src/HOL/Parity.thy
 author hoelzl Wed Jan 06 12:18:53 2016 +0100 (2016-01-06) changeset 62083 7582b39f51ed parent 61799 4cf66f21b764 child 62597 b3f2b8c906a6 permissions -rw-r--r--
add the proof of the central limit theorem
```     1 (*  Title:      HOL/Parity.thy
```
```     2     Author:     Jeremy Avigad
```
```     3     Author:     Jacques D. Fleuriot
```
```     4 *)
```
```     5
```
```     6 section \<open>Parity in rings and semirings\<close>
```
```     7
```
```     8 theory Parity
```
```     9 imports Nat_Transfer
```
```    10 begin
```
```    11
```
```    12 subsection \<open>Ring structures with parity and \<open>even\<close>/\<open>odd\<close> predicates\<close>
```
```    13
```
```    14 class semiring_parity = comm_semiring_1_cancel + numeral +
```
```    15   assumes odd_one [simp]: "\<not> 2 dvd 1"
```
```    16   assumes odd_even_add: "\<not> 2 dvd a \<Longrightarrow> \<not> 2 dvd b \<Longrightarrow> 2 dvd a + b"
```
```    17   assumes even_multD: "2 dvd a * b \<Longrightarrow> 2 dvd a \<or> 2 dvd b"
```
```    18   assumes odd_ex_decrement: "\<not> 2 dvd a \<Longrightarrow> \<exists>b. a = b + 1"
```
```    19 begin
```
```    20
```
```    21 subclass semiring_numeral ..
```
```    22
```
```    23 abbreviation even :: "'a \<Rightarrow> bool"
```
```    24 where
```
```    25   "even a \<equiv> 2 dvd a"
```
```    26
```
```    27 abbreviation odd :: "'a \<Rightarrow> bool"
```
```    28 where
```
```    29   "odd a \<equiv> \<not> 2 dvd a"
```
```    30
```
```    31 lemma even_zero [simp]:
```
```    32   "even 0"
```
```    33   by (fact dvd_0_right)
```
```    34
```
```    35 lemma even_plus_one_iff [simp]:
```
```    36   "even (a + 1) \<longleftrightarrow> odd a"
```
```    37   by (auto simp add: dvd_add_right_iff intro: odd_even_add)
```
```    38
```
```    39 lemma evenE [elim?]:
```
```    40   assumes "even a"
```
```    41   obtains b where "a = 2 * b"
```
```    42   using assms by (rule dvdE)
```
```    43
```
```    44 lemma oddE [elim?]:
```
```    45   assumes "odd a"
```
```    46   obtains b where "a = 2 * b + 1"
```
```    47 proof -
```
```    48   from assms obtain b where *: "a = b + 1"
```
```    49     by (blast dest: odd_ex_decrement)
```
```    50   with assms have "even (b + 2)" by simp
```
```    51   then have "even b" by simp
```
```    52   then obtain c where "b = 2 * c" ..
```
```    53   with * have "a = 2 * c + 1" by simp
```
```    54   with that show thesis .
```
```    55 qed
```
```    56
```
```    57 lemma even_times_iff [simp]:
```
```    58   "even (a * b) \<longleftrightarrow> even a \<or> even b"
```
```    59   by (auto dest: even_multD)
```
```    60
```
```    61 lemma even_numeral [simp]:
```
```    62   "even (numeral (Num.Bit0 n))"
```
```    63 proof -
```
```    64   have "even (2 * numeral n)"
```
```    65     unfolding even_times_iff by simp
```
```    66   then have "even (numeral n + numeral n)"
```
```    67     unfolding mult_2 .
```
```    68   then show ?thesis
```
```    69     unfolding numeral.simps .
```
```    70 qed
```
```    71
```
```    72 lemma odd_numeral [simp]:
```
```    73   "odd (numeral (Num.Bit1 n))"
```
```    74 proof
```
```    75   assume "even (numeral (num.Bit1 n))"
```
```    76   then have "even (numeral n + numeral n + 1)"
```
```    77     unfolding numeral.simps .
