1 (* Title: HOL/Library/Set_Algebras.thy
2 Author: Jeremy Avigad and Kevin Donnelly; Florian Haftmann, TUM
5 header {* Algebraic operations on sets *}
12 This library lifts operations like addition and muliplication to
13 sets. It was designed to support asymptotic calculations. See the
14 comments at the top of theory @{text BigO}.
17 instantiation set :: (plus) plus
20 definition plus_set :: "'a::plus set \<Rightarrow> 'a set \<Rightarrow> 'a set" where
21 set_plus_def: "A + B = {c. \<exists>a\<in>A. \<exists>b\<in>B. c = a + b}"
27 instantiation set :: (times) times
30 definition times_set :: "'a::times set \<Rightarrow> 'a set \<Rightarrow> 'a set" where
31 set_times_def: "A * B = {c. \<exists>a\<in>A. \<exists>b\<in>B. c = a * b}"
37 instantiation set :: (zero) zero
41 set_zero[simp]: "0::('a::zero)set == {0}"
47 instantiation set :: (one) one
51 set_one[simp]: "1::('a::one)set == {1}"
57 definition elt_set_plus :: "'a::plus \<Rightarrow> 'a set \<Rightarrow> 'a set" (infixl "+o" 70) where
58 "a +o B = {c. \<exists>b\<in>B. c = a + b}"
60 definition elt_set_times :: "'a::times \<Rightarrow> 'a set \<Rightarrow> 'a set" (infixl "*o" 80) where
61 "a *o B = {c. \<exists>b\<in>B. c = a * b}"
63 abbreviation (input) elt_set_eq :: "'a \<Rightarrow> 'a set \<Rightarrow> bool" (infix "=o" 50) where
64 "x =o A \<equiv> x \<in> A"
66 instance set :: (semigroup_add) semigroup_add
67 by default (force simp add: set_plus_def add.assoc)
69 instance set :: (ab_semigroup_add) ab_semigroup_add
70 by default (force simp add: set_plus_def add.commute)
72 instance set :: (monoid_add) monoid_add
73 by default (simp_all add: set_plus_def)
75 instance set :: (comm_monoid_add) comm_monoid_add
76 by default (simp_all add: set_plus_def)
78 instance set :: (semigroup_mult) semigroup_mult
79 by default (force simp add: set_times_def mult.assoc)
81 instance set :: (ab_semigroup_mult) ab_semigroup_mult
82 by default (force simp add: set_times_def mult.commute)
84 instance set :: (monoid_mult) monoid_mult
85 by default (simp_all add: set_times_def)
87 instance set :: (comm_monoid_mult) comm_monoid_mult
88 by default (simp_all add: set_times_def)
90 lemma set_plus_intro [intro]: "a : C ==> b : D ==> a + b : C + D"
91 by (auto simp add: set_plus_def)
94 assumes "x \<in> A + B"
95 obtains a b where "x = a + b" and "a \<in> A" and "b \<in> B"
96 using assms unfolding set_plus_def by fast
98 lemma set_plus_intro2 [intro]: "b : C ==> a + b : a +o C"
99 by (auto simp add: elt_set_plus_def)
101 lemma set_plus_rearrange: "((a::'a::comm_monoid_add) +o C) +
102 (b +o D) = (a + b) +o (C + D)"
103 apply (auto simp add: elt_set_plus_def set_plus_def add_ac)
104 apply (rule_tac x = "ba + bb" in exI)
105 apply (auto simp add: add_ac)
106 apply (rule_tac x = "aa + a" in exI)
107 apply (auto simp add: add_ac)
110 lemma set_plus_rearrange2: "(a::'a::semigroup_add) +o (b +o C) =
112 by (auto simp add: elt_set_plus_def add_assoc)
114 lemma set_plus_rearrange3: "((a::'a::semigroup_add) +o B) + C =
116 apply (auto simp add: elt_set_plus_def set_plus_def)
117 apply (blast intro: add_ac)
118 apply (rule_tac x = "a + aa" in exI)
120 apply (rule_tac x = "aa" in bexI)
122 apply (rule_tac x = "ba" in bexI)
123 apply (auto simp add: add_ac)
126 theorem set_plus_rearrange4: "C + ((a::'a::comm_monoid_add) +o D) =
128 apply (auto simp add: elt_set_plus_def set_plus_def add_ac)
129 apply (rule_tac x = "aa + ba" in exI)
130 apply (auto simp add: add_ac)
133 theorems set_plus_rearranges = set_plus_rearrange set_plus_rearrange2
134 set_plus_rearrange3 set_plus_rearrange4
136 lemma set_plus_mono [intro!]: "C <= D ==> a +o C <= a +o D"
137 by (auto simp add: elt_set_plus_def)
139 lemma set_plus_mono2 [intro]: "(C::('a::plus) set) <= D ==> E <= F ==>
141 by (auto simp add: set_plus_def)
143 lemma set_plus_mono3 [intro]: "a : C ==> a +o D <= C + D"
