1 (* Title: HOL/ex/mesontest
3 Author: Lawrence C Paulson, Cambridge University Computer Laboratory
4 Copyright 1992 University of Cambridge
6 Test data for the MESON proof procedure
7 (Excludes the equality problems 51, 52, 56, 58)
9 Use the "mesonlog" shell script to process logs.
13 keep_derivs := MinDeriv;
15 val [prem] = gethyps 1;
16 val nnf = make_nnf prem;
17 val xsko = skolemize nnf;
18 by (cut_facts_tac [xsko] 1 THEN REPEAT (etac exE 1));
19 val [_,sko] = gethyps 1;
20 val clauses = make_clauses [sko];
21 val horns = make_horns clauses;
22 val goes = gocls clauses;
25 by (resolve_tac goes 1);
26 keep_derivs := FullDeriv;
28 by (prolog_step_tac horns 1);
29 by (iter_deepen_prolog_tac horns);
30 by (depth_prolog_tac horns);
31 by (best_prolog_tac size_of_subgoals horns);
34 writeln"File HOL/ex/meson-test.";
36 (*Deep unifications can be required, esp. during transformation to clauses*)
37 val orig_trace_bound = !Unify.trace_bound
38 and orig_search_bound = !Unify.search_bound;
39 Unify.trace_bound := 20;
40 Unify.search_bound := 40;
42 (**** Interactive examples ****)
44 (*Generate nice names for Skolem functions*)
45 Logic.auto_rename := true; Logic.set_rename_prefix "a";
49 goal HOL.thy "(? x. P x) & \
50 \ (! x. L x --> ~ (M x & R x)) & \
51 \ (! x. P x --> (M x & L x)) & \
52 \ ((! x. P x --> Q x) | (? x. P x & R x)) \
53 \ --> (? x. Q x & P x)";
55 val [prem25] = gethyps 1;
56 val nnf25 = make_nnf prem25;
57 val xsko25 = skolemize nnf25;
58 by (cut_facts_tac [xsko25] 1 THEN REPEAT (etac exE 1));
59 val [_,sko25] = gethyps 1;
60 val clauses25 = make_clauses [sko25]; (*7 clauses*)
61 val horns25 = make_horns clauses25; (*16 Horn clauses*)
62 val go25::_ = gocls clauses25;
66 by (depth_prolog_tac horns25);
70 goal HOL.thy "((? x. p x) = (? x. q x)) & \
71 \ (! x. ! y. p x & q y --> (r x = s y)) \
72 \ --> ((! x. p x --> r x) = (! x. q x --> s x))";
74 val [prem26] = gethyps 1;
75 val nnf26 = make_nnf prem26;
76 val xsko26 = skolemize nnf26;
77 by (cut_facts_tac [xsko26] 1 THEN REPEAT (etac exE 1));
78 val [_,sko26] = gethyps 1;
79 val clauses26 = make_clauses [sko26]; (*9 clauses*)
80 val horns26 = make_horns clauses26; (*24 Horn clauses*)
81 val go26::_ = gocls clauses26;
85 by (depth_prolog_tac horns26); (*1.4 secs*)
86 (*Proof is of length 107!!*)
89 writeln"Problem 43 NOW PROVED AUTOMATICALLY!!"; (*16 Horn clauses*)
90 goal HOL.thy "(! x. ! y. q x y = (! z. p z x = (p z y::bool))) \
91 \ --> (! x. (! y. q x y = (q y x::bool)))";
93 val [prem43] = gethyps 1;
94 val nnf43 = make_nnf prem43;