```
```    78   then have "even (2 * numeral n + 1)"
```
```    79     unfolding mult_2 .
```
```    80   then have "2 dvd numeral n * 2 + 1"
```
```    81     by (simp add: ac_simps)
```
```    82   with dvd_add_times_triv_left_iff [of 2 "numeral n" 1]
```
```    83     have "2 dvd 1"
```
```    84     by simp
```
```    85   then show False by simp
```
```    86 qed
```
```    87
```
```    88 lemma even_add [simp]:
```
```    89   "even (a + b) \<longleftrightarrow> (even a \<longleftrightarrow> even b)"
```
```    90   by (auto simp add: dvd_add_right_iff dvd_add_left_iff odd_even_add)
```
```    91
```
```    92 lemma odd_add [simp]:
```
```    93   "odd (a + b) \<longleftrightarrow> (\<not> (odd a \<longleftrightarrow> odd b))"
```
```    94   by simp
```
```    95
```
```    96 lemma even_power [simp]:
```
```    97   "even (a ^ n) \<longleftrightarrow> even a \<and> n > 0"
```
```    98   by (induct n) auto
```
```    99
```
```   100 end
```
```   101
```
```   102 class ring_parity = ring + semiring_parity
```
```   103 begin
```
```   104
```
```   105 subclass comm_ring_1 ..
```
```   106
```
```   107 lemma even_minus [simp]:
```
```   108   "even (- a) \<longleftrightarrow> even a"
```
```   109   by (fact dvd_minus_iff)
```
```   110
```
```   111 lemma even_diff [simp]:
```
```   112   "even (a - b) \<longleftrightarrow> even (a + b)"
```
```   113   using even_add [of a "- b"] by simp
```
```   114
```
```   115 end
```
```   116
```
```   117
```
```   118 subsection \<open>Instances for @{typ nat} and @{typ int}\<close>
```
```   119
```
```   120 lemma even_Suc_Suc_iff [simp]:
```
```   121   "2 dvd Suc (Suc n) \<longleftrightarrow> 2 dvd n"
```
```   122   using dvd_add_triv_right_iff [of 2 n] by simp
```
```   123
```
```   124 lemma even_Suc [simp]:
```
```   125   "2 dvd Suc n \<longleftrightarrow> \<not> 2 dvd n"
```
```   126   by (induct n) auto
```
```   127
```
```   128 lemma even_diff_nat [simp]:
```
```   129   fixes m n :: nat
```
```   130   shows "2 dvd (m - n) \<longleftrightarrow> m < n \<or> 2 dvd (m + n)"
```
```   131 proof (cases "n \<le> m")
```
```   132   case True
```
```   133   then have "m - n + n * 2 = m + n" by (simp add: mult_2_right)
```
```   134   moreover have "2 dvd (m - n) \<longleftrightarrow> 2 dvd (m - n + n * 2)" by simp
```
```   135   ultimately have "2 dvd (m - n) \<longleftrightarrow> 2 dvd (m + n)" by (simp only:)
```
```   136   then show ?thesis by auto
```
```   137 next
```
```   138   case False
```
```   139   then show ?thesis by simp
```
```   140 qed
```
```   141
```
```   142 instance nat :: semiring_parity
```
```   143 proof
```
```   144   show "\<not> 2 dvd (1 :: nat)"
```
```   145     by (rule notI, erule dvdE) simp
```
```   146 next
```
```   147   fix m n :: nat
```
```   148   assume "\<not> 2 dvd m"
```
```   149   moreover assume "\<not> 2 dvd n"
```
```   150   ultimately have *: "2 dvd Suc m \<and> 2 dvd Suc n"
```
```   151     by simp
```
```   152   then have "2 dvd (Suc m + Suc n)"
```
```   153     by (blast intro: dvd_add)
```
```   154   also have "Suc m + Suc n = m + n + 2"
```
```   155     by simp
```
```   156   finally show "2 dvd (m + n)"
```
```   157     using dvd_add_triv_right_iff [of 2 "m + n"] by simp
```
```   158 next
```
```   159   fix m n :: nat
```
```   160   assume *: "2 dvd (m * n)"
```
```   161   show "2 dvd m \<or> 2 dvd n"
```
```   162   proof (rule disjCI)
```
```   163     assume "\<not> 2 dvd n"
```
```   164     then have "2 dvd (Suc n)" by simp
```
```   165     then obtain r where "Suc n = 2 * r" ..
