --> vT)
   136 
   137 fun mk_cases (name,T,vT) f =
   138   let val Ts = binder_types (fastype_of f) 
   139   in Const (mk_casesC (name,T,vT) Ts) $ f end;
   140  
   141 (* selector *)
   142 
   143 fun mk_selC sT (c,T) = (c,sT --> T);
   144 
   145 fun mk_sel s (c,T) =
   146   let val sT = fastype_of s
   147   in Const (mk_selC sT (c,T)) $ s end;
   148 
   149 (* updates *)
   150 
   151 fun mk_updC sfx sT (c,T) = (suffix sfx c, T --> sT --> sT);
   152 
   153 fun mk_upd sfx c v s =
   154   let val sT = fastype_of s;
   155       val vT = fastype_of v;
   156   in Const (mk_updC sfx sT (c, vT)) $ v $ s end;
   157 
   158 (* types *)
   159 
   160 fun dest_recT (typ as Type (c_ext_type, Ts as (T::_))) =
   161       (case try (unsuffix ext_typeN) c_ext_type of
   162         NONE => raise TYPE ("RecordPackage.dest_recT", [typ], [])
   163       | SOME c => ((c, Ts), List.last Ts))
   164   | dest_recT typ = raise TYPE ("RecordPackage.dest_recT", [typ], []);
   165 
   166 fun is_recT T =
   167   (case try dest_recT T of NONE => false | SOME _ => true); 
   168 
   169 fun dest_recTs T =
   170   let val ((c, Ts), U) = dest_recT T
   171   in (c, Ts) :: dest_recTs U
   172   end handle TYPE _ => [];
   173 
   174 fun last_extT T =
   175   let val ((c, Ts), U) = dest_recT T
   176   in (case last_extT U of
   177         NONE => SOME (c,Ts)
   178       | SOME l => SOME l)
   179   end handle TYPE _ => NONE
   180 
   181 fun rec_id i T = 
   182   let val rTs = dest_recTs T
   183       val rTs' = if i < 0 then rTs else Library.take (i,rTs)
   184   in Library.foldl (fn (s,(c,T)) => s ^ c) ("",rTs') end;
   185 
   186 (*** extend theory by record definition ***)
   187 
   188 (** record info **)
   189 
   190 (* type record_info and parent_info  *)
   191 
   192 type record_info =
   193  {args: (string * sort) list,
   194   parent: (typ list * string) option,
   195   fields: (string * typ) list,
   196   extension: (string * typ list),
   197   induct: thm
   198  };
   199 
   200 fun make_record_info args parent fields extension induct =
   201  {args = args, parent = parent, fields = fields, extension = extension, 
   202   induct = induct}: record_info;
   203 
   204 
   205 type parent_info =
   206  {name: string,
   207   fields: (string * typ) list,
   208   extension: (string * typ list),
   209   induct: thm
   210 };
   211 
   212 fun make_parent_info name fields extension induct =
   213  {name = name, fields = fields, extension = extension, induct = induct}: parent_info;
   214 
   215 (* data kind 'HOL/record' *)
   216 
   217 type record_data =
   218  {records: record_info Symtab.table,
   219   sel_upd:
   220    {selectors: unit Symtab.table,
   221     updates: string Symtab.table,
   222     simpset: Simplifier.simpset},
   223   equalities: thm Symtab.table,
   224   extinjects: thm list,
   225   extsplit: thm Symtab.table, (* maps extension name to split rule *)
   226   splits: (thm*thm*thm*thm) Symtab.table,    (* !!,!,EX - split-equalities,induct rule *) 
   227   extfields: (string*typ) list Symtab.table, (* maps extension to its fields *)
   228   fieldext: (string*typ list) Symtab.table   (* maps field to its extension *)
   229 };
   230 
   231 fun make_record_data 
   232       records sel_upd equalities extinjects extsplit splits extfields fieldext =
   233  {records = records, sel_upd = sel_upd, 
   234   equalities = equalities, extinjects=extinjects, extsplit = extsplit, splits = splits, 
   235   extfields = extfields, fieldext = fieldext }: record_data;
   236 
   237 structure RecordsArgs =
   238 struct
   239   val name = "HOL/records";      
   240   type T = record_data;
   241 
   242   val empty =
   243     make_record_data Symtab.empty
   244       {selectors = Symtab.empty, updates = Symtab.empty, simpset = HOL_basic_ss}
   245        Symtab.empty [] Symtab.empty Symtab.empty Symtab.empty Symtab.empty;
   246 
   247   val copy = I;
   248   val prep_ext = I;
   249   fun merge
   250    ({records = recs1,
   251      sel_upd = {selectors = sels1, updates = upds1, simpset = ss1},
   252      equalities = equalities1,
   253      extinjects = extinjects1, 
   254      extsplit = extsplit1,
   255      splits = splits1,
   256      extfields = extfields1,
   257      fieldext = fieldext1},
   258     {records = recs2,
   259      sel_upd = {selectors = sels2, updates = upds2, simpset = ss2},
   260      equalities = equalities2,
   261      extinjects = extinjects2, 
   262      extsplit = extsplit2, 
   263      splits = splits2,
   264      extfields = extfields2,
   265      fieldext = fieldext2}) =
   266     make_record_data  
   267       (Symtab.merge (K true) (recs1, recs2))
   268       {selectors = Symtab.merge (K true) (sels1, sels2),
   269         updates = Symtab.merge (K true) (upds1, upds2),
   270         simpset = Simplifier.merge_ss (ss1, ss2)}
   271       (Symtab.merge Thm.eq_thm (equalities1, equalities2))
   272       (gen_merge_lists Thm.eq_thm extinjects1 extinjects2)
   273       (Symtab.merge Thm.eq_thm (extsplit1,extsplit2))
   274       (Symtab.merge (fn ((a,b,c,d),(w,x,y,z)) 
   275                      => Thm.eq_thm (a,w) andalso Thm.eq_thm (b,x) andalso 
   276                         Thm.eq_thm (c,y) andalso Thm.eq_thm (d,z)) 
   277                     (splits1, splits2))
   278       (Symtab.merge (K true) (extfields1,extfields2))
   279       (Symtab.merge (K true) (fieldext1,fieldext2));
   280 
   281   fun print sg ({records = recs, ...}: record_data) =
   282     let
   283       val prt_typ = Sign.pretty_typ sg;
   284 
   285       fun pretty_parent NONE = []
   286         | pretty_parent (SOME (Ts, name)) =
   287             [Pretty.block [prt_typ (Type (name, Ts)), Pretty.str " +"]];
   288 
   289       fun pretty_field (c, T) = Pretty.block
   290         [Pretty.str (Sign.cond_extern sg Sign.constK c), Pretty.str " ::",
   291           Pretty.brk 1, Pretty.quote (prt_typ T)];
   292 
   293       fun pretty_record (name, {args, parent, fields, ...}: record_info) =
   294         Pretty.block (Pretty.fbreaks (Pretty.block
   295           [prt_typ (Type (name, map TFree args)), Pretty.str " = "] ::
   296           pretty_parent parent @ map pretty_field fields));
   297     in map pretty_record (Symtab.dest recs) |> Pretty.chunks |> Pretty.writeln end;
   298 end;
   299 
   300 structure RecordsData = TheoryDataFun(RecordsArgs);
   301 val print_records = RecordsData.print;
   302 
   303 (* access 'records' *)
   304 
   305 fun get_record thy name = Symtab.lookup (#records (RecordsData.get thy), name);
   306 
   307 fun put_record name info thy =
   308   let
   309     val {records, sel_upd, equalities, extinjects,extsplit,splits,extfields,fieldext} = 
   310           RecordsData.get thy;
   311     val data = make_record_data (Symtab.update ((name, info), records))
   312       sel_upd equalities extinjects extsplit splits extfields fieldext;
   313   in RecordsData.put data thy end;
   314 
   315 (* access 'sel_upd' *)
   316 
   317 fun get_sel_upd sg = #sel_upd (RecordsData.get_sg sg);
   318 
   319 fun get_selectors sg name = Symtab.lookup (#selectors (get_sel_upd sg), name);
   320 fun is_selector sg name = 
   321   case get_selectors sg (Sign.intern_const sg name) of 
   322      NONE => false
   323    | SOME _ => true
   324 
   325                              
   326 fun get_updates sg name = Symtab.lookup (#updates (get_sel_upd sg), name);
   327 fun get_simpset sg = #simpset (get_sel_upd sg);
   328 
   329 fun put_sel_upd names simps thy =
   330   let
   331     val sels = map (rpair ()) names;
   332     val upds = map (suffix updateN) names ~~ names;
   333 
   334     val {records, sel_upd = {selectors, updates, simpset}, 
   335       equalities, extinjects, extsplit, splits, extfields,fieldext} = RecordsData.get thy;
   336     val data = make_record_data records
   337       {selectors = Symtab.extend (selectors, sels),
   338         updates = Symtab.extend (updates, upds),
   339         simpset = Simplifier.addsimps (simpset, simps)}
   340        equalities extinjects extsplit splits extfields fieldext;
   341   in RecordsData.put data thy end;
   342 
   343 (* access 'equalities' *)
   344 
   345 fun add_record_equalities name thm thy =
   346   let
   347     val {records, sel_upd, equalities, extinjects, extsplit, splits, extfields,fieldext} = 
   348           RecordsData.get thy;
   349     val data = make_record_data records sel_upd 
   350            (Symtab.update_new ((name, thm), equalities)) extinjects extsplit 
   351            splits extfields fieldext;
   352   in RecordsData.put data thy end;
   353 
   354 fun get_equalities sg name =
   355   Symtab.lookup (#equalities (RecordsData.get_sg sg), name);
   356 
   357 (* access 'extinjects' *)
   358 
   359 fun add_extinjects thm thy =
   360   let
   361     val {records, sel_upd, equalities, extinjects, extsplit, splits, extfields,fieldext} = 
   362           RecordsData.get thy;
   363     val data = make_record_data records sel_upd equalities (extinjects@[thm]) extsplit  
   364                  splits extfields fieldext;
   365   in RecordsData.put data thy end;
   366 
   367 fun get_extinjects sg = #extinjects (RecordsData.get_sg sg);
   368 
   369 (* access 'extsplit' *)
   370 
   371 fun add_extsplit name thm thy =
   372   let
   373     val {records, sel_upd, equalities, extinjects, extsplit, splits, extfields,fieldext} = 
   374           RecordsData.get thy;
   375     val data = make_record_data records sel_upd 
   376       equalities extinjects (Symtab.update_new ((name, thm), extsplit)) splits 
   377       extfields fieldext;
   378   in RecordsData.put data thy end;
   379 
   380 fun get_extsplit sg name =
   381   Symtab.lookup (#extsplit (RecordsData.get_sg sg), name);
   382 
   383 (* access 'splits' *)
   384 
   385 fun add_record_splits name thmP thy =
   386   let
   387     val {records, sel_upd, equalities, extinjects, extsplit, splits, extfields,fieldext} = 
   388           RecordsData.get thy;
   389     val data = make_record_data records sel_upd 
   390       equalities extinjects extsplit (Symtab.update_new ((name, thmP), splits)) 
   391       extfields fieldext;
   392   in RecordsData.put data thy end;
   393 
   394 fun get_splits sg name =
   395   Symtab.lookup (#splits (RecordsData.get_sg sg), name);
   396 
   397 
   398 
   399 (* extension of a record name *)
   400 fun get_extension sg name =
   401  case Symtab.lookup (#records (RecordsData.get_sg sg),name) of
   402         SOME s => SOME (#extension s)
   403       | NONE => NONE;
   404 
   405 (* access 'extfields' *)
   406 
   407 fun add_extfields name fields thy =
   408   let
   409     val {records, sel_upd, equalities, extinjects, extsplit,splits, extfields, fieldext} = 
   410           RecordsData.get thy;
   411     val data = make_record_data records sel_upd 
   412          equalities extinjects extsplit splits 
   413          (Symtab.update_new ((name, fields), extfields)) fieldext;
   414   in RecordsData.put data thy end;
   415 
   416 fun get_extfields sg name =
   417   Symtab.lookup (#extfields (RecordsData.get_sg sg), name);
   418 
   419 fun get_extT_fields sg T = 
   420   let
   421     val ((name,Ts),moreT) = dest_recT T;
   422     val recname = let val (nm::recn::rst) = rev (NameSpace.unpack name) 
   423                   in NameSpace.pack (rev (nm::rst)) end;
   424     val midx = maxidx_of_typs (moreT::Ts);
   425     fun varify (a, S) = TVar ((a, midx), S);
   426     val varifyT = map_type_tfree varify;
   427     val {records,extfields,...} = RecordsData.get_sg sg;
   428     val (flds,(more,_)) = split_last (Symtab.lookup_multi (extfields,name));
   429     val args = map varifyT (snd (#extension (valOf (Symtab.lookup (records,recname)))));
   430 
   431     val tsig = Sign.tsig_of sg;
   432     fun unify (t,env) = Type.unify tsig env t;
   433     val (subst,_) = foldr unify (Vartab.empty,0) (but_last args ~~ but_last Ts);
   434     val flds' = map (apsnd ((Envir.norm_type subst) o varifyT)) flds;
   435   in (flds',(more,moreT)) end;
   436 
   437 fun get_recT_fields sg T = 
   438   let 
   439     val (root_flds,(root_more,root_moreT)) = get_extT_fields sg T;
   440     val (rest_flds,rest_more) = 
   441 	   if is_recT root_moreT then get_recT_fields sg root_moreT 
   442            else ([],(root_more,root_moreT));
   443   in (root_flds@rest_flds,rest_more) end;
   444 
   445 
   446 (* access 'fieldext' *)
   447 
   448 fun add_fieldext extname_types fields thy =
   449   let
   450     val {records, sel_upd, equalities, extinjects, extsplit, splits, extfields, fieldext} = 
   451            RecordsData.get thy;
   452     val fieldext' = Library.foldl (fn (table,field) => Symtab.update_new ((field,extname_types),table))  
   453                           (fieldext,fields);