95 val xsko43 = skolemize nnf43;
96 by (cut_facts_tac [xsko43] 1 THEN REPEAT (etac exE 1));
97 val [_,sko43] = gethyps 1;
98 val clauses43 = make_clauses [sko43]; (*6*)
99 val horns43 = make_horns clauses43; (*16*)
100 val go43::_ = gocls clauses43;
102 goal HOL.thy "False";
104 by (best_prolog_tac size_of_subgoals horns43); (*1.6 secs*)
107 #1 (q x xa ==> ~ q x xa) ==> q xa x
108 #2 (q xa x ==> ~ q xa x) ==> q x xa
109 #3 (~ q x xa ==> q x xa) ==> ~ q xa x
110 #4 (~ q xa x ==> q xa x) ==> ~ q x xa
111 #5 [| ~ q ?U ?V ==> q ?U ?V; ~ p ?W ?U ==> p ?W ?U |] ==> p ?W ?V
112 #6 [| ~ p ?W ?U ==> p ?W ?U; p ?W ?V ==> ~ p ?W ?V |] ==> ~ q ?U ?V
113 #7 [| p ?W ?V ==> ~ p ?W ?V; ~ q ?U ?V ==> q ?U ?V |] ==> ~ p ?W ?U
114 #8 [| ~ q ?U ?V ==> q ?U ?V; ~ p ?W ?V ==> p ?W ?V |] ==> p ?W ?U
115 #9 [| ~ p ?W ?V ==> p ?W ?V; p ?W ?U ==> ~ p ?W ?U |] ==> ~ q ?U ?V
116 #10 [| p ?W ?U ==> ~ p ?W ?U; ~ q ?U ?V ==> q ?U ?V |] ==> ~ p ?W ?V
117 #11 [| p (xb ?U ?V) ?U ==> ~ p (xb ?U ?V) ?U;
118 p (xb ?U ?V) ?V ==> ~ p (xb ?U ?V) ?V |] ==> q ?U ?V
119 #12 [| p (xb ?U ?V) ?V ==> ~ p (xb ?U ?V) ?V; q ?U ?V ==> ~ q ?U ?V |] ==>
121 #13 [| q ?U ?V ==> ~ q ?U ?V; p (xb ?U ?V) ?U ==> ~ p (xb ?U ?V) ?U |] ==>
123 #14 [| ~ p (xb ?U ?V) ?U ==> p (xb ?U ?V) ?U;
124 ~ p (xb ?U ?V) ?V ==> p (xb ?U ?V) ?V |] ==> q ?U ?V
125 #15 [| ~ p (xb ?U ?V) ?V ==> p (xb ?U ?V) ?V; q ?U ?V ==> ~ q ?U ?V |] ==>
127 #16 [| q ?U ?V ==> ~ q ?U ?V; ~ p (xb ?U ?V) ?U ==> p (xb ?U ?V) ?U |] ==>
130 And here is the proof! (Unkn is the start state after use of goal clause)
131 [Unkn, Res ([Thm "#14"], false, 1), Res ([Thm "#5"], false, 1),
132 Res ([Thm "#1"], false, 1), Asm 1, Res ([Thm "#13"], false, 1), Asm 2,
133 Asm 1, Res ([Thm "#13"], false, 1), Asm 1, Res ([Thm "#10"], false, 1),
134 Res ([Thm "#16"], false, 1), Asm 2, Asm 1, Res ([Thm "#1"], false, 1),
135 Asm 1, Res ([Thm "#14"], false, 1), Res ([Thm "#5"], false, 1),
136 Res ([Thm "#2"], false, 1), Asm 1, Res ([Thm "#13"], false, 1), Asm 2,
137 Asm 1, Res ([Thm "#8"], false, 1), Res ([Thm "#2"], false, 1), Asm 1,
138 Res ([Thm "#12"], false, 1), Asm 2, Asm 1] : lderiv list
142 (*Restore variable name preservation*)
143 Logic.auto_rename := false;
146 (**** Batch test data ****)
148 (*Sample problems from
150 Seventy-Five Problems for Testing Automatic Theorem Provers,
151 J. Automated Reasoning 2 (1986), 191-216.
152 Errata, JAR 4 (1988), 236-236.
154 The hardest problems -- judging by experience with several theorem provers,
155 including matrix ones -- are 34 and 43.