```
```   166     moreover from * obtain s where "m * n = 2 * s" ..
```
```   167     then have "2 * s + m = m * Suc n" by simp
```
```   168     ultimately have " 2 * s + m = 2 * (m * r)" by (simp add: algebra_simps)
```
```   169     then have "m = 2 * (m * r - s)" by simp
```
```   170     then show "2 dvd m" ..
```
```   171   qed
```
```   172 next
```
```   173   fix n :: nat
```
```   174   assume "\<not> 2 dvd n"
```
```   175   then show "\<exists>m. n = m + 1"
```
```   176     by (cases n) simp_all
```
```   177 qed
```
```   178
```
```   179 lemma odd_pos:
```
```   180   "odd (n :: nat) \<Longrightarrow> 0 < n"
```
```   181   by (auto elim: oddE)
```
```   182
```
```   183 lemma even_diff_iff [simp]:
```
```   184   fixes k l :: int
```
```   185   shows "2 dvd (k - l) \<longleftrightarrow> 2 dvd (k + l)"
```
```   186   using dvd_add_times_triv_right_iff [of 2 "k - l" l] by (simp add: mult_2_right)
```
```   187
```
```   188 lemma even_abs_add_iff [simp]:
```
```   189   fixes k l :: int
```
```   190   shows "2 dvd (\<bar>k\<bar> + l) \<longleftrightarrow> 2 dvd (k + l)"
```
```   191   by (cases "k \<ge> 0") (simp_all add: ac_simps)
```
```   192
```
```   193 lemma even_add_abs_iff [simp]:
```
```   194   fixes k l :: int
```
```   195   shows "2 dvd (k + \<bar>l\<bar>) \<longleftrightarrow> 2 dvd (k + l)"
```
```   196   using even_abs_add_iff [of l k] by (simp add: ac_simps)
```
```   197
```
```   198 lemma odd_Suc_minus_one [simp]:
```
```   199   "odd n \<Longrightarrow> Suc (n - Suc 0) = n"
```
```   200   by (auto elim: oddE)
```
```   201
```
```   202 instance int :: ring_parity
```
```   203 proof
```
```   204   show "\<not> 2 dvd (1 :: int)" by (simp add: dvd_int_unfold_dvd_nat)
```
```   205   fix k l :: int
```
```   206   assume "\<not> 2 dvd k"
```
```   207   moreover assume "\<not> 2 dvd l"
```
```   208   ultimately have "2 dvd (nat \<bar>k\<bar> + nat \<bar>l\<bar>)"
```
```   209     by (auto simp add: dvd_int_unfold_dvd_nat intro: odd_even_add)
```
```   210   then have "2 dvd (\<bar>k\<bar> + \<bar>l\<bar>)"
```
```   211     by (simp add: dvd_int_unfold_dvd_nat nat_add_distrib)
```
```   212   then show "2 dvd (k + l)"
```
```   213     by simp
```
```   214 next
```
```   215   fix k l :: int
```
```   216   assume "2 dvd (k * l)"
```
```   217   then show "2 dvd k \<or> 2 dvd l"
```
```   218     by (simp add: dvd_int_unfold_dvd_nat even_multD nat_abs_mult_distrib)
```
```   219 next
```
```   220   fix k :: int
```
```   221   have "k = (k - 1) + 1" by simp
```
```   222   then show "\<exists>l. k = l + 1" ..