   454     val data=make_record_data records sel_upd equalities extinjects extsplit 
   455               splits extfields fieldext';
   456   in RecordsData.put data thy end;
   457 
   458 
   459 fun get_fieldext sg name =
   460   Symtab.lookup (#fieldext (RecordsData.get_sg sg), name);
   461 
   462 (* parent records *)
   463 
   464 fun add_parents thy NONE parents = parents
   465   | add_parents thy (SOME (types, name)) parents =
   466       let
   467         val sign = Theory.sign_of thy;
   468         fun err msg = error (msg ^ " parent record " ^ quote name);
   469 
   470         val {args, parent, fields, extension, induct} =
   471           (case get_record thy name of SOME info => info | NONE => err "Unknown");
   472         val _ = if length types <> length args then err "Bad number of arguments for" else ();
   473 
   474         fun bad_inst ((x, S), T) =
   475           if Sign.of_sort sign (T, S) then NONE else SOME x
   476         val bads = List.mapPartial bad_inst (args ~~ types);
   477 
   478         val inst = map fst args ~~ types;
   479         val subst = Term.map_type_tfree (fn (x, _) => valOf (assoc (inst, x)));
   480         val parent' = Option.map (apfst (map subst)) parent;
   481         val fields' = map (apsnd subst) fields;
   482         val extension' = apsnd (map subst) extension;
   483       in
   484         conditional (not (null bads)) (fn () =>
   485           err ("Ill-sorted instantiation of " ^ commas bads ^ " in"));
   486         add_parents thy parent'
   487           (make_parent_info name fields' extension' induct::parents)
   488       end;
   489 
   490 
   491 (** concrete syntax for records **)
   492 
   493 (* parse translations *)
   494 
   495 fun gen_field_tr mark sfx (t as Const (c, _) $ Const (name, _) $ arg) =
   496       if c = mark then Syntax.const (suffix sfx name) $ arg
   497       else raise TERM ("gen_field_tr: " ^ mark, [t])
   498   | gen_field_tr mark _ t = raise TERM ("gen_field_tr: " ^ mark, [t]);
   499 
   500 fun gen_fields_tr sep mark sfx (tm as Const (c, _) $ t $ u) =
   501       if c = sep then gen_field_tr mark sfx t :: gen_fields_tr sep mark sfx u
   502       else [gen_field_tr mark sfx tm]
   503   | gen_fields_tr _ mark sfx tm = [gen_field_tr mark sfx tm];
   504 
   505 
   506 fun record_update_tr [t, u] =
   507       foldr (op $) t (rev (gen_fields_tr "_updates" "_update" updateN u))
   508   | record_update_tr ts = raise TERM ("record_update_tr", ts);
   509 
   510 fun update_name_tr (Free (x, T) :: ts) = Free (suffix updateN x, T) $$ ts
   511   | update_name_tr (Const (x, T) :: ts) = Const (suffix updateN x, T) $$ ts
   512   | update_name_tr (((c as Const ("_constrain", _)) $ t $ ty) :: ts) =
   513       (c $ update_name_tr [t] $ (Syntax.const "fun" $ ty $ Syntax.const "dummy")) $$ ts
   514   | update_name_tr ts = raise TERM ("update_name_tr", ts);
   515 
   516 fun dest_ext_field mark (t as (Const (c,_) $ Const (name,_) $ arg)) =
   517      if c = mark then (name,arg) else raise TERM ("dest_ext_field: " ^ mark, [t])
   518   | dest_ext_field _ t = raise TERM ("dest_ext_field", [t])
   519 
   520 fun dest_ext_fields sep mark (trm as (Const (c,_) $ t $ u)) =
   521      if c = sep then dest_ext_field mark t::dest_ext_fields sep mark u
   522      else [dest_ext_field mark trm]
   523   | dest_ext_fields _ mark t = [dest_ext_field mark t]
   524 
   525 fun gen_ext_fields_tr sep mark sfx more sg t =
   526   let 
   527     val msg = "error in record input: ";
   528     val fieldargs = dest_ext_fields sep mark t; 
   529     fun splitargs (field::fields) ((name,arg)::fargs) =
   530           if can (unsuffix name) field
   531           then let val (args,rest) = splitargs fields fargs
   532                in (arg::args,rest) end
   533           else raise TERM (msg ^ "expecting field " ^ field ^ " but got " ^ name, [t])
   534       | splitargs [] (fargs as (_::_)) = ([],fargs)
   535       | splitargs (_::_) [] = raise TERM (msg ^ "expecting more fields", [t])
   536       | splitargs _ _ = ([],[]);
   537 
   538     fun mk_ext (fargs as (name,arg)::_) =
   539          (case get_fieldext sg (Sign.intern_const sg name) of
   540             SOME (ext,_) => (case get_extfields sg ext of
   541                                SOME flds 
   542                                  => let val (args,rest) = 
   543                                                splitargs (map fst (but_last flds)) fargs;
   544                                         val more' = mk_ext rest;  
   545                                     in list_comb (Syntax.const (suffix sfx ext),args@[more'])
   546                                     end
   547                              | NONE => raise TERM(msg ^ "no fields defined for "
   548                                                    ^ ext,[t]))
   549           | NONE => raise TERM (msg ^ name ^" is no proper field",[t]))
   550       | mk_ext [] = more
   551 
   552   in mk_ext fieldargs end;   
   553 
   554 fun gen_ext_type_tr sep mark sfx more sg t =
   555   let 
   556     val msg = "error in record-type input: ";
   557     val fieldargs = dest_ext_fields sep mark t; 
   558     fun splitargs (field::fields) ((name,arg)::fargs) =
   559           if can (unsuffix name) field
   560           then let val (args,rest) = splitargs fields fargs
   561                in (arg::args,rest) end
   562           else raise TERM (msg ^ "expecting field " ^ field ^ " but got " ^ name, [t])
   563       | splitargs [] (fargs as (_::_)) = ([],fargs)
   564       | splitargs (_::_) [] = raise TERM (msg ^ "expecting more fields", [t])
   565       | splitargs _ _ = ([],[]);
   566 
   567     fun get_sort xs n = (case assoc (xs,n) of 
   568                                 SOME s => s 
   569                               | NONE => Sign.defaultS sg);
   570     fun to_type t = Sign.intern_typ sg 
   571                       (Syntax.typ_of_term (get_sort (Syntax.raw_term_sorts t)) I t);
   572  
   573     val tsig = Sign.tsig_of sg;
   574     fun unify (t,env) = Type.unify tsig env t; 
   575     
   576     fun mk_ext (fargs as (name,arg)::_) =
   577          (case get_fieldext sg (Sign.intern_const sg name) of
   578             SOME (ext,alphas) => 
   579               (case get_extfields sg ext of
   580                  SOME flds 
   581                   => (let
   582                        val flds' = but_last flds;
   583                        val types = map snd flds'; 
   584                        val (args,rest) = splitargs (map fst flds') fargs;
   585                        val vartypes = map Type.varifyT types;
   586                        val argtypes = map to_type args;
   587                        val (subst,_) = foldr unify (Vartab.empty,0) (vartypes ~~ argtypes);
   588                        val alphas' = map ((Syntax.term_of_typ (! Syntax.show_sorts)) o 
   589                                           (Envir.norm_type subst) o Type.varifyT) 
   590                                          (but_last alphas);
   591  
   592                        val more' = mk_ext rest;   
   593                      in list_comb (Syntax.const (suffix sfx ext),alphas'@[more']) 
   594                      end handle TUNIFY => raise 
   595                            TERM (msg ^ "type is no proper record (extension)", [t]))
   596                | NONE => raise TERM (msg ^ "no fields defined for " ^ ext,[t]))
   597           | NONE => raise TERM (msg ^ name ^" is no proper field",[t]))
   598       | mk_ext [] = more
   599 
   600   in mk_ext fieldargs end;   
   601 
   602 fun gen_adv_record_tr sep mark sfx unit sg [t] = 
   603       gen_ext_fields_tr sep mark sfx unit sg t
   604   | gen_adv_record_tr _ _ _ _ _ ts = raise TERM ("gen_record_tr", ts);
   605 
   606 fun gen_adv_record_scheme_tr sep mark sfx sg [t, more] = 
   607       gen_ext_fields_tr sep mark sfx more sg t 
   608   | gen_adv_record_scheme_tr _ _ _ _ ts = raise TERM ("gen_record_scheme_tr", ts);
   609 
   610 fun gen_adv_record_type_tr sep mark sfx unit sg [t] = 
   611       gen_ext_type_tr sep mark sfx unit sg t
   612   | gen_adv_record_type_tr _ _ _ _ _ ts = raise TERM ("gen_record_tr", ts);
   613 
   614 fun gen_adv_record_type_scheme_tr sep mark sfx sg [t, more] = 
   615       gen_ext_type_tr sep mark sfx more sg t 
   616   | gen_adv_record_type_scheme_tr _ _ _ _ ts = raise TERM ("gen_record_scheme_tr", ts);
   617 
   618 val adv_record_tr = gen_adv_record_tr "_fields" "_field" extN HOLogic.unit;
   619 val adv_record_scheme_tr = gen_adv_record_scheme_tr "_fields" "_field" extN;
   620 
   621 val adv_record_type_tr = 
   622       gen_adv_record_type_tr "_field_types" "_field_type" ext_typeN 
   623         (Syntax.term_of_typ false (HOLogic.unitT));
   624 val adv_record_type_scheme_tr = 
   625       gen_adv_record_type_scheme_tr "_field_types" "_field_type" ext_typeN;
   626 
   627 
   628 val parse_translation =
   629  [("_record_update", record_update_tr),
   630   ("_update_name", update_name_tr)];
   631 
   632 val adv_parse_translation = 
   633  [("_record",adv_record_tr),
   634   ("_record_scheme",adv_record_scheme_tr),
   635   ("_record_type",adv_record_type_tr),
   636   ("_record_type_scheme",adv_record_type_scheme_tr)];
   637 
   638 (* print translations *)
   639 
   640 val print_record_type_abbr = ref true;
   641 val print_record_type_as_fields = ref true;
   642 
   643 fun gen_field_upds_tr' mark sfx (tm as Const (name_field, _) $ t $ u) =
   644     (case try (unsuffix sfx) name_field of
   645       SOME name =>
   646         apfst (cons (Syntax.const mark $ Syntax.free name $ t)) (gen_field_upds_tr' mark sfx u)
   647      | NONE => ([], tm))
   648   | gen_field_upds_tr' _ _ tm = ([], tm);
   649 
   650 fun record_update_tr' tm =
   651   let val (ts, u) = gen_field_upds_tr' "_update" updateN tm in
   652     Syntax.const "_record_update" $ u $
   653       foldr1 (fn (v, w) => Syntax.const "_updates" $ v $ w) (rev ts)
   654   end;
   655 
   656 fun gen_field_tr' sfx tr' name =
   657   let val name_sfx = suffix sfx name
   658   in (name_sfx, fn [t, u] => tr' (Syntax.const name_sfx $ t $ u) | _ => raise Match) end;
   659 
   660 fun record_tr' sep mark record record_scheme unit sg t =
   661   let 
   662     fun field_lst t =
   663       (case strip_comb t of
   664         (Const (ext,_),args) 
   665          => (case try (unsuffix extN) (Sign.intern_const sg ext) of
   666                SOME ext' 
   667                => (case get_extfields sg ext' of
   668                      SOME flds 
   669                      => (let
   670                           val (f::fs) = but_last (map fst flds);
   671                           val flds' = Sign.extern sg Sign.constK f::map NameSpace.base fs; 
   672                           val (args',more) = split_last args; 
   673                          in (flds'~~args')@field_lst more end
   674                          handle UnequalLengths => [("",t)])
   675                    | NONE => [("",t)])
   676              | NONE => [("",t)])
   677        | _ => [("",t)])
   678 
   679     val (flds,(_,more)) = split_last (field_lst t);
   680     val flds' = map (fn (n,t)=>Syntax.const mark$Syntax.const n$t) flds;
   681     val flds'' = foldr1 (fn (x,y) => Syntax.const sep$x$y) flds';
   682 
   683   in if null flds then raise Match
   684      else if unit more  
   685           then Syntax.const record$flds'' 
   686           else Syntax.const record_scheme$flds''$more
   687   end
   688 
   689 fun gen_record_tr' name = 
   690   let val name_sfx = suffix extN name;
   691       val unit = (fn Const ("Unity",_) => true | _ => false);
   692       fun tr' sg ts = record_tr' "_fields" "_field" "_record" "_record_scheme" unit sg 
   693                        (list_comb (Syntax.const name_sfx,ts))
   694   in (name_sfx,tr')
   695   end
   696 
   697 fun print_translation names =
   698   map (gen_field_tr' updateN record_update_tr') names;
   699 
   700 (* record_type_abbr_tr' tries to reconstruct the record name type abbreviation from *)
   701 (* the (nested) extension types.                                                    *)
   702 fun record_type_abbr_tr' default_tr' abbr alphas zeta lastExt schemeT sg tm =
   703   let
   704       (* tm is term representation of a (nested) field type. We first reconstruct the      *)
   705       (* type from tm so that we can continue on the type level rather then the term level.*)
   706 
   707       fun get_sort xs n = (case assoc (xs,n) of 
   708                              SOME s => s 
   709                            | NONE => Sign.defaultS sg);
   710 
   711       (* WORKAROUND:
   712        * If a record type occurs in an error message of type inference there  
   713        * may be some internal frees donoted by ??:
   714        * (Const "_tfree",_)$Free ("??'a",_). 