158 writeln"Pelletier's examples";
160 goal HOL.thy "(P --> Q) = (~Q --> ~P)";
161 by (safe_meson_tac 1);
165 goal HOL.thy "(~ ~ P) = P";
166 by (safe_meson_tac 1);
170 goal HOL.thy "~(P-->Q) --> (Q-->P)";
171 by (safe_meson_tac 1);
175 goal HOL.thy "(~P-->Q) = (~Q --> P)";
176 by (safe_meson_tac 1);
180 goal HOL.thy "((P|Q)-->(P|R)) --> (P|(Q-->R))";
181 by (safe_meson_tac 1);
185 goal HOL.thy "P | ~ P";
186 by (safe_meson_tac 1);
190 goal HOL.thy "P | ~ ~ ~ P";
191 by (safe_meson_tac 1);
195 goal HOL.thy "((P-->Q) --> P) --> P";
196 by (safe_meson_tac 1);
200 goal HOL.thy "((P|Q) & (~P|Q) & (P| ~Q)) --> ~ (~P | ~Q)";
201 by (safe_meson_tac 1);
205 goal HOL.thy "(Q-->R) & (R-->P&Q) & (P-->Q|R) --> (P=Q)";
206 by (safe_meson_tac 1);
209 (*11. Proved in each direction (incorrectly, says Pelletier!!) *)
210 goal HOL.thy "P=(P::bool)";
211 by (safe_meson_tac 1);
214 (*12. "Dijkstra's law"*)
215 goal HOL.thy "((P = Q) = R) = (P = (Q = R))";
216 by (safe_meson_tac 1);
219 (*13. Distributive law*)
220 goal HOL.thy "(P | (Q & R)) = ((P | Q) & (P | R))";
221 by (safe_meson_tac 1);
225 goal HOL.thy "(P = Q) = ((Q | ~P) & (~Q|P))";
226 by (safe_meson_tac 1);
230 goal HOL.thy "(P --> Q) = (~P | Q)";
231 by (safe_meson_tac 1);
235 goal HOL.thy "(P-->Q) | (Q-->P)";
236 by (safe_meson_tac 1);
240 goal HOL.thy "((P & (Q-->R))-->S) = ((~P | Q | S) & (~P | ~R | S))";
241 by (safe_meson_tac 1);
244 writeln"Classical Logic: examples with quantifiers";
246 goal HOL.thy "(! x. P x & Q x) = ((! x. P x) & (! x. Q x))";
247 by (safe_meson_tac 1);
250 goal HOL.thy "(? x. P --> Q x) = (P --> (? x.Q x))";
251 by (safe_meson_tac 1);
254 goal HOL.thy "(? x.P x --> Q) = ((! x.P x) --> Q)";
255 by (safe_meson_tac 1);
258 goal HOL.thy "((! x.P x) | Q) = (! x. P x | Q)";
259 by (safe_meson_tac 1);
262 goal HOL.thy "(! x. P x --> P(f x)) & P d --> P(f(f(f d)))";
263 by (safe_meson_tac 1);
266 (*Needs double instantiation of EXISTS*)
267 goal HOL.thy "? x. P x --> P a & P b";
268 by (safe_meson_tac 1);
271 goal HOL.thy "? z. P z --> (! x. P x)";
272 by (safe_meson_tac 1);
275 writeln"Hard examples with quantifiers";
278 goal HOL.thy "? y. ! x. P y --> P x";
279 by (safe_meson_tac 1);
283 goal HOL.thy "? x. ! y z. (P y --> Q z) --> (P x --> Q x)";
284 by (safe_meson_tac 1);
288 goal HOL.thy "(! x y. ? z. ! w. (P x & Q y --> R z & S w)) \
289 \ --> (? x y. P x & Q y) --> (? z. R z)";
290 by (safe_meson_tac 1);
294 goal HOL.thy "(? x. P --> Q x) & (? x. Q x --> P) --> (? x. P=Q x)";
295 by (safe_meson_tac 1);
299 goal HOL.thy "(! x. P = Q x) --> (P = (! x. Q x))";
300 by (safe_meson_tac 1);
304 goal HOL.thy "(! x. P | Q x) = (P | (! x. Q x))";
305 by (safe_meson_tac 1);
308 writeln"Problem 24"; (*The first goal clause is useless*)
309 goal HOL.thy "~(? x. S x & Q x) & (! x. P x --> Q x | R x) & \
310 \ (~(? x.P x) --> (? x.Q x)) & (! x. Q x | R x --> S x) \