```
```   223 qed
```
```   224
```
```   225 lemma even_int_iff [simp]:
```
```   226   "even (int n) \<longleftrightarrow> even n"
```
```   227   by (simp add: dvd_int_iff)
```
```   228
```
```   229 lemma even_nat_iff:
```
```   230   "0 \<le> k \<Longrightarrow> even (nat k) \<longleftrightarrow> even k"
```
```   231   by (simp add: even_int_iff [symmetric])
```
```   232
```
```   233
```
```   234 subsection \<open>Parity and powers\<close>
```
```   235
```
```   236 context ring_1
```
```   237 begin
```
```   238
```
```   239 lemma power_minus_even [simp]:
```
```   240   "even n \<Longrightarrow> (- a) ^ n = a ^ n"
```
```   241   by (auto elim: evenE)
```
```   242
```
```   243 lemma power_minus_odd [simp]:
```
```   244   "odd n \<Longrightarrow> (- a) ^ n = - (a ^ n)"
```
```   245   by (auto elim: oddE)
```
```   246
```
```   247 lemma neg_one_even_power [simp]:
```
```   248   "even n \<Longrightarrow> (- 1) ^ n = 1"
```
```   249   by simp
```
```   250
```
```   251 lemma neg_one_odd_power [simp]:
```
```   252   "odd n \<Longrightarrow> (- 1) ^ n = - 1"
```
```   253   by simp
```
```   254
```
```   255 end
```
```   256
```
```   257 context linordered_idom
```
```   258 begin
```
```   259
```
```   260 lemma zero_le_even_power:
```
```   261   "even n \<Longrightarrow> 0 \<le> a ^ n"
```
```   262   by (auto elim: evenE)
```
```   263
```
```   264 lemma zero_le_odd_power:
```
```   265   "odd n \<Longrightarrow> 0 \<le> a ^ n \<longleftrightarrow> 0 \<le> a"
```
```   266   by (auto simp add: power_even_eq zero_le_mult_iff elim: oddE)
```
```   267
```
```   268 lemma zero_le_power_eq:
```
```   269   "0 \<le> a ^ n \<longleftrightarrow> even n \<or> odd n \<and> 0 \<le> a"
```
```   270   by (auto simp add: zero_le_even_power zero_le_odd_power)
```
```   271
```
```   272 lemma zero_less_power_eq:
```
```   273   "0 < a ^ n \<longleftrightarrow> n = 0 \<or> even n \<and> a \<noteq> 0 \<or> odd n \<and> 0 < a"
```
```   274 proof -
```
```   275   have [simp]: "0 = a ^ n \<longleftrightarrow> a = 0 \<and> n > 0"
```
```   276     unfolding power_eq_0_iff [of a n, symmetric] by blast
```
```   277   show ?thesis
```
```   278   unfolding less_le zero_le_power_eq by auto
```
```   279 qed
```
```   280
```
```   281 lemma power_less_zero_eq [simp]:
```
```   282   "a ^ n < 0 \<longleftrightarrow> odd n \<and> a < 0"
```
```   283   unfolding not_le [symmetric] zero_le_power_eq by auto
```
```   284
```
```   285 lemma power_le_zero_eq:
```
```   286   "a ^ n \<le> 0 \<longleftrightarrow> n > 0 \<and> (odd n \<and> a \<le> 0 \<or> even n \<and> a = 0)"
```
```   287   unfolding not_less [symmetric] zero_less_power_eq by auto
```
```   288
```
```   289 lemma power_even_abs:
```
```   290   "even n \<Longrightarrow> \<bar>a\<bar> ^ n = a ^ n"
```
```   291   using power_abs [of a n] by (simp add: zero_le_even_power)
```
```   292
```
```   293 lemma power_mono_even:
```
```   294   assumes "even n" and "\<bar>a\<bar> \<le> \<bar>b\<bar>"
```
```   295   shows "a ^ n \<le> b ^ n"
```
```   296 proof -
```
```   297   have "0 \<le> \<bar>a\<bar>" by auto
```