   715          
   716        * This will unfortunately be translated to Type ("??'a",[]) instead of 
   717        * TFree ("??'a",_) by typ_of_term, which will confuse unify below. 
   718        * fixT works around.
   719        *)
   720       fun fixT (T as Type (x,[])) = 
   721             if String.isPrefix "??'" x then TFree (x,Sign.defaultS sg) else T
   722         | fixT (Type (x,xs)) = Type (x,map fixT xs)
   723         | fixT T = T;
   724       
   725       val T = fixT (Sign.intern_typ sg 
   726                       (Syntax.typ_of_term (get_sort (Syntax.raw_term_sorts tm)) I tm)); 
   727       val tsig = Sign.tsig_of sg
   728 
   729       fun mk_type_abbr subst name alphas = 
   730           let val abbrT = Type (name, map (fn a => TVar ((a, 0), [])) alphas);
   731           in Syntax.term_of_typ (! Syntax.show_sorts) (Envir.norm_type subst abbrT) end;    
   732 
   733       fun unify rT T = fst (Type.unify tsig (Vartab.empty,0) (Type.varifyT rT,T));
   734 
   735    in if !print_record_type_abbr
   736       then (case last_extT T of
   737              SOME (name,_) 
   738               => if name = lastExt 
   739                  then
   740 		  (let 
   741                        val subst = unify schemeT T 
   742                    in 
   743                     if HOLogic.is_unitT (Envir.norm_type subst (TVar((zeta,0),Sign.defaultS sg)))
   744                     then mk_type_abbr subst abbr alphas
   745                     else mk_type_abbr subst (suffix schemeN abbr) (alphas@[zeta])
   746 		   end handle TUNIFY => default_tr' sg tm)
   747                  else raise Match (* give print translation of specialised record a chance *)
   748             | _ => raise Match)
   749        else default_tr' sg tm
   750   end
   751 
   752 fun record_type_tr' sep mark record record_scheme sg t =
   753   let
   754     fun get_sort xs n = (case assoc (xs,n) of 
   755                              SOME s => s 
   756                            | NONE => Sign.defaultS sg);
   757 
   758     val T = Sign.intern_typ sg (Syntax.typ_of_term (get_sort (Syntax.raw_term_sorts t)) I t)
   759 
   760     val tsig = Sign.tsig_of sg
   761     fun unify (t,v) = Type.unify tsig v t;
   762 
   763     fun term_of_type T = Syntax.term_of_typ (!Syntax.show_sorts) (Sign.extern_typ sg T);
   764  
   765     fun field_lst T =
   766       (case T of
   767         Type (ext,args) 
   768          => (case try (unsuffix ext_typeN) ext of
   769                SOME ext' 
   770                => (case get_extfields sg ext' of
   771                      SOME flds 
   772                      => (case get_fieldext sg (fst (hd flds)) of
   773                            SOME (_,alphas) 
   774                            => (let
   775                                 val (f::fs) = but_last flds;
   776                                 val flds' = apfst (Sign.extern sg Sign.constK) f
   777                                             ::map (apfst NameSpace.base) fs; 
   778                                 val (args',more) = split_last args; 
   779                                 val alphavars = map Type.varifyT (but_last alphas); 
   780                                 val (subst,_)= foldr unify (Vartab.empty,0) (alphavars~~args');
   781                                 val flds'' =map (apsnd ((Envir.norm_type subst)o(Type.varifyT)))
   782                                                 flds';
   783                               in flds''@field_lst more end
   784                               handle TUNIFY         => [("",T)] 
   785                                    | UnequalLengths => [("",T)])
   786                          | NONE => [("",T)])
   787                    | NONE => [("",T)])
   788              | NONE => [("",T)]) 
   789         | _ => [("",T)])
   790 
   791     val (flds,(_,moreT)) = split_last (field_lst T);
   792     val flds' = map (fn (n,T)=>Syntax.const mark$Syntax.const n$term_of_type T) flds;
   793     val flds'' = foldr1 (fn (x,y) => Syntax.const sep$x$y) flds';
   794 
   795   in if not (!print_record_type_as_fields) orelse null flds then raise Match
   796      else if moreT = HOLogic.unitT 
   797           then Syntax.const record$flds'' 
   798           else Syntax.const record_scheme$flds''$term_of_type moreT
   799   end
   800     
   801 
   802 fun gen_record_type_tr' name = 
   803   let val name_sfx = suffix ext_typeN name;
   804       fun tr' sg ts = record_type_tr' "_field_types" "_field_type" 
   805                        "_record_type" "_record_type_scheme" sg 
   806                        (list_comb (Syntax.const name_sfx,ts))
   807   in (name_sfx,tr')
   808   end
   809 
   810      
   811 fun gen_record_type_abbr_tr' abbr alphas zeta lastExt schemeT name =
   812   let val name_sfx = suffix ext_typeN name;
   813       val default_tr' = record_type_tr' "_field_types" "_field_type" 
   814                                "_record_type" "_record_type_scheme" 
   815       fun tr' sg ts = record_type_abbr_tr' default_tr' abbr alphas zeta lastExt schemeT sg
   816                          (list_comb (Syntax.const name_sfx,ts))
   817   in (name_sfx, tr') end;
   818 
   819 (** record simprocs **)
   820 
   821 val record_quick_and_dirty_sensitive = ref false;
   822 
   823 
   824 fun quick_and_dirty_prove stndrd sg asms prop tac =
   825   if !record_quick_and_dirty_sensitive andalso !quick_and_dirty
   826   then Tactic.prove sg [] [] (Logic.list_implies (map Logic.varify asms,Logic.varify prop))
   827         (K (SkipProof.cheat_tac HOL.thy))
   828         (* standard can take quite a while for large records, thats why
   829          * we varify the proposition manually here.*) 
   830   else let val prf = Tactic.prove sg [] asms prop tac;
   831        in if stndrd then standard prf else prf end; 
   832 
   833 fun quick_and_dirty_prf noopt opt () = 
   834       if !record_quick_and_dirty_sensitive andalso !quick_and_dirty 
   835       then noopt ()
   836       else opt ();
   837 
   838 
   839 fun prove_split_simp sg T prop =
   840   let 
   841     val {sel_upd={simpset,...},extsplit,...} = RecordsData.get_sg sg;
   842     val extsplits = 
   843             Library.foldl (fn (thms,(n,_)) => (list (Symtab.lookup (extsplit,n)))@thms) 
   844                     ([],dest_recTs T);
   845     val thms = (case get_splits sg (rec_id (~1) T) of
   846                    SOME (all_thm,_,_,_) => 
   847                      all_thm::(case extsplits of [thm] => [] | _ => extsplits)
   848                               (* [thm] is the same as all_thm *)
   849                  | NONE => extsplits)                                
   850   in (quick_and_dirty_prove true sg [] prop (fn _ => (simp_tac (simpset addsimps thms) 1)))
   851   end;
   852 
   853 
   854 local
   855 
   856 fun get_fields extfields T = 
   857      Library.foldl (fn (xs,(eN,_))=>xs@(Symtab.lookup_multi (extfields,eN)))
   858              ([],(dest_recTs T));
   859 in
   860 (* record_simproc *)
   861 (* Simplifies selections of an record update:
   862  *  (1)  S (r(|S:=k|)) = k respectively
   863  *  (2)  S (r(|X:=k|)) = S r
   864  * The simproc skips multiple updates at once, eg:
   865  *  S (r (|S:=k,X:=2,Y:=3|)) = k
   866  * But be careful in (2) because of the extendibility of records.
   867  * - If S is a more-selector we have to make sure that the update on component
   868  *   X does not affect the selected subrecord.
   869  * - If X is a more-selector we have to make sure that S is not in the updated
   870  *   subrecord. 
   871  *)
   872 val record_simproc =
   873   Simplifier.simproc (Theory.sign_of HOL.thy) "record_simp" ["s (u k r)"]
   874     (fn sg => fn _ => fn t =>
   875       (case t of (sel as Const (s, Type (_,[domS,rangeS])))$((upd as Const (u, _)) $ k $ r)=>
   876         (case get_selectors sg s of SOME () =>
   877           (case get_updates sg u of SOME u_name =>
   878             let
   879               fun mk_abs_var x t = (x, fastype_of t);
   880               val {sel_upd={updates,...},extfields,...} = RecordsData.get_sg sg;
   881               
   882               fun mk_eq_terms ((upd as Const (u,Type(_,[updT,_]))) $ k $ r) =
   883 		  (case (Symtab.lookup (updates,u)) of
   884                      NONE => NONE
   885                    | SOME u_name 
   886                      => if u_name = s
   887                         then let 
   888                                val rv = mk_abs_var "r" r
   889                                val rb = Bound 0
   890                                val kv = mk_abs_var "k" k
   891                                val kb = Bound 1 
   892                              in SOME (upd$kb$rb,kb,[kv,rv],true) end
   893                         else if u_name mem (map fst (get_fields extfields rangeS))
   894                              orelse s mem (map fst (get_fields extfields updT))
   895                              then NONE
   896 			     else (case mk_eq_terms r of 
   897                                      SOME (trm,trm',vars,update_s) 
   898                                      => let   
   899 					  val kv = mk_abs_var "k" k
   900                                           val kb = Bound (length vars)
   901 		                        in SOME (upd$kb$trm,trm',kv::vars,update_s) end
   902                                    | NONE
   903                                      => let 
   904 					  val rv = mk_abs_var "r" r
   905                                           val rb = Bound 0
   906                                           val kv = mk_abs_var "k" k
   907                                           val kb = Bound 1 
   908                                         in SOME (upd$kb$rb,rb,[kv,rv],false) end))
   909                 | mk_eq_terms r = NONE     
   910             in
   911 	      (case mk_eq_terms (upd$k$r) of
   912                  SOME (trm,trm',vars,update_s) 
   913                  => if update_s 
   914 		    then SOME (prove_split_simp sg domS 
   915                                  (list_all(vars,(Logic.mk_equals (sel$trm,trm')))))
   916                     else SOME (prove_split_simp sg domS 
   917                                  (list_all(vars,(Logic.mk_equals (sel$trm,sel$trm')))))
   918                | NONE => NONE)
   919             end
   920           | NONE => NONE)
   921         | NONE => NONE)
   922       | _ => NONE));
   923 
   924 (* record_upd_simproc *) 
   925 (* simplify multiple updates:
   926  *  (1)  "r(|M:=3,N:=1,M:=2,N:=4|) == r(|M:=2,N:=4|)"
   927  *  (2)  "r(|M:= M r|) = r"
   928  * For (2) special care of "more" updates has to be taken:
   929  *    r(|more := m; A := A r|)
   930  * If A is contained in the fields of m we cannot remove the update A := A r!