311 \ --> (? x. P x & R x)";
312 by (safe_meson_tac 1);
316 goal HOL.thy "(? x. P x) & \
317 \ (! x. L x --> ~ (M x & R x)) & \
318 \ (! x. P x --> (M x & L x)) & \
319 \ ((! x. P x --> Q x) | (? x. P x & R x)) \
320 \ --> (? x. Q x & P x)";
321 by (safe_meson_tac 1);
324 writeln"Problem 26"; (*24 Horn clauses*)
325 goal HOL.thy "((? x. p x) = (? x. q x)) & \
326 \ (! x. ! y. p x & q y --> (r x = s y)) \
327 \ --> ((! x. p x --> r x) = (! x. q x --> s x))";
328 by (safe_meson_tac 1);
331 writeln"Problem 27"; (*13 Horn clauses*)
332 goal HOL.thy "(? x. P x & ~Q x) & \
333 \ (! x. P x --> R x) & \
334 \ (! x. M x & L x --> P x) & \
335 \ ((? x. R x & ~ Q x) --> (! x. L x --> ~ R x)) \
336 \ --> (! x. M x --> ~L x)";
337 by (safe_meson_tac 1);
340 writeln"Problem 28. AMENDED"; (*14 Horn clauses*)
341 goal HOL.thy "(! x. P x --> (! x. Q x)) & \
342 \ ((! x. Q x | R x) --> (? x. Q x & S x)) & \
343 \ ((? x.S x) --> (! x. L x --> M x)) \
344 \ --> (! x. P x & L x --> M x)";
345 by (safe_meson_tac 1);
348 writeln"Problem 29. Essentially the same as Principia Mathematica *11.71";
350 goal HOL.thy "(? x. F x) & (? y. G y) \
351 \ --> ( ((! x. F x --> H x) & (! y. G y --> J y)) = \
352 \ (! x y. F x & G y --> H x & J y))";
353 by (safe_meson_tac 1); (*0.7 secs*)
357 goal HOL.thy "(! x. P x | Q x --> ~ R x) & \
358 \ (! x. (Q x --> ~ S x) --> P x & R x) \
360 by (safe_meson_tac 1);
363 writeln"Problem 31"; (*10 Horn clauses; first negative clauses is useless*)
364 goal HOL.thy "~(? x.P x & (Q x | R x)) & \
365 \ (? x. L x & P x) & \
366 \ (! x. ~ R x --> M x) \
367 \ --> (? x. L x & M x)";
368 by (safe_meson_tac 1);
372 goal HOL.thy "(! x. P x & (Q x | R x)-->S x) & \
373 \ (! x. S x & R x --> L x) & \
374 \ (! x. M x --> R x) \
375 \ --> (! x. P x & M x --> L x)";
376 by (safe_meson_tac 1);
379 writeln"Problem 33"; (*55 Horn clauses*)
380 goal HOL.thy "(! x. P a & (P x --> P b)-->P c) = \
381 \ (! x. (~P a | P x | P c) & (~P a | ~P b | P c))";
382 by (safe_meson_tac 1); (*5.6 secs*)
385 writeln"Problem 34 AMENDED (TWICE!!)"; (*924 Horn clauses*)
386 (*Andrews's challenge*)
387 goal HOL.thy "((? x. ! y. p x = p y) = \
388 \ ((? x. q x) = (! y. p y))) = \
389 \ ((? x. ! y. q x = q y) = \
390 \ ((? x. p x) = (! y. q y)))";
391 by (safe_meson_tac 1); (*13 secs*)
395 goal HOL.thy "? x y. P x y --> (! u v. P u v)";
396 by (safe_meson_tac 1);
399 writeln"Problem 36"; (*15 Horn clauses*)
400 goal HOL.thy "(! x. ? y. J x y) & \
401 \ (! x. ? y. G x y) & \
402 \ (! x y. J x y | G x y --> \
403 \ (! z. J y z | G y z --> H x z)) \
404 \ --> (! x. ? y. H x y)";
405 by (safe_meson_tac 1);
408 writeln"Problem 37"; (*10 Horn clauses*)
409 goal HOL.thy "(! z. ? w. ! x. ? y. \
410 \ (P x z --> P y w) & P y z & (P y w --> (? u.Q u w))) & \
411 \ (! x z. ~P x z --> (? y. Q y z)) & \
412 \ ((? x y. Q x y) --> (! x. R x x)) \
413 \ --> (! x. ? y. R x y)";