144 by (auto simp add: elt_set_plus_def set_plus_def)
146 lemma set_plus_mono4 [intro]: "(a::'a::comm_monoid_add) : C ==>
148 by (auto simp add: elt_set_plus_def set_plus_def add_ac)
150 lemma set_plus_mono5: "a:C ==> B <= D ==> a +o B <= C + D"
151 apply (subgoal_tac "a +o B <= a +o D")
152 apply (erule order_trans)
153 apply (erule set_plus_mono3)
154 apply (erule set_plus_mono)
157 lemma set_plus_mono_b: "C <= D ==> x : a +o C
159 apply (frule set_plus_mono)
163 lemma set_plus_mono2_b: "C <= D ==> E <= F ==> x : C + E ==>
165 apply (frule set_plus_mono2)
171 lemma set_plus_mono3_b: "a : C ==> x : a +o D ==> x : C + D"
172 apply (frule set_plus_mono3)
176 lemma set_plus_mono4_b: "(a::'a::comm_monoid_add) : C ==>
177 x : a +o D ==> x : D + C"
178 apply (frule set_plus_mono4)
182 lemma set_zero_plus [simp]: "(0::'a::comm_monoid_add) +o C = C"
183 by (auto simp add: elt_set_plus_def)
185 lemma set_zero_plus2: "(0::'a::comm_monoid_add) : A ==> B <= A + B"
186 apply (auto simp add: set_plus_def)
187 apply (rule_tac x = 0 in bexI)
188 apply (rule_tac x = x in bexI)
189 apply (auto simp add: add_ac)
192 lemma set_plus_imp_minus: "(a::'a::ab_group_add) : b +o C ==> (a - b) : C"
193 by (auto simp add: elt_set_plus_def add_ac diff_minus)
195 lemma set_minus_imp_plus: "(a::'a::ab_group_add) - b : C ==> a : b +o C"
196 apply (auto simp add: elt_set_plus_def add_ac diff_minus)
197 apply (subgoal_tac "a = (a + - b) + b")
198 apply (rule bexI, assumption, assumption)
199 apply (auto simp add: add_ac)
202 lemma set_minus_plus: "((a::'a::ab_group_add) - b : C) = (a : b +o C)"
203 by (rule iffI, rule set_minus_imp_plus, assumption, rule set_plus_imp_minus,
206 lemma set_times_intro [intro]: "a : C ==> b : D ==> a * b : C * D"
207 by (auto simp add: set_times_def)
209 lemma set_times_elim:
210 assumes "x \<in> A * B"
211 obtains a b where "x = a * b" and "a \<in> A" and "b \<in> B"
212 using assms unfolding set_times_def by fast
214 lemma set_times_intro2 [intro!]: "b : C ==> a * b : a *o C"
215 by (auto simp add: elt_set_times_def)
217 lemma set_times_rearrange: "((a::'a::comm_monoid_mult) *o C) *
218 (b *o D) = (a * b) *o (C * D)"
219 apply (auto simp add: elt_set_times_def set_times_def)
220 apply (rule_tac x = "ba * bb" in exI)
221 apply (auto simp add: mult_ac)
222 apply (rule_tac x = "aa * a" in exI)
223 apply (auto simp add: mult_ac)
226 lemma set_times_rearrange2: "(a::'a::semigroup_mult) *o (b *o C) =
228 by (auto simp add: elt_set_times_def mult_assoc)
230 lemma set_times_rearrange3: "((a::'a::semigroup_mult) *o B) * C =
232 apply (auto simp add: elt_set_times_def set_times_def)
233 apply (blast intro: mult_ac)
234 apply (rule_tac x = "a * aa" in exI)
236 apply (rule_tac x = "aa" in bexI)
238 apply (rule_tac x = "ba" in bexI)
239 apply (auto simp add: mult_ac)
242 theorem set_times_rearrange4: "C * ((a::'a::comm_monoid_mult) *o D) =
244 apply (auto simp add: elt_set_times_def set_times_def
246 apply (rule_tac x = "aa * ba" in exI)
247 apply (auto simp add: mult_ac)
250 theorems set_times_rearranges = set_times_rearrange set_times_rearrange2
251 set_times_rearrange3 set_times_rearrange4
253 lemma set_times_mono [intro]: "C <= D ==> a *o C <= a *o D"
254 by (auto simp add: elt_set_times_def)
256 lemma set_times_mono2 [intro]: "(C::('a::times) set) <= D ==> E <= F ==>
258 by (auto simp add: set_times_def)
260 lemma set_times_mono3 [intro]: "a : C ==> a *o D <= C * D"
261 by (auto simp add: elt_set_times_def set_times_def)
263 lemma set_times_mono4 [intro]: "(a::'a::comm_monoid_mult) : C ==>
265 by (auto simp add: elt_set_times_def set_times_def mult_ac)
267 lemma set_times_mono5: "a:C ==> B <= D ==> a *o B <= C * D"
268 apply (subgoal_tac "a *o B <= a *o D")
269 apply (erule order_trans)
270 apply (erule set_times_mono3)