   931  * (But r(|more := r; A := A (r(|more := r|))|) = r(|more := r|) 
   932 *)
   933 val record_upd_simproc =
   934   Simplifier.simproc (Theory.sign_of HOL.thy) "record_upd_simp" ["(u k r)"]
   935     (fn sg => fn _ => fn t =>
   936       (case t of ((upd as Const (u, Type(_,[_,Type(_,[T,_])]))) $ k $ r) =>
   937  	 let datatype ('a,'b) calc = Init of 'b | Inter of 'a  
   938              val {sel_upd={selectors,updates,...},extfields,...} = RecordsData.get_sg sg;
   939              
   940 	     fun mk_abs_var x t = (x, fastype_of t);
   941              fun sel_name u = NameSpace.base (unsuffix updateN u);
   942 
   943              fun seed s (upd as Const (more,Type(_,[mT,_]))$ k $ r) =
   944                   if s mem (map fst (get_fields extfields mT)) then upd else seed s r
   945                | seed _ r = r;
   946 
   947              fun grow u uT k vars (sprout,skeleton) = 
   948 		   if sel_name u = moreN
   949                    then let val kv = mk_abs_var "k" k;
   950                             val kb = Bound (length vars);
   951                         in ((Const (u,uT)$k$sprout,Const (u,uT)$kb$skeleton),kv::vars) end
   952                    else ((sprout,skeleton),vars);
   953 
   954              fun is_upd_same (sprout,skeleton) u ((sel as Const (s,_))$r) =
   955                    if (unsuffix updateN u) = s andalso (seed s sprout) = r 
   956                    then SOME (sel,seed s skeleton)
   957                    else NONE
   958                | is_upd_same _ _ _ = NONE
   959  
   960              fun init_seed r = ((r,Bound 0), [mk_abs_var "r" r]);
   961                        
   962              (* mk_updterm returns either
   963               *  - Init (orig-term, orig-term-skeleton, vars) if no optimisation can be made,
   964               *     where vars are the bound variables in the skeleton 
   965               *  - Inter (orig-term-skeleton,simplified-term-skeleton, 
   966               *           vars, term-sprout, skeleton-sprout)
   967               *     where "All vars. orig-term-skeleton = simplified-term-skeleton" is
   968               *     the desired simplification rule,
   969               *     the sprouts accumulate the "more-updates" on the way from the seed
   970               *     to the outermost update. It is only relevant to calculate the 
   971               *     possible simplification for (2) 
   972               * The algorithm first walks down the updates to the seed-record while
   973               * memorising the updates in the already-table. While walking up the
   974               * updates again, the optimised term is constructed.
   975               *)
   976              fun mk_updterm upds already (t as ((upd as Const (u,uT)) $ k $ r)) =
   977 		 if isSome (Symtab.lookup (upds,u))
   978 		 then let 
   979 			 fun rest already = mk_updterm upds already
   980 		      in if isSome (Symtab.lookup (already,u)) 
   981 			 then (case (rest already r) of
   982 				 Init ((sprout,skel),vars) => 
   983                                  let
   984 	                           val kv = mk_abs_var (sel_name u) k;
   985                                    val kb = Bound (length vars);
   986                                    val (sprout',vars')= grow u uT k (kv::vars) (sprout,skel);
   987                                  in Inter (upd$kb$skel,skel,vars',sprout') end
   988                                | Inter (trm,trm',vars,sprout) => 
   989                                  let 
   990 		                   val kv = mk_abs_var (sel_name u) k;
   991                                    val kb = Bound (length vars);
   992                                    val (sprout',vars') = grow u uT k (kv::vars) sprout;
   993                                  in Inter(upd$kb$trm,trm',kv::vars',sprout') end) 
   994 	                 else 
   995                           (case rest (Symtab.update ((u,()),already)) r of 
   996 			     Init ((sprout,skel),vars) => 
   997                               (case is_upd_same (sprout,skel) u k of
   998                                  SOME (sel,skel') => 
   999                                  let
  1000 		                   val (sprout',vars') = grow u uT k vars (sprout,skel); 
  1001                                   in Inter(upd$(sel$skel')$skel,skel,vars',sprout') end
  1002                                | NONE =>  
  1003                                  let
  1004 	                           val kv = mk_abs_var (sel_name u) k;
  1005                                    val kb = Bound (length vars);
  1006                                  in Init ((upd$k$sprout,upd$kb$skel),kv::vars) end)
  1007 		           | Inter (trm,trm',vars,sprout) => 
  1008                                (case is_upd_same sprout u k of
  1009                                   SOME (sel,skel) =>
  1010                                   let
  1011                                     val (sprout',vars') = grow u uT k vars sprout
  1012                                   in Inter(upd$(sel$skel)$trm,trm',vars',sprout') end
  1013                                 | NONE =>
  1014                                   let
  1015 				    val kv = mk_abs_var (sel_name u) k
  1016                                     val kb = Bound (length vars)
  1017                                     val (sprout',vars') = grow u uT k (kv::vars) sprout
  1018                                   in Inter (upd$kb$trm,upd$kb$trm',vars',sprout') end))
  1019 		      end
  1020 		 else Init (init_seed t)
  1021 	       | mk_updterm _ _ t = Init (init_seed t);
  1022 
  1023 	 in (case mk_updterm updates Symtab.empty t of
  1024 	       Inter (trm,trm',vars,_)
  1025                 => SOME (prove_split_simp sg T  
  1026                           (list_all(vars,(Logic.mk_equals (trm,trm')))))
  1027              | _ => NONE)
  1028 	 end
  1029        | _ => NONE));
  1030 end
  1031 
  1032 (* record_eq_simproc *)
  1033 (* looks up the most specific record-equality.
  1034  * Note on efficiency:
  1035  * Testing equality of records boils down to the test of equality of all components.
  1036  * Therefore the complexity is: #components * complexity for single component.
  1037  * Especially if a record has a lot of components it may be better to split up
  1038  * the record first and do simplification on that (record_split_simp_tac).
  1039  * e.g. r(|lots of updates|) = x
  1040  *
  1041  *               record_eq_simproc       record_split_simp_tac
  1042  * Complexity: #components * #updates     #updates   
  1043  *           
  1044  *)
  1045 val record_eq_simproc =
  1046   Simplifier.simproc (Theory.sign_of HOL.thy) "record_eq_simp" ["r = s"]
  1047     (fn sg => fn _ => fn t =>
  1048       (case t of Const ("op =", Type (_, [T, _])) $ _ $ _ =>
  1049         (case rec_id (~1) T of
  1050            "" => NONE
  1051          | name => (case get_equalities sg name of
  1052                                 NONE => NONE
  1053                               | SOME thm => SOME (thm RS Eq_TrueI)))
  1054        | _ => NONE));
  1055 
  1056 (* record_split_simproc *)
  1057 (* splits quantified occurrences of records, for which P holds. P can peek on the 
  1058  * subterm starting at the quantified occurrence of the record (including the quantifier)
  1059  * P t = 0: do not split
  1060  * P t = ~1: completely split
  1061  * P t > 0: split up to given bound of record extensions
  1062  *)
  1063 fun record_split_simproc P =
  1064   Simplifier.simproc (Theory.sign_of HOL.thy) "record_split_simp" ["(a t)"]
  1065     (fn sg => fn _ => fn t =>
  1066       (case t of (Const (quantifier, Type (_, [Type (_, [T, _]), _])))$trm =>
  1067          if quantifier = "All" orelse quantifier = "all" orelse quantifier = "Ex"
  1068          then (case rec_id (~1) T of
  1069                  "" => NONE
  1070                | name
  1071                   => let val split = P t 
  1072                      in if split <> 0 then 
  1073                         (case get_splits sg (rec_id split T) of
  1074                               NONE => NONE
  1075                             | SOME (all_thm, All_thm, Ex_thm,_) 
  1076                                => SOME (case quantifier of
  1077                                           "all" => all_thm
  1078                                         | "All" => All_thm RS HOL.eq_reflection
  1079                                         | "Ex"  => Ex_thm RS HOL.eq_reflection
  1080                                         | _     => error "record_split_simproc"))
  1081                         else NONE
  1082                       end)
  1083          else NONE
  1084        | _ => NONE))
  1085 
  1086 val record_ex_sel_eq_simproc =
  1087   Simplifier.simproc (Theory.sign_of HOL.thy) "record_ex_sel_eq_simproc" ["Ex t"]
  1088     (fn sg => fn _ => fn t =>
  1089        let 
  1090          fun prove prop = (quick_and_dirty_prove true sg [] prop 
  1091                              (fn _ => (simp_tac ((get_simpset sg) addsimps simp_thms
  1092                                         addsimprocs [record_split_simproc (K ~1)]) 1)));
  1093 
  1094          fun mkeq (lr,Teq,(sel,Tsel),x) i =
  1095               (case get_selectors sg sel of SOME () =>
  1096                  let val x' = if not (loose_bvar1 (x,0)) 
  1097                               then Free ("x" ^ string_of_int i, range_type Tsel) 
  1098                               else raise TERM ("",[x]);
  1099                      val sel' = Const (sel,Tsel)$Bound 0;
  1100                      val (l,r) = if lr then (sel',x') else (x',sel');
  1101                   in Const ("op =",Teq)$l$r end
  1102                | NONE => raise TERM ("",[Const (sel,Tsel)]));
  1103 
  1104          fun dest_sel_eq (Const ("op =",Teq)$(Const (sel,Tsel)$Bound 0)$X) = 
  1105                            (true,Teq,(sel,Tsel),X)
  1106            | dest_sel_eq (Const ("op =",Teq)$X$(Const (sel,Tsel)$Bound 0)) =
  1107                            (false,Teq,(sel,Tsel),X)
  1108            | dest_sel_eq _ = raise TERM ("",[]);
  1109 
  1110        in         
  1111          (case t of 
  1112            (Const ("Ex",Tex)$Abs(s,T,t)) =>
  1113              let val eq = mkeq (dest_sel_eq t) 0;
  1114                  val prop = list_all ([("r",T)],
  1115                               Logic.mk_equals (Const ("Ex",Tex)$Abs(s,T,eq),
  1116                                                HOLogic.true_const));
  1117              in SOME (prove prop) end
  1118              handle TERM _ => NONE
  1119           | _ => NONE)                      
  1120          end)
  1121 
  1122 
  1123     
  1124 
  1125 local
  1126 val inductive_atomize = thms "induct_atomize";
  1127 val inductive_rulify1 = thms "induct_rulify1";
  1128 in
  1129 (* record_split_simp_tac *)
  1130 (* splits (and simplifies) all records in the goal for which P holds. 
  1131  * For quantified occurrences of a record
  1132  * P can peek on the whole subterm (including the quantifier); for free variables P
  1133  * can only peek on the variable itself.