414 by (safe_meson_tac 1); (*causes unification tracing messages*)
417 writeln"Problem 38"; (*Quite hard: 422 Horn clauses!!*)
419 "(! x. p a & (p x --> (? y. p y & r x y)) --> \
420 \ (? z. ? w. p z & r x w & r w z)) = \
421 \ (! x. (~p a | p x | (? z. ? w. p z & r x w & r w z)) & \
422 \ (~p a | ~(? y. p y & r x y) | \
423 \ (? z. ? w. p z & r x w & r w z)))";
424 by (safe_best_meson_tac 1); (*10 secs; iter. deepening is slightly slower*)
428 goal HOL.thy "~ (? x. ! y. F y x = (~F y y))";
429 by (safe_meson_tac 1);
432 writeln"Problem 40. AMENDED";
433 goal HOL.thy "(? y. ! x. F x y = F x x) \
434 \ --> ~ (! x. ? y. ! z. F z y = (~F z x))";
435 by (safe_meson_tac 1);
439 goal HOL.thy "(! z. (? y. (! x. f x y = (f x z & ~ f x x)))) \
440 \ --> ~ (? z. ! x. f x z)";
441 by (safe_meson_tac 1);
445 goal HOL.thy "~ (? y. ! x. p x y = (~ (? z. p x z & p z x)))";
446 by (safe_meson_tac 1);
449 writeln"Problem 43 NOW PROVED AUTOMATICALLY!!";
450 goal HOL.thy "(! x. ! y. q x y = (! z. p z x = (p z y::bool))) \
451 \ --> (! x. (! y. q x y = (q y x::bool)))";
452 by (safe_best_meson_tac 1);
453 (*1.6 secs; iter. deepening is slightly slower*)
456 writeln"Problem 44"; (*13 Horn clauses; 7-step proof*)
457 goal HOL.thy "(! x. f x --> \
458 \ (? y. g y & h x y & (? y. g y & ~ h x y))) & \
459 \ (? x. j x & (! y. g y --> h x y)) \
460 \ --> (? x. j x & ~f x)";
461 by (safe_meson_tac 1);
464 writeln"Problem 45"; (*27 Horn clauses; 54-step proof*)
465 goal HOL.thy "(! x. f x & (! y. g y & h x y --> j x y) \
466 \ --> (! y. g y & h x y --> k y)) & \
467 \ ~ (? y. l y & k y) & \
468 \ (? x. f x & (! y. h x y --> l y) \
469 \ & (! y. g y & h x y --> j x y)) \
470 \ --> (? x. f x & ~ (? y. g y & h x y))";
471 by (safe_best_meson_tac 1);
472 (*1.6 secs; iter. deepening is slightly slower*)
475 writeln"Problem 46"; (*26 Horn clauses; 21-step proof*)
477 "(! x. f x & (! y. f y & h y x --> g y) --> g x) & \
478 \ ((? x.f x & ~g x) --> \
479 \ (? x. f x & ~g x & (! y. f y & ~g y --> j x y))) & \
480 \ (! x y. f x & f y & h x y --> ~j y x) \
481 \ --> (! x. f x --> g x)";
482 by (safe_best_meson_tac 1);
483 (*1.7 secs; iter. deepening is slightly slower*)
486 writeln"Problem 47. Schubert's Steamroller";
487 (*26 clauses; 63 Horn clauses*)
489 "(! x. P1 x --> P0 x) & (? x.P1 x) & \
490 \ (! x. P2 x --> P0 x) & (? x.P2 x) & \
491 \ (! x. P3 x --> P0 x) & (? x.P3 x) & \
492 \ (! x. P4 x --> P0 x) & (? x.P4 x) & \
493 \ (! x. P5 x --> P0 x) & (? x.P5 x) & \
494 \ (! x. Q1 x --> Q0 x) & (? x.Q1 x) & \
495 \ (! x. P0 x --> ((! y.Q0 y-->R x y) | \
496 \ (! y.P0 y & S y x & \
497 \ (? z.Q0 z&R y z) --> R x y))) & \
498 \ (! x y. P3 y & (P5 x|P4 x) --> S x y) & \
499 \ (! x y. P3 x & P2 y --> S x y) & \
500 \ (! x y. P2 x & P1 y --> S x y) & \
501 \ (! x y. P1 x & (P2 y|Q1 y) --> ~R x y) & \
502 \ (! x y. P3 x & P4 y --> R x y) & \
503 \ (! x y. P3 x & P5 y --> ~R x y) & \