```   298   with \<open>\<bar>a\<bar> \<le> \<bar>b\<bar>\<close>
```
```   299   have "\<bar>a\<bar> ^ n \<le> \<bar>b\<bar> ^ n" by (rule power_mono)
```
```   300   with \<open>even n\<close> show ?thesis by (simp add: power_even_abs)
```
```   301 qed
```
```   302
```
```   303 lemma power_mono_odd:
```
```   304   assumes "odd n" and "a \<le> b"
```
```   305   shows "a ^ n \<le> b ^ n"
```
```   306 proof (cases "b < 0")
```
```   307   case True with \<open>a \<le> b\<close> have "- b \<le> - a" and "0 \<le> - b" by auto
```
```   308   hence "(- b) ^ n \<le> (- a) ^ n" by (rule power_mono)
```
```   309   with \<open>odd n\<close> show ?thesis by simp
```
```   310 next
```
```   311   case False then have "0 \<le> b" by auto
```
```   312   show ?thesis
```
```   313   proof (cases "a < 0")
```
```   314     case True then have "n \<noteq> 0" and "a \<le> 0" using \<open>odd n\<close> [THEN odd_pos] by auto
```
```   315     then have "a ^ n \<le> 0" unfolding power_le_zero_eq using \<open>odd n\<close> by auto
```
```   316     moreover
```
```   317     from \<open>0 \<le> b\<close> have "0 \<le> b ^ n" by auto
```
```   318     ultimately show ?thesis by auto
```
```   319   next
```
```   320     case False then have "0 \<le> a" by auto
```
```   321     with \<open>a \<le> b\<close> show ?thesis using power_mono by auto
```
```   322   qed
```
```   323 qed
```
```   324
```
```   325 lemma (in comm_ring_1) uminus_power_if: "(- x) ^ n = (if even n then x^n else - (x ^ n))"
```
```   326   by auto
```
```   327
```
```   328 text \<open>Simplify, when the exponent is a numeral\<close>
```
```   329
```
```   330 lemma zero_le_power_eq_numeral [simp]:
```
```   331   "0 \<le> a ^ numeral w \<longleftrightarrow> even (numeral w :: nat) \<or> odd (numeral w :: nat) \<and> 0 \<le> a"
```
```   332   by (fact zero_le_power_eq)
```
```   333
```
```   334 lemma zero_less_power_eq_numeral [simp]:
```
```   335   "0 < a ^ numeral w \<longleftrightarrow> numeral w = (0 :: nat)
```
```   336     \<or> even (numeral w :: nat) \<and> a \<noteq> 0 \<or> odd (numeral w :: nat) \<and> 0 < a"
```
```   337   by (fact zero_less_power_eq)
```
```   338
```
```   339 lemma power_le_zero_eq_numeral [simp]:
```
```   340   "a ^ numeral w \<le> 0 \<longleftrightarrow> (0 :: nat) < numeral w
```
```   341     \<and> (odd (numeral w :: nat) \<and> a \<le> 0 \<or> even (numeral w :: nat) \<and> a = 0)"
```
```   342   by (fact power_le_zero_eq)
```
```   343
```
```   344 lemma power_less_zero_eq_numeral [simp]:
```
```   345   "a ^ numeral w < 0 \<longleftrightarrow> odd (numeral w :: nat) \<and> a < 0"
```
```   346   by (fact power_less_zero_eq)
```
```   347
```
```   348 lemma power_even_abs_numeral [simp]:
```
```   349   "even (numeral w :: nat) \<Longrightarrow> \<bar>a\<bar> ^ numeral w = a ^ numeral w"
```
```   350   by (fact power_even_abs)
```
```   351
```
```   352 end
```
```   353
```
```   354
```
```   355 subsubsection \<open>Tools setup\<close>
```
```   356
```
```   357 declare transfer_morphism_int_nat [transfer add return:
```
```   358   even_int_iff
```
```   359 ]
```
```   360
```
```   361 end
```