  1134  * P t = 0: do not split
  1135  * P t = ~1: completely split
  1136  * P t > 0: split up to given bound of record extensions 
  1137  *)
  1138 fun record_split_simp_tac thms P i st =
  1139   let
  1140     val sg = Thm.sign_of_thm st;
  1141     val {sel_upd={simpset,...},...} 
  1142             = RecordsData.get_sg sg;
  1143 
  1144     val has_rec = exists_Const
  1145       (fn (s, Type (_, [Type (_, [T, _]), _])) =>
  1146           (s = "all" orelse s = "All" orelse s = "Ex") andalso is_recT T 
  1147         | _ => false);
  1148 
  1149     val goal = List.nth (Thm.prems_of st, i - 1);
  1150     val frees = List.filter (is_recT o type_of) (term_frees goal);
  1151 
  1152     fun mk_split_free_tac free induct_thm i = 
  1153 	let val cfree = cterm_of sg free;
  1154             val (_$(_$r)) = concl_of induct_thm;
  1155             val crec = cterm_of sg r;
  1156             val thm  = cterm_instantiate [(crec,cfree)] induct_thm;
  1157         in EVERY [simp_tac (HOL_basic_ss addsimps inductive_atomize) i,
  1158                   rtac thm i,
  1159                   simp_tac (HOL_basic_ss addsimps inductive_rulify1) i]
  1160 	end;
  1161 
  1162     fun split_free_tac P i (free as Free (n,T)) = 
  1163 	(case rec_id (~1) T of
  1164            "" => NONE
  1165          | name => let val split = P free 
  1166                    in if split <> 0 then 
  1167                       (case get_splits sg (rec_id split T) of
  1168                              NONE => NONE
  1169                            | SOME (_,_,_,induct_thm)
  1170                                => SOME (mk_split_free_tac free induct_thm i))
  1171                       else NONE
  1172                    end)
  1173      | split_free_tac _ _ _ = NONE;
  1174 
  1175     val split_frees_tacs = List.mapPartial (split_free_tac P i) frees;
  1176    
  1177     val simprocs = if has_rec goal then [record_split_simproc P] else [];
  1178    
  1179   in st |> (EVERY split_frees_tacs) 
  1180            THEN (Simplifier.full_simp_tac (simpset addsimps thms addsimprocs simprocs) i)
  1181   end handle Empty => Seq.empty;
  1182 end;
  1183 
  1184 
  1185 (* record_split_tac *)
  1186 (* splits all records in the goal, which are quantified by ! or !!. *)
  1187 fun record_split_tac i st =
  1188   let
  1189     val sg = Thm.sign_of_thm st;
  1190 
  1191     val has_rec = exists_Const
  1192       (fn (s, Type (_, [Type (_, [T, _]), _])) =>
  1193           (s = "all" orelse s = "All") andalso is_recT T 
  1194         | _ => false);
  1195  
  1196     val goal = List.nth (Thm.prems_of st, i - 1);   
  1197 
  1198     fun is_all t =
  1199       (case t of (Const (quantifier, _)$_) =>
  1200          if quantifier = "All" orelse quantifier = "all" then ~1 else 0
  1201        | _ => 0);
  1202  
  1203   in if has_rec goal 
  1204      then Simplifier.full_simp_tac 
  1205            (HOL_basic_ss addsimprocs [record_split_simproc is_all]) i st 
  1206      else Seq.empty
  1207   end handle Subscript => Seq.empty;
  1208 
  1209 (* wrapper *)
  1210 
  1211 val record_split_name = "record_split_tac";
  1212 val record_split_wrapper = (record_split_name, fn tac => record_split_tac ORELSE' tac);
  1213 
  1214 (** theory extender interface **)
  1215 
  1216 (* prepare arguments *)
  1217 
  1218 (*note: read_raw_typ avoids expanding type abbreviations*)
  1219 fun read_raw_parent sign s =
  1220   (case Sign.read_raw_typ (sign, K NONE) s handle TYPE (msg, _, _) => error msg of
  1221     Type (name, Ts) => (Ts, name)
  1222   | _ => error ("Bad parent record specification: " ^ quote s));
  1223 
  1224 fun read_typ sign (env, s) =
  1225   let
  1226     fun def_sort (x, ~1) = assoc (env, x)
  1227       | def_sort _ = NONE;
  1228     val T = Type.no_tvars (Sign.read_typ (sign, def_sort) s) handle TYPE (msg, _, _) => error msg;
  1229   in (Term.add_typ_tfrees (T, env), T) end;
  1230 
  1231 fun cert_typ sign (env, raw_T) =
  1232   let val T = Type.no_tvars (Sign.certify_typ sign raw_T) handle TYPE (msg, _, _) => error msg
  1233   in (Term.add_typ_tfrees (T, env), T) end;
  1234 
  1235 (* attributes *)
  1236 
  1237 fun case_names_fields x = RuleCases.case_names ["fields"] x;
  1238 fun induct_type_global name = [case_names_fields, InductAttrib.induct_type_global name];
  1239 fun cases_type_global name = [case_names_fields, InductAttrib.cases_type_global name];
  1240 
  1241 (* tactics *)
  1242 
  1243 fun simp_all_tac ss simps = ALLGOALS (Simplifier.asm_full_simp_tac (ss addsimps simps));
  1244 
  1245 (* do case analysis / induction according to rule on last parameter of ith subgoal 
  1246  * (or on s if there are no parameters); 
  1247  * Instatiation of record variable (and predicate) in rule is calculated to
  1248  * avoid problems with higher order unification. 
  1249  *)
  1250 
  1251 fun try_param_tac s rule i st =
  1252   let
  1253     val cert = cterm_of (Thm.sign_of_thm st);
  1254     val g = List.nth (prems_of st, i - 1);
  1255     val params = Logic.strip_params g;
  1256     val concl = HOLogic.dest_Trueprop (Logic.strip_assums_concl g);
  1257     val rule' = Thm.lift_rule (st, i) rule;
  1258     val (P, ys) = strip_comb (HOLogic.dest_Trueprop
  1259       (Logic.strip_assums_concl (prop_of rule')));
  1260     (* ca indicates if rule is a case analysis or induction rule *)
  1261     val (x, ca) = (case rev (Library.drop (length params, ys)) of
  1262         [] => (head_of (fst (HOLogic.dest_eq (HOLogic.dest_Trueprop
  1263           (hd (rev (Logic.strip_assums_hyp (hd (prems_of rule')))))))), true)
  1264       | [x] => (head_of x, false));
  1265     val rule'' = cterm_instantiate (map (pairself cert) (case (rev params) of
  1266         [] => (case assoc (map dest_Free (term_frees (prop_of st)), s) of
  1267           NONE => sys_error "try_param_tac: no such variable"
  1268         | SOME T => [(P, if ca then concl else lambda (Free (s, T)) concl),
  1269             (x, Free (s, T))])
  1270       | (_, T) :: _ => [(P, list_abs (params, if ca then concl
  1271           else incr_boundvars 1 (Abs (s, T, concl)))),
  1272         (x, list_abs (params, Bound 0))])) rule'
  1273   in compose_tac (false, rule'', nprems_of rule) i st end;
  1274 
  1275 
  1276 (* !!x1 ... xn. ... ==> EX x1 ... xn. P x1 ... xn;
  1277    instantiates x1 ... xn with parameters x1 ... xn *)
  1278 fun ex_inst_tac i st =
  1279   let
  1280     val sg = sign_of_thm st;
  1281     val g = List.nth (prems_of st, i - 1);
  1282     val params = Logic.strip_params g;
  1283     val exI' = Thm.lift_rule (st, i) exI;
  1284     val (_$(_$x)) = Logic.strip_assums_concl (hd (prems_of exI'));
  1285     val cx = cterm_of sg (fst (strip_comb x));
  1286 
  1287   in Seq.single (Library.foldl (fn (st,v) => 
  1288         Seq.hd 
  1289         (compose_tac (false, cterm_instantiate 
  1290                                 [(cx,cterm_of sg (list_abs (params,Bound v)))] exI',1) 
  1291                 i st)) (st,((length params) - 1) downto 0))
  1292   end;
  1293 
  1294 fun extension_typedef name repT alphas thy =
  1295   let
  1296     val UNIV = HOLogic.mk_UNIV repT;
  1297 
  1298     val (thy',{set_def=SOME def, Abs_induct = abs_induct, 
  1299                Abs_inject=abs_inject, Abs_inverse = abs_inverse,...}) =
  1300         thy |> setmp TypedefPackage.quiet_mode true
  1301            (TypedefPackage.add_typedef_i true NONE
  1302              (suffix ext_typeN (Sign.base_name name), alphas, Syntax.NoSyn) UNIV NONE
  1303              (Tactic.rtac UNIV_witness 1))
  1304     val rewrite_rule = Tactic.rewrite_rule [def, rec_UNIV_I, rec_True_simp];
  1305   in (thy',map rewrite_rule [abs_inject, abs_inverse, abs_induct])
  1306   end;
  1307 
  1308 fun mixit convs refls = 
  1309   let fun f ((res,lhs,rhs),refl) = ((refl,List.revAppend (lhs,refl::tl rhs))::res,hd rhs::lhs,tl rhs);
  1310   in #1 (Library.foldl f (([],[],convs),refls)) end;
  1311 
  1312 fun extension_definition full name fields names alphas zeta moreT more vars thy = 
  1313   let  
  1314     val base = Sign.base_name;
  1315     val fieldTs = (map snd fields);
  1316     val alphas_zeta = alphas@[zeta];
  1317     val alphas_zetaTs = map (fn n => TFree (n, HOLogic.typeS)) alphas_zeta;
  1318     val vT = TFree (variant alphas_zeta "'v", HOLogic.typeS);
  1319     val extT_name = suffix ext_typeN name
  1320     val extT = Type (extT_name, alphas_zetaTs);
  1321     val repT = foldr1 HOLogic.mk_prodT (fieldTs@[moreT]);
  1322     val fields_more = fields@[(full moreN,moreT)];
  1323     val fields_moreTs = fieldTs@[moreT];
  1324     val bfields_more = map (apfst base) fields_more;
  1325     val r = Free (rN,extT)
  1326     val len = length fields;
  1327     val idxms = 0 upto len;
  1328 
  1329     (* prepare declarations and definitions *)
  1330     
  1331     (*fields constructor*)
  1332     val ext_decl = (mk_extC (name,extT) fields_moreTs);
  1333     (*     
  1334     val ext_spec = Const ext_decl :== 
  1335          (foldr (uncurry lambda) 
  1336             (mk_Abs name repT extT $ (foldr1 HOLogic.mk_prod (vars@[more]))) (vars@[more])) 
  1337     *) 
  1338     val ext_spec = list_comb (Const ext_decl,vars@[more]) :== 
  1339          (mk_Abs name repT extT $ (foldr1 HOLogic.mk_prod (vars@[more])));
  1340  
  1341     fun mk_ext args = list_comb (Const ext_decl, args); 
  1342 
  1343     (*destructors*) 
  1344     val dest_decls = map (mk_selC extT o (apfst (suffix ext_dest))) bfields_more;
  1345 
  1346     fun mk_dest_spec (i, (c,T)) =
  1347       let val snds = (funpow i HOLogic.mk_snd (mk_Rep name repT extT $ r))
  1348       in Const (mk_selC extT (suffix ext_dest c,T))
  1349          :== (lambda r (if i=len then snds else HOLogic.mk_fst snds))
  1350       end;
  1351     val dest_specs =
  1352       ListPair.map mk_dest_spec (idxms, fields_more);
  1353    
  1354     
  1355     val upd_decls = map (mk_updC updN extT) bfields_more;
  1356     fun mk_upd_spec (c,T) =
  1357       let
  1358         val args = map (fn (n,nT) => if n=c then Free (base c,T) 
  1359                                      else (mk_sel r (suffix ext_dest n,nT))) 
  1360                        fields_more;
  1361       in Const (mk_updC updN extT (c,T))$(Free (base c,T))$r
  1362           :== mk_ext args
  1363       end;
  1364     val upd_specs = map mk_upd_spec fields_more;
  1365     
  1366     (* 1st stage: defs_thy *)
  1367     val (defs_thy, (([abs_inject, abs_inverse, abs_induct],ext_def::dest_defs),upd_defs)) =
  1368         thy 
  1369         |> extension_typedef name repT (alphas@[zeta])
  1370         |>> Theory.add_consts_i 
  1371               (map Syntax.no_syn ((apfst base ext_decl)::dest_decls@upd_decls))
  1372         |>>> PureThy.add_defs_i false (map Thm.no_attributes (ext_spec::dest_specs))
  1373         |>>> PureThy.add_defs_i false (map Thm.no_attributes upd_specs)
  1374     
  1375     (* prepare propositions *)
  1376 
  1377     val vars_more = vars@[more];
  1378     val named_vars_more = (names@[full moreN])~~vars_more;
  1379     val variants = map (fn (Free (x,_))=>x) vars_more;
  1380     val ext = mk_ext vars_more;
  1381     val s     = Free (rN, extT);
  1382     val w     = Free (wN, extT);
  1383     val P = Free (variant variants "P", extT-->HOLogic.boolT);
  1384     val C = Free (variant variants "C", HOLogic.boolT);
  1385 
  1386     val inject_prop =
  1387       let val vars_more' = map (fn (Free (x,T)) => Free (x ^ "'",T)) vars_more;
  1388       in All (map dest_Free (vars_more@vars_more')) 
  1389           ((HOLogic.eq_const extT $ 