271 apply (erule set_times_mono)
274 lemma set_times_mono_b: "C <= D ==> x : a *o C
276 apply (frule set_times_mono)
280 lemma set_times_mono2_b: "C <= D ==> E <= F ==> x : C * E ==>
282 apply (frule set_times_mono2)
288 lemma set_times_mono3_b: "a : C ==> x : a *o D ==> x : C * D"
289 apply (frule set_times_mono3)
293 lemma set_times_mono4_b: "(a::'a::comm_monoid_mult) : C ==>
294 x : a *o D ==> x : D * C"
295 apply (frule set_times_mono4)
299 lemma set_one_times [simp]: "(1::'a::comm_monoid_mult) *o C = C"
300 by (auto simp add: elt_set_times_def)
302 lemma set_times_plus_distrib: "(a::'a::semiring) *o (b +o C)=
304 by (auto simp add: elt_set_plus_def elt_set_times_def ring_distribs)
306 lemma set_times_plus_distrib2: "(a::'a::semiring) *o (B + C) =
308 apply (auto simp add: set_plus_def elt_set_times_def ring_distribs)
310 apply (rule_tac x = "b + bb" in exI)
311 apply (auto simp add: ring_distribs)
314 lemma set_times_plus_distrib3: "((a::'a::semiring) +o C) * D <=
316 apply (auto simp add:
317 elt_set_plus_def elt_set_times_def set_times_def
318 set_plus_def ring_distribs)
322 theorems set_times_plus_distribs =
323 set_times_plus_distrib
324 set_times_plus_distrib2
326 lemma set_neg_intro: "(a::'a::ring_1) : (- 1) *o C ==>
328 by (auto simp add: elt_set_times_def)
330 lemma set_neg_intro2: "(a::'a::ring_1) : C ==>
332 by (auto simp add: elt_set_times_def)
334 lemma set_plus_image: "S + T = (\<lambda>(x, y). x + y) ` (S \<times> T)"
335 unfolding set_plus_def by (fastforce simp: image_iff)
337 lemma set_times_image: "S * T = (\<lambda>(x, y). x * y) ` (S \<times> T)"
338 unfolding set_times_def by (fastforce simp: image_iff)
340 lemma finite_set_plus:
341 assumes "finite s" and "finite t" shows "finite (s + t)"
342 using assms unfolding set_plus_image by simp
344 lemma finite_set_times:
345 assumes "finite s" and "finite t" shows "finite (s * t)"
346 using assms unfolding set_times_image by simp
348 lemma set_setsum_alt:
349 assumes fin: "finite I"
350 shows "setsum S I = {setsum s I |s. \<forall>i\<in>I. s i \<in> S i}"
352 using fin proof induct
354 have "setsum S (insert x F) = S x + ?setsum F"
355 using insert.hyps by auto
356 also have "...= {s x + setsum s F |s. \<forall> i\<in>insert x F. s i \<in> S i}"
357 unfolding set_plus_def
359 fix y s assume "y \<in> S x" "\<forall>i\<in>F. s i \<in> S i"
360 then show "\<exists>s'. y + setsum s F = s' x + setsum s' F \<and> (\<forall>i\<in>insert x F. s' i \<in> S i)"
362 by (intro exI[of _ "\<lambda>i. if i \<in> F then s i else y"]) (auto simp add: set_plus_def)
365 using insert.hyps by auto
368 lemma setsum_set_cond_linear:
369 fixes f :: "('a::comm_monoid_add) set \<Rightarrow> ('b::comm_monoid_add) set"
370 assumes [intro!]: "\<And>A B. P A \<Longrightarrow> P B \<Longrightarrow> P (A + B)" "P {0}"
371 and f: "\<And>A B. P A \<Longrightarrow> P B \<Longrightarrow> f (A + B) = f A + f B" "f {0} = {0}"
372 assumes all: "\<And>i. i \<in> I \<Longrightarrow> P (S i)"
373 shows "f (setsum S I) = setsum (f \<circ> S) I"
375 assume "finite I" from this all show ?thesis
378 from `finite F` `\<And>i. i \<in> insert x F \<Longrightarrow> P (S i)` have "P (setsum S F)"
380 with insert show ?case
381 by (simp, subst f) auto
385 lemma setsum_set_linear:
386 fixes f :: "('a::comm_monoid_add) set => ('b::comm_monoid_add) set"
387 assumes "\<And>A B. f(A) + f(B) = f(A + B)" "f {0} = {0}"
388 shows "f (setsum S I) = setsum (f \<circ> S) I"
389 using setsum_set_cond_linear[of "\<lambda>x. True" f I S] assms by auto
391 lemma set_times_Un_distrib:
392 "A * (B \<union> C) = A * B \<union> A * C"
393 "(A \<union> B) * C = A * C \<union> B * C"
394 by (auto simp: set_times_def)
396 lemma set_times_UNION_distrib:
397 "A * UNION I M = UNION I (%i. A * M i)"
398 "UNION I M * A = UNION I (%i. M i * A)"
399 by (auto simp: set_times_def)