  1390             mk_ext vars_more$mk_ext vars_more') 
  1391            ===
  1392            foldr1 HOLogic.mk_conj (map HOLogic.mk_eq (vars_more ~~ vars_more')))
  1393       end;
  1394     
  1395     val induct_prop =
  1396       (All (map dest_Free vars_more) (Trueprop (P $ ext)), Trueprop (P $ s));
  1397 
  1398     val cases_prop =
  1399       (All (map dest_Free vars_more) 
  1400         (Trueprop (HOLogic.mk_eq (s,ext)) ==> Trueprop C)) 
  1401       ==> Trueprop C;
  1402 
  1403     (*destructors*) 
  1404     val dest_conv_props =
  1405        map (fn (c, x as Free (_,T)) => mk_sel ext (suffix ext_dest c,T) === x) named_vars_more;
  1406 
  1407     (*updates*)
  1408     
  1409     fun mk_upd_prop (i,(c,T)) =
  1410       let val x' = Free (variant variants (base c ^ "'"),T) 
  1411           val args' = nth_update x' (i, vars_more)
  1412       in mk_upd updN c x' ext === mk_ext args'  end;
  1413     val upd_conv_props = ListPair.map mk_upd_prop (idxms, fields_more);
  1414 
  1415     val surjective_prop =
  1416       let val args = 
  1417            map (fn (c, Free (_,T)) => mk_sel s (suffix ext_dest c,T)) named_vars_more;
  1418       in s === mk_ext args end;
  1419 
  1420     val split_meta_prop =
  1421       let val P = Free (variant variants "P", extT-->Term.propT) in
  1422         Logic.mk_equals 
  1423          (All [dest_Free s] (P $ s), All (map dest_Free vars_more) (P $ ext))
  1424       end; 
  1425 
  1426     fun prove stndrd = quick_and_dirty_prove stndrd (Theory.sign_of defs_thy);
  1427     val prove_standard = quick_and_dirty_prove true (Theory.sign_of defs_thy);
  1428     fun prove_simp stndrd simps =
  1429       let val tac = simp_all_tac HOL_ss simps
  1430       in fn prop => prove stndrd [] prop (K tac) end;
  1431     
  1432     fun inject_prf () = (prove_simp true [ext_def,abs_inject,Pair_eq] inject_prop);
  1433     val inject = timeit_msg "record extension inject proof:" inject_prf;
  1434 
  1435     fun induct_prf () =
  1436       let val (assm, concl) = induct_prop
  1437       in prove_standard [assm] concl (fn prems =>
  1438            EVERY [try_param_tac rN abs_induct 1, 
  1439                   simp_tac (HOL_ss addsimps [split_paired_all]) 1,
  1440                   resolve_tac (map (rewrite_rule [ext_def]) prems) 1])
  1441       end;
  1442     val induct = timeit_msg "record extension induct proof:" induct_prf;
  1443 
  1444     fun cases_prf_opt () =
  1445       let 
  1446         val sg = (sign_of defs_thy);
  1447         val (_$(Pvar$_)) = concl_of induct;
  1448         val ind = cterm_instantiate 
  1449                     [(cterm_of sg Pvar, cterm_of sg 
  1450                             (lambda w (HOLogic.imp$HOLogic.mk_eq(r,w)$C)))]
  1451                     induct;
  1452         in standard (ObjectLogic.rulify (mp OF [ind, refl])) end;
  1453 
  1454     fun cases_prf_noopt () =
  1455         prove_standard [] cases_prop (fn prems =>
  1456          EVERY [asm_full_simp_tac (HOL_basic_ss addsimps [atomize_all, atomize_imp]) 1,
  1457                 try_param_tac rN induct 1,
  1458                 rtac impI 1,
  1459                 REPEAT (etac allE 1),
  1460                 etac mp 1,
  1461                 rtac refl 1])
  1462 
  1463     val cases_prf = quick_and_dirty_prf cases_prf_noopt cases_prf_opt;
  1464     val cases = timeit_msg "record extension cases proof:" cases_prf;
  1465    
  1466     fun dest_convs_prf () = map (prove_simp false 
  1467                       ([ext_def,abs_inverse]@Pair_sel_convs@dest_defs)) dest_conv_props;
  1468     val dest_convs = timeit_msg "record extension dest_convs proof:" dest_convs_prf;
  1469     fun dest_convs_standard_prf () = map standard dest_convs;
  1470  
  1471     val dest_convs_standard = 
  1472 	timeit_msg "record extension dest_convs_standard proof:" dest_convs_standard_prf;
  1473 
  1474     fun upd_convs_prf_noopt () = map (prove_simp true (dest_convs_standard@upd_defs)) 
  1475                                        upd_conv_props;
  1476     fun upd_convs_prf_opt () =
  1477       let 
  1478         val sg = sign_of defs_thy;
  1479         fun mkrefl (c,T) = Thm.reflexive 
  1480                             (cterm_of sg (Free (variant variants (base c ^ "'"),T))); 
  1481         val refls = map mkrefl fields_more;
  1482         val constr_refl = Thm.reflexive (cterm_of sg (head_of ext));
  1483         val dest_convs' = map (Thm.freezeT o mk_meta_eq) dest_convs;
  1484          (* freezeT just for performance, to adjust the maxidx, so that nodup_vars will not 
  1485                 be called during combination *)
  1486         fun mkthm (udef,(fld_refl,thms)) =
  1487           let val bdyeq = Library.foldl (uncurry Thm.combination) (constr_refl,thms);
  1488                (* (|N=N (|N=N,M=M,K=K,more=more|)
  1489                     M=M (|N=N,M=M,K=K,more=more|)
  1490                     K=K'
  1491                     more = more (|N=N,M=M,K=K,more=more|) =
  1492                   (|N=N,M=M,K=K',more=more|)
  1493                 *)
  1494               val (_$(_$v$r)$_) = prop_of udef;
  1495               val (_$v'$_) = prop_of fld_refl;
  1496               val udef' = cterm_instantiate 
  1497                             [(cterm_of sg v,cterm_of sg v'),
  1498                              (cterm_of sg r,cterm_of sg ext)] udef;
  1499 	  in  standard (Thm.transitive udef' bdyeq) end;
  1500       in map mkthm (rev upd_defs  ~~ (mixit dest_convs' refls)) 
  1501          handle e => print_exn e end;
  1502     
  1503     val upd_convs_prf = quick_and_dirty_prf upd_convs_prf_noopt upd_convs_prf_opt;
  1504 
  1505     val upd_convs = 
  1506 	 timeit_msg "record extension upd_convs proof:" upd_convs_prf;
  1507 
  1508     fun surjective_prf () = 
  1509       prove_standard [] surjective_prop (fn prems =>
  1510           (EVERY [try_param_tac rN induct 1,
  1511                   simp_tac (HOL_basic_ss addsimps dest_convs_standard) 1]));
  1512     val surjective = timeit_msg "record extension surjective proof:" surjective_prf;
  1513 
  1514     fun split_meta_prf () =
  1515         prove_standard [] split_meta_prop (fn prems =>
  1516          EVERY [rtac equal_intr_rule 1,
  1517                   rtac meta_allE 1, etac triv_goal 1, atac 1,
  1518                 rtac (prop_subst OF [surjective]) 1,
  1519                 REPEAT (EVERY [rtac meta_allE 1, etac triv_goal 1, etac thin_rl 1]),
  1520                 atac 1]);
  1521     val split_meta = timeit_msg "record extension split_meta proof:" split_meta_prf;
  1522 
  1523     val (thm_thy,([inject',induct',cases',surjective',split_meta'],
  1524                   [dest_convs',upd_convs'])) =
  1525       defs_thy 
  1526       |> (PureThy.add_thms o map Thm.no_attributes) 
  1527            [("ext_inject", inject),
  1528             ("ext_induct", induct),
  1529             ("ext_cases", cases),
  1530             ("ext_surjective", surjective),
  1531             ("ext_split", split_meta)]
  1532       |>>> (PureThy.add_thmss o map Thm.no_attributes)
  1533               [("dest_convs",dest_convs_standard),("upd_convs",upd_convs)] 
  1534 
  1535   in (thm_thy,extT,induct',inject',dest_convs',split_meta',upd_convs')
  1536   end;
  1537    
  1538 fun chunks []      []   = []
  1539   | chunks []      xs   = [xs]
  1540   | chunks (l::ls) xs  = Library.take (l,xs)::chunks ls (Library.drop (l,xs));
  1541  
  1542 fun chop_last [] = error "last: list should not be empty"
  1543   | chop_last [x] = ([],x)
  1544   | chop_last (x::xs) = let val (tl,l) = chop_last xs in (x::tl,l) end;
  1545      	
  1546 fun subst_last s []      = error "subst_last: list should not be empty"
  1547   | subst_last s ([x])   = [s]
  1548   | subst_last s (x::xs) = (x::subst_last s xs);
  1549 
  1550 (* mk_recordT builds up the record type from the current extension tpye extT and a list
  1551  * of parent extensions, starting with the root of the record hierarchy 
  1552 *) 
  1553 fun mk_recordT extT parent_exts = 
  1554     foldr (fn ((parent,Ts),T) => Type (parent, subst_last T Ts)) extT parent_exts;
  1555 
  1556 
  1557 
  1558 fun obj_to_meta_all thm =
  1559   let
  1560     fun E thm = case (SOME (spec OF [thm]) handle THM _ => NONE) of 
  1561                   SOME thm' => E thm'
  1562                 | NONE => thm;
  1563     val th1 = E thm;
  1564     val th2 = Drule.forall_intr_vars th1;
  1565   in th2 end;
  1566 
  1567 fun meta_to_obj_all thm =
  1568   let
  1569     val {sign, prop, ...} = rep_thm thm;
  1570     val params = Logic.strip_params prop;
  1571     val concl = HOLogic.dest_Trueprop (Logic.strip_assums_concl prop);
  1572     val ct = cterm_of sign
  1573       (HOLogic.mk_Trueprop (HOLogic.list_all (params, concl)));
  1574     val thm' = Seq.hd (REPEAT (rtac allI 1) (Thm.trivial ct));
  1575   in
  1576     Thm.implies_elim thm' thm
  1577   end;
  1578 
  1579 
  1580 
  1581 (* record_definition *)
  1582 fun record_definition (args, bname) parent (parents: parent_info list) raw_fields thy = 
  1583   (* smlnj needs type annotation of parents *)
  1584   let
  1585     val sign = Theory.sign_of thy;
  1586 
  1587     val alphas = map fst args;
  1588     val name = Sign.full_name sign bname;
  1589     val full = Sign.full_name_path sign bname;
  1590     val base = Sign.base_name;
  1591 
  1592     val (bfields, field_syntax) = split_list (map (fn (x, T, mx) => ((x, T), mx)) raw_fields);
  1593 
  1594     val parent_fields = List.concat (map #fields parents);
  1595     val parent_chunks = map (length o #fields) parents;
  1596     val parent_names = map fst parent_fields;
  1597     val parent_types = map snd parent_fields;
  1598     val parent_fields_len = length parent_fields;
  1599     val parent_variants = variantlist (map base parent_names, [moreN, rN, rN ^ "'", wN]);
  1600     val parent_vars = ListPair.map Free (parent_variants, parent_types);
  1601     val parent_len = length parents;
  1602     val parents_idx = (map #name parents) ~~ (0 upto (parent_len - 1));
  1603 
  1604     val fields = map (apfst full) bfields;
  1605     val names = map fst fields;
  1606     val extN = full bname;
  1607     val types = map snd fields;
  1608     val alphas_fields = foldr add_typ_tfree_names [] types;
  1609     val alphas_ext = alphas inter alphas_fields; 
  1610     val len = length fields;
  1611     val variants = variantlist (map fst bfields, moreN::rN::rN ^ "'"::wN::parent_variants);
  1612     val vars = ListPair.map Free (variants, types);
  1613     val named_vars = names ~~ vars;
  1614     val idxs = 0 upto (len - 1);
  1615     val idxms = 0 upto len;
  1616 
  1617     val all_fields = parent_fields @ fields;
  1618     val all_names = parent_names @ names;
  1619     val all_types = parent_types @ types;
  1620     val all_len = parent_fields_len + len;
  1621     val all_variants = parent_variants @ variants;
  1622     val all_vars = parent_vars @ vars;
  1623     val all_named_vars = (parent_names ~~ parent_vars) @ named_vars;
  1624 
  1625 
  1626     val zeta = variant alphas "'z"; 
  1627     val moreT = TFree (zeta, HOLogic.typeS);
  1628     val more = Free (moreN, moreT);
  1629     val full_moreN = full moreN;
  1630     val bfields_more = bfields @ [(moreN,moreT)];
  1631     val fields_more = fields @ [(full_moreN,moreT)];
  1632     val vars_more = vars @ [more];
  1633     val named_vars_more = named_vars @[(full_moreN,more)];
  1634     val all_vars_more = all_vars @ [more];
  1635     val all_named_vars_more = all_named_vars @ [(full_moreN,more)];
  1636    
  1637     (* 1st stage: extension_thy *)
  1638 	
  1639     val (extension_thy,extT,ext_induct,ext_inject,ext_dest_convs,ext_split,u_convs) =
  1640       thy
  1641       |> Theory.add_path bname
  1642       |> extension_definition full extN fields names alphas_ext zeta moreT more vars;
  1643 
  1644    
  1645     val Type extension_scheme = extT;
  1646     val extension_name = unsuffix ext_typeN (fst extension_scheme);
  1647     val extension = let val (n,Ts) = extension_scheme in (n,subst_last HOLogic.unitT Ts) end; 
  1648     val extension_names = 
  1649          (map ((unsuffix ext_typeN) o fst o #extension) parents) @ [extN];
  1650     val extension_id = Library.foldl (op ^) ("",extension_names);
  1651 
  1652  
  1653     fun rec_schemeT n = mk_recordT extT (map #extension (prune n parents));
  1654     val rec_schemeT0 = rec_schemeT 0;
  1655 
  1656     fun recT n = 
  1657       let val (c,Ts) = extension
  1658       in mk_recordT (Type (c,subst_last HOLogic.unitT Ts))(map #extension (prune n parents))
  1659       end;
  1660     val recT0 = recT 0;
  1661     
  1662     fun mk_rec args n =
  1663       let val (args',more) = chop_last args;
  1664 	  fun mk_ext' (((name,T),args),more) = mk_ext (name,T) (args@[more]);
  1665           fun build Ts = 
  1666            foldr mk_ext' more (prune n (extension_names ~~ Ts ~~ (chunks parent_chunks args')))
  1667       in 
  1668         if more = HOLogic.unit 
  1669         then build (map recT (0 upto parent_len)) 
  1670         else build (map rec_schemeT (0 upto parent_len))
  1671       end;
  1672    
  1673     val r_rec0 = mk_rec all_vars_more 0;
  1674     val r_rec_unit0 = mk_rec (all_vars@[HOLogic.unit]) 0;
  1675 
  1676     fun r n = Free (rN, rec_schemeT n)
  1677     val r0 = r 0;
  1678     fun r_unit n = Free (rN, recT n)
  1679     val r_unit0 = r_unit 0;
  1680     val w = Free (wN, rec_schemeT 0)
  1681 
  1682     (* prepare print translation functions *)
  1683     val field_tr's =
  1684       print_translation (distinct (List.concat (map NameSpace.accesses' (full_moreN :: names))));
  1685 
  1686     val adv_ext_tr's =
  1687     let
  1688       val trnames = NameSpace.accesses' extN;
  1689     in map (gen_record_tr') trnames end;
  1690 
  1691     val adv_record_type_abbr_tr's =
  1692       let val trnames = NameSpace.accesses' (hd extension_names);
  1693           val lastExt = (unsuffix ext_typeN (fst extension));
  1694       in map (gen_record_type_abbr_tr' bname alphas zeta lastExt rec_schemeT0) trnames
  1695       end;
  1696 
  1697     val adv_record_type_tr's =
  1698       let val trnames = if parent_len > 0 then NameSpace.accesses' extN else [];
  1699                         (* avoid conflict with adv_record_type_abbr_tr's *)
  1700       in map (gen_record_type_tr') trnames
  1701       end;
  1702 
  1703     
  1704     (* prepare declarations *)
  1705 
  1706     val sel_decls = map (mk_selC rec_schemeT0) bfields_more;
  1707     val upd_decls = map (mk_updC updateN rec_schemeT0) bfields_more;
  1708     val make_decl = (makeN, all_types ---> recT0);
  1709     val fields_decl = (fields_selN, types ---> Type extension); 
  1710     val extend_decl = (extendN, recT0 --> moreT --> rec_schemeT0);
  1711     val truncate_decl = (truncateN, rec_schemeT0 --> recT0);
  1712 
  1713     (* prepare definitions *)
  1714     
  1715     fun parent_more s = 
  1716          if null parents then s 
  1717          else mk_sel s (NameSpace.append (#name (hd (rev parents))) moreN, extT);
  1718 
  1719     fun parent_more_upd v s =
  1720       if null parents then v 
  1721       else let val mp = (NameSpace.append (#name (hd (rev parents))) moreN);
  1722            in mk_upd updateN mp v s end;
  1723    
  1724     (*record (scheme) type abbreviation*)
  1725     val recordT_specs =
  1726       [(suffix schemeN bname, alphas @ [zeta], rec_schemeT0, Syntax.NoSyn),
  1727         (bname, alphas, recT0, Syntax.NoSyn)];	
  1728 
  1729     (*selectors*) 
  1730     fun mk_sel_spec (c,T) = 
  1731 	 Const (mk_selC rec_schemeT0 (c,T)) 
  1732           :== (lambda r0 (Const (mk_selC extT (suffix ext_dest c,T))$parent_more r0));
  1733     val sel_specs = map mk_sel_spec fields_more;
  1734 
  1735     (*updates*)
  1736 
  1737     fun mk_upd_spec (c,T) =
  1738       let 
  1739         val new = mk_upd updN c (Free (base c,T)) (parent_more r0); 
  1740       in Const (mk_updC updateN rec_schemeT0 (c,T))$(Free (base c,T))$r0
  1741           :== (parent_more_upd new r0)
  1742       end;
  1743     val upd_specs = map mk_upd_spec fields_more; 
  1744 
  1745     (*derived operations*)
  1746     val make_spec = Const (full makeN, all_types ---> recT0) $$ all_vars :==
  1747       mk_rec (all_vars @ [HOLogic.unit]) 0;
  1748     val fields_spec = Const (full fields_selN, types ---> Type extension) $$ vars :==
  1749       mk_rec (all_vars @ [HOLogic.unit]) parent_len;
  1750     val extend_spec = 
  1751       Const (full extendN, recT0-->moreT-->rec_schemeT0) $ r_unit0 $ more :==
  1752       mk_rec ((map (mk_sel r_unit0) all_fields) @ [more]) 0;
  1753     val truncate_spec = Const (full truncateN, rec_schemeT0 --> recT0) $ r0 :==
  1754       mk_rec ((map (mk_sel r0) all_fields) @ [HOLogic.unit]) 0;
  1755 
  1756     (* 2st stage: defs_thy *)
  1757  
  1758     val (defs_thy,((sel_defs,upd_defs),derived_defs)) = 
  1759         extension_thy
  1760         |> Theory.add_trfuns 
  1761             ([],[],field_tr's, [])
  1762         |> Theory.add_advanced_trfuns 
  1763             ([],[],adv_ext_tr's @ adv_record_type_tr's @ adv_record_type_abbr_tr's,[])
  1764 
  1765         |> Theory.parent_path
  1766         |> Theory.add_tyabbrs_i recordT_specs
  1767         |> Theory.add_path bname
  1768         |> Theory.add_consts_i
  1769             (map2 (fn ((x, T), mx) => (x, T, mx)) (sel_decls, field_syntax @ [Syntax.NoSyn]))
  1770         |> (Theory.add_consts_i o map Syntax.no_syn) 
  1771             (upd_decls @ [make_decl, fields_decl, extend_decl, truncate_decl])
  1772         |> (PureThy.add_defs_i false o map Thm.no_attributes) sel_specs
  1773         |>>> (PureThy.add_defs_i false o map Thm.no_attributes) upd_specs
  1774 	|>>> (PureThy.add_defs_i false o map Thm.no_attributes)
  1775                [make_spec, fields_spec, extend_spec, truncate_spec];
  1776         
  1777 
  1778     (* prepare propositions *)
  1779     val P = Free (variant all_variants "P", rec_schemeT0-->HOLogic.boolT);
  1780     val C = Free (variant all_variants "C", HOLogic.boolT);    
  1781     val P_unit = Free (variant all_variants "P", recT0-->HOLogic.boolT);
  1782 
  1783     (*selectors*) 
  1784     val sel_conv_props =
  1785        map (fn (c, x as Free (_,T)) => mk_sel r_rec0 (c,T) === x) named_vars_more;
  1786 
  1787     (*updates*) 
  1788     fun mk_upd_prop (i,(c,T)) =
  1789       let val x' = Free (variant all_variants (base c ^ "'"),T) 
  1790           val args' = nth_update x' (parent_fields_len + i, all_vars_more)
  1791       in mk_upd updateN c x' r_rec0 === mk_rec args' 0  end;
  1792     val upd_conv_props = ListPair.map mk_upd_prop (idxms, fields_more);
  1793 
  1794     (*induct*)
  1795     val induct_scheme_prop =
  1796       All (map dest_Free all_vars_more) (Trueprop (P $ r_rec0)) ==> Trueprop (P $ r0);
  1797     val induct_prop =  
  1798       (All (map dest_Free all_vars) (Trueprop (P_unit $ r_rec_unit0)),
  1799        Trueprop (P_unit $ r_unit0));
  1800 
  1801     (*surjective*)
  1802     val surjective_prop =
  1803       let val args = map (fn (c,Free (_,T)) => mk_sel r0 (c,T)) all_named_vars_more
  1804       in r0 === mk_rec args 0 end;
  1805 	
  1806     (*cases*)
  1807     val cases_scheme_prop =
  1808       (All (map dest_Free all_vars_more) 
  1809         (Trueprop (HOLogic.mk_eq (r0,r_rec0)) ==> Trueprop C)) 
  1810       ==> Trueprop C;
  1811 
  1812     val cases_prop =
  1813       (All (map dest_Free all_vars) 
  1814         (Trueprop (HOLogic.mk_eq (r_unit0,r_rec_unit0)) ==> Trueprop C)) 
  1815        ==> Trueprop C;
  1816 
  1817     (*split*)
  1818     val split_meta_prop =
  1819       let val P = Free (variant all_variants "P", rec_schemeT0-->Term.propT) in
  1820         Logic.mk_equals 
  1821          (All [dest_Free r0] (P $ r0), All (map dest_Free all_vars_more) (P $ r_rec0))
  1822       end; 
  1823 
  1824     val split_object_prop =
  1825       let fun ALL vs t = foldr (fn ((v,T),t) => HOLogic.mk_all (v,T,t)) t vs
  1826       in (ALL [dest_Free r0] (P $ r0)) === (ALL (map dest_Free all_vars_more) (P $ r_rec0))
  1827       end;
  1828 
  1829 
  1830     val split_ex_prop =
  1831       let fun EX vs t = foldr (fn ((v,T),t) => HOLogic.mk_exists (v,T,t)) t vs
  1832       in (EX [dest_Free r0] (P $ r0)) === (EX (map dest_Free all_vars_more) (P $ r_rec0))
  1833       end;
  1834 
  1835     (*equality*)
  1836     val equality_prop =
  1837       let 
  1838 	val s' = Free (rN ^ "'", rec_schemeT0)
  1839         fun mk_sel_eq (c,Free (_,T)) =  mk_sel r0 (c,T) === mk_sel s' (c,T) 
  1840         val seleqs = map mk_sel_eq all_named_vars_more
  1841       in All (map dest_Free [r0,s']) (Logic.list_implies (seleqs,r0 === s')) end;
  1842 
  1843     (* 3rd stage: thms_thy *)
  1844 
  1845     fun prove stndrd = quick_and_dirty_prove stndrd (Theory.sign_of defs_thy);
  1846     val prove_standard = quick_and_dirty_prove true (Theory.sign_of defs_thy);
  1847     
  1848     fun prove_simp stndrd ss simps =
  1849       let val tac = simp_all_tac ss simps
  1850       in fn prop => prove stndrd [] prop (K tac) end;
  1851 
  1852     val ss = get_simpset (sign_of defs_thy);
  1853 
  1854     fun sel_convs_prf () = map (prove_simp false ss 
  1855                            (sel_defs@ext_dest_convs)) sel_conv_props;
  1856     val sel_convs = timeit_msg "record sel_convs proof:" sel_convs_prf;
  1857     fun sel_convs_standard_prf () = map standard sel_convs
  1858     val sel_convs_standard = 
  1859 	  timeit_msg "record sel_convs_standard proof:" sel_convs_standard_prf;
  1860 
  1861     fun upd_convs_prf () = 
  1862 	  map (prove_simp true ss (upd_defs@u_convs)) upd_conv_props;
  1863     
  1864     val upd_convs = timeit_msg "record upd_convs proof:" upd_convs_prf;
  1865 
  1866     val parent_induct = if null parents then [] else [#induct (hd (rev parents))];
  1867 
  1868     fun induct_scheme_prf () = prove_standard [] induct_scheme_prop (fn prems =>
  1869           (EVERY [if null parent_induct 
  1870                   then all_tac else try_param_tac rN (hd parent_induct) 1,
  1871                   try_param_tac rN ext_induct 1,
  1872                   asm_simp_tac HOL_basic_ss 1]));
  1873     val induct_scheme = timeit_msg "record induct_scheme proof:" induct_scheme_prf;
  1874 
  1875     fun induct_prf () =
  1876       let val (assm, concl) = induct_prop;
  1877       in
  1878         prove_standard [assm] concl (fn prems =>
  1879           try_param_tac rN induct_scheme 1
  1880           THEN try_param_tac "more" unit_induct 1
  1881           THEN resolve_tac prems 1)
  1882       end;
  1883     val induct = timeit_msg "record induct proof:" induct_prf;
  1884 
  1885     fun surjective_prf () = 
  1886       prove_standard [] surjective_prop (fn prems =>
  1887           (EVERY [try_param_tac rN induct_scheme 1,
  1888                   simp_tac (ss addsimps sel_convs_standard) 1]))
  1889     val surjective = timeit_msg "record surjective proof:" surjective_prf;
  1890 
  1891     fun cases_scheme_prf_opt () =
  1892       let 
  1893         val sg = (sign_of defs_thy);
  1894         val (_$(Pvar$_)) = concl_of induct_scheme;
  1895         val ind = cterm_instantiate 
  1896                     [(cterm_of sg Pvar, cterm_of sg 
  1897                             (lambda w (HOLogic.imp$HOLogic.mk_eq(r0,w)$C)))]
  1898                     induct_scheme;
  1899         in standard (ObjectLogic.rulify (mp OF [ind, refl])) end;
  1900 
  1901     fun cases_scheme_prf_noopt () =
  1902         prove_standard [] cases_scheme_prop (fn prems =>
  1903          EVERY [asm_full_simp_tac (HOL_basic_ss addsimps [atomize_all, atomize_imp]) 1,
  1904                try_param_tac rN induct_scheme 1,
  1905                rtac impI 1,
  1906                REPEAT (etac allE 1),
  1907                etac mp 1,
  1908                rtac refl 1])
  1909     val cases_scheme_prf = quick_and_dirty_prf cases_scheme_prf_noopt cases_scheme_prf_opt;
  1910     val cases_scheme = timeit_msg "record cases_scheme proof:" cases_scheme_prf;
  1911 
  1912     fun cases_prf () =
  1913       prove_standard [] cases_prop  (fn _ =>
  1914         try_param_tac rN cases_scheme 1
  1915         THEN simp_all_tac HOL_basic_ss [unit_all_eq1]);
  1916     val cases = timeit_msg "record cases proof:" cases_prf;
  1917 
  1918     fun split_meta_prf () =
  1919         prove false [] split_meta_prop (fn prems =>
  1920          EVERY [rtac equal_intr_rule 1,
  1921                   rtac meta_allE 1, etac triv_goal 1, atac 1,
  1922                 rtac (prop_subst OF [surjective]) 1,
  1923                 REPEAT (EVERY [rtac meta_allE 1, etac triv_goal 1, etac thin_rl 1]),
  1924                 atac 1]);
  1925     val split_meta = timeit_msg "record split_meta proof:" split_meta_prf;
  1926     val split_meta_standard = standard split_meta;
  1927 
  1928     fun split_object_prf_opt () =
  1929       let 
  1930         val sg = sign_of defs_thy;
  1931         val cPI= cterm_of sg (lambda r0 (Trueprop (P$r0)));
  1932         val (_$Abs(_,_,P$_)) = fst (Logic.dest_equals (concl_of split_meta_standard));
  1933         val cP = cterm_of sg P;
  1934         val split_meta' = cterm_instantiate [(cP,cPI)] split_meta_standard;
  1935         val (l,r) = HOLogic.dest_eq (HOLogic.dest_Trueprop split_object_prop);
  1936         val cl = cterm_of sg (HOLogic.mk_Trueprop l); 
  1937         val cr = cterm_of sg (HOLogic.mk_Trueprop r); 
  1938         val thl = assume cl                 (*All r. P r*) (* 1 *)
  1939                 |> obj_to_meta_all          (*!!r. P r*)
  1940                 |> equal_elim split_meta'   (*!!n m more. P (ext n m more)*)  
  1941                 |> meta_to_obj_all          (*All n m more. P (ext n m more)*) (* 2*) 
  1942                 |> implies_intr cl          (* 1 ==> 2 *)
  1943         val thr = assume cr                           (*All n m more. P (ext n m more)*)
  1944                 |> obj_to_meta_all                    (*!!n m more. P (ext n m more)*)
  1945                 |> equal_elim (symmetric split_meta') (*!!r. P r*) 
  1946                 |> meta_to_obj_all                    (*All r. P r*)
  1947                 |> implies_intr cr                    (* 2 ==> 1 *)
  1948      in standard (thr COMP (thl COMP iffI)) end;   
  1949 
  1950     fun split_object_prf_noopt () =
  1951         prove_standard [] split_object_prop (fn prems =>
  1952          EVERY [rtac iffI 1, 
  1953                 REPEAT (rtac allI 1), etac allE 1, atac 1,
  1954                 rtac allI 1, rtac induct_scheme 1,REPEAT (etac allE 1),atac 1]);
  1955 
  1956     val split_object_prf = quick_and_dirty_prf split_object_prf_noopt split_object_prf_opt;  
  1957     val split_object = timeit_msg "record split_object proof:" split_object_prf;
  1958 
  1959 
  1960     fun split_ex_prf () = 
  1961         prove_standard [] split_ex_prop (fn prems =>
  1962           EVERY [rtac iffI 1,
  1963                    etac exE 1,
  1964                    simp_tac (HOL_basic_ss addsimps [split_meta_standard]) 1,
  1965                    ex_inst_tac 1,
  1966                    (*REPEAT (rtac exI 1),*)
  1967                    atac 1,
  1968                  REPEAT (etac exE 1),
  1969                  rtac exI 1,
  1970                  atac 1]);
  1971     val split_ex = timeit_msg "record split_ex proof:" split_ex_prf;
  1972 
  1973     fun equality_tac thms = 
  1974       let val (s'::s::eqs) = rev thms;
  1975           val ss' = ss addsimps (s'::s::sel_convs_standard);
  1976           val eqs' = map (simplify ss') eqs;
  1977       in simp_tac (HOL_basic_ss addsimps (s'::s::eqs')) 1 end;
  1978  
  1979    fun equality_prf () = prove_standard [] equality_prop (fn _ =>
  1980       fn st => let val [s, s'] = map #1 (rev (Tactic.innermost_params 1 st)) in
  1981         st |> (res_inst_tac [(rN, s)] cases_scheme 1
  1982         THEN res_inst_tac [(rN, s')] cases_scheme 1
  1983         THEN (METAHYPS equality_tac 1)) 
  1984              (* simp_all_tac ss (sel_convs) would also work but is less efficient *)
  1985       end);                              
  1986      val equality = timeit_msg "record equality proof:" equality_prf;
  1987 
  1988     val (thms_thy,(([sel_convs',upd_convs',sel_defs',upd_defs',[split_meta',split_object',split_ex'],
  1989                     derived_defs'],
  1990                    [surjective',equality']),[induct_scheme',induct',cases_scheme',cases'])) =
  1991       defs_thy
  1992       |> (PureThy.add_thmss o map Thm.no_attributes)
  1993          [("select_convs", sel_convs_standard),
  1994           ("update_convs", upd_convs),
  1995           ("select_defs", sel_defs),
  1996           ("update_defs", upd_defs),
  1997           ("splits", [split_meta_standard,split_object,split_ex]),
  1998           ("defs", derived_defs)]
  1999       |>>> (PureThy.add_thms o map Thm.no_attributes)
  2000           [("surjective", surjective),
  2001            ("equality", equality)]
  2002       |>>> PureThy.add_thms 
  2003         [(("induct_scheme", induct_scheme), induct_type_global (suffix schemeN name)),
  2004          (("induct", induct), induct_type_global name),
  2005          (("cases_scheme", cases_scheme), cases_type_global (suffix schemeN name)),
  2006          (("cases", cases), cases_type_global name)];
  2007 
  2008 
  2009     val sel_upd_simps = sel_convs' @ upd_convs';
  2010     val iffs = [ext_inject]
  2011     val final_thy =
  2012       thms_thy
  2013       |> (#1 oo PureThy.add_thmss)
  2014           [(("simps", sel_upd_simps), [Simplifier.simp_add_global]),
  2015            (("iffs",iffs), [iff_add_global])]
  2016       |> put_record name (make_record_info args parent fields extension induct_scheme') 
  2017       |> put_sel_upd (names @ [full_moreN]) sel_upd_simps
  2018       |> add_record_equalities extension_id equality'
  2019       |> add_extinjects ext_inject
  2020       |> add_extsplit extension_name ext_split
  2021       |> add_record_splits extension_id (split_meta',split_object',split_ex',induct_scheme')
  2022       |> add_extfields extension_name (fields @ [(full_moreN,moreT)]) 
  2023       |> add_fieldext (extension_name,snd extension) (names @ [full_moreN]) 
  2024       |> Theory.parent_path;
  2025 
  2026   in final_thy
  2027   end;
  2028 
  2029 (* add_record *)
  2030 
  2031 (*we do all preparations and error checks here, deferring the real
  2032   work to record_definition*)
  2033 fun gen_add_record prep_typ prep_raw_parent (params, bname) raw_parent raw_fields thy =
  2034   let
  2035     val _ = Theory.requires thy "Record" "record definitions"; 
  2036     val sign = Theory.sign_of thy;
  2037     val _ = message ("Defining record " ^ quote bname ^ " ...");
  2038 
  2039 
  2040     (* parents *)
  2041 
  2042     fun prep_inst T = snd (cert_typ sign ([], T));
  2043 
  2044     val parent = Option.map (apfst (map prep_inst) o prep_raw_parent sign) raw_parent
  2045       handle ERROR => error ("The error(s) above in parent record specification");
  2046     val parents = add_parents thy parent [];
  2047 
  2048     val init_env =
  2049       (case parent of
  2050         NONE => []
  2051       | SOME (types, _) => foldr Term.add_typ_tfrees [] types);
  2052 
  2053 
  2054     (* fields *)
  2055 
  2056     fun prep_field (env, (c, raw_T, mx)) =
  2057       let val (env', T) = prep_typ sign (env, raw_T) handle ERROR =>
  2058         error ("The error(s) above occured in field " ^ quote c)
  2059       in (env', (c, T, mx)) end;
  2060 
  2061     val (envir, bfields) = foldl_map prep_field (init_env, raw_fields);
  2062     val envir_names = map fst envir;
  2063 
  2064 
  2065     (* args *)
  2066 
  2067     val defaultS = Sign.defaultS sign;
  2068     val args = map (fn x => (x, getOpt (assoc (envir, x), defaultS))) params;
  2069 
  2070 
  2071     (* errors *)
  2072 
  2073     val name = Sign.full_name sign bname;
  2074     val err_dup_record =  
  2075       if is_none (get_record thy name) then []
  2076       else ["Duplicate definition of record " ^ quote name];
  2077 
  2078     val err_dup_parms =
  2079       (case duplicates params of
  2080         [] => []
  2081       | dups => ["Duplicate parameter(s) " ^ commas dups]);
  2082 
  2083     val err_extra_frees =
  2084       (case gen_rems (op =) (envir_names, params) of
  2085         [] => []
  2086       | extras => ["Extra free type variable(s) " ^ commas extras]);
  2087 
  2088     val err_no_fields = if null bfields then ["No fields present"] else [];
  2089 
  2090     val err_dup_fields =
  2091       (case duplicates (map #1 bfields) of
  2092         [] => []
  2093       | dups => ["Duplicate field(s) " ^ commas_quote dups]);
  2094 
  2095     val err_bad_fields =
  2096       if forall (not_equal moreN o #1) bfields then []
  2097       else ["Illegal field name " ^ quote moreN];
  2098 
  2099     val err_dup_sorts =
  2100       (case duplicates envir_names of
  2101         [] => []
  2102       | dups => ["Inconsistent sort constraints for " ^ commas dups]);
  2103 
  2104     val errs =
  2105       err_dup_record @ err_dup_parms @ err_extra_frees @ err_no_fields @
  2106       err_dup_fields @ err_bad_fields @ err_dup_sorts;
  2107   in
  2108     if null errs then () else error (cat_lines errs)  ;
  2109     thy |> record_definition (args, bname) parent parents bfields
  2110   end
  2111   handle ERROR => error ("Failed to define record " ^ quote bname);
  2112 
  2113 val add_record = gen_add_record read_typ read_raw_parent;
  2114 val add_record_i = gen_add_record cert_typ (K I);
  2115 
  2116 (* setup theory *)
  2117 
  2118 val setup =
  2119  [RecordsData.init,
  2120   Theory.add_trfuns ([], parse_translation, [], []),
  2121   Theory.add_advanced_trfuns ([], adv_parse_translation, [], []),    
  2122   Simplifier.change_simpset_of Simplifier.addsimprocs
  2123     [record_simproc, record_upd_simproc, record_eq_simproc]];
  2124 
  2125 (* outer syntax *)
  2126 
  2127 local structure P = OuterParse and K = OuterSyntax.Keyword in
  2128 
  2129 val record_decl =
  2130   P.type_args -- P.name --
  2131     (P.$$$ "=" |-- Scan.option (P.typ --| P.$$$ "+") -- Scan.repeat1 P.const);
  2132 
  2133 val recordP =
  2134   OuterSyntax.command "record" "define extensible record" K.thy_decl   
  2135     (record_decl >> (fn (x, (y, z)) => Toplevel.theory (add_record x y z)));  
  2136 
  2137 val _ = OuterSyntax.add_parsers [recordP];
  2138 
  2139 end;
  2140 
  2141 end;
  2142 
  2143 
  2144 structure BasicRecordPackage: BASIC_RECORD_PACKAGE = RecordPackage;
  2145 open BasicRecordPackage;