504 \ (! x. (P4 x|P5 x) --> (? y.Q0 y & R x y)) \
505 \ --> (? x y. P0 x & P0 y & (? z. Q1 z & R y z & R x y))";
506 by (safe_meson_tac 1); (*119 secs*)
509 (*The Los problem? Circulated by John Harrison*)
510 goal HOL.thy "(! x y z. P x y & P y z --> P x z) & \
511 \ (! x y z. Q x y & Q y z --> Q x z) & \
512 \ (! x y. P x y --> P y x) & \
513 \ (! x y. P x y | Q x y) \
514 \ --> (! x y. P x y) | (! x y. Q x y)";
515 by (safe_best_meson_tac 1); (*2.3 secs; iter. deepening is VERY slow*)
518 (*A similar example, suggested by Johannes Schumann and credited to Pelletier*)
519 goal HOL.thy "(!x y z. P x y --> P y z --> P x z) --> \
520 \ (!x y z. Q x y --> Q y z --> Q x z) --> \
521 \ (!x y.Q x y --> Q y x) --> (!x y. P x y | Q x y) --> \
522 \ (!x y.P x y) | (!x y.Q x y)";
523 by (safe_best_meson_tac 1); (*2.7 secs*)
527 (*What has this to do with equality?*)
528 goal HOL.thy "(! x. P a x | (! y.P x y)) --> (? x. ! y.P x y)";
529 by (safe_meson_tac 1);
534 (*Non-equational version, from Manthey and Bry, CADE-9 (Springer, 1988).
535 meson_tac cannot report who killed Agatha. *)
536 goal HOL.thy "lives agatha & lives butler & lives charles & \
537 \ (killed agatha agatha | killed butler agatha | killed charles agatha) & \
538 \ (!x y. killed x y --> hates x y & ~richer x y) & \
539 \ (!x. hates agatha x --> ~hates charles x) & \
540 \ (hates agatha agatha & hates agatha charles) & \
541 \ (!x. lives x & ~richer x agatha --> hates butler x) & \
542 \ (!x. hates agatha x --> hates butler x) & \
543 \ (!x. ~hates x agatha | ~hates x butler | ~hates x charles) --> \
544 \ (? x. killed x agatha)";
545 by (safe_meson_tac 1);
550 "P (f a b) (f b c) & P (f b c) (f a c) & \
551 \ (! x y z. P x y & P y z --> P x z) --> P (f a b) (f a c)";
552 by (safe_meson_tac 1);
556 (* Challenge found on info-hol *)
558 "! P Q R x. ? v w. ! y z. P x & Q y --> (P v | R w) & (R z --> Q v)";
559 by (safe_meson_tac 1);
563 goal HOL.thy "(! x. P x = (~P(f x))) --> (? x. P x & ~P(f x))";
564 by (safe_meson_tac 1);
568 goal HOL.thy "! x. P x (f x) = (? y. (! z. P z y --> P z (f x)) & P x y)";
569 by (safe_meson_tac 1);
572 writeln"Problem 62 as corrected in JAR 18 (1997), page 135";
574 "(ALL x. p a & (p x --> p(f x)) --> p(f(f x))) = \
575 \ (ALL x. (~ p a | p x | p(f(f x))) & \
576 \ (~ p a | ~ p(f x) | p(f(f x))))";
577 by (safe_meson_tac 1);
581 (** Charles Morgan's problems **)
583 val axa = "! x y. T(i x(i y x))";
584 val axb = "! x y z. T(i(i x(i y z))(i(i x y)(i x z)))";
585 val axc = "! x y. T(i(i(n x)(n y))(i y x))";
586 val axd = "! x y. T(i x y) & T x --> T y";
588 fun axjoin ([], q) = q
589 | axjoin (p::ps, q) = "(" ^ p ^ ") --> (" ^ axjoin(ps,q) ^ ")";
591 goal HOL.thy (axjoin([axa,axb,axd], "! x. T(i x x)"));
592 by (safe_meson_tac 1);
596 goal HOL.thy (axjoin([axa,axb,axc,axd], "! x. T(i x(n(n x)))"));
597 (*TOO SLOW: more than 24 minutes!
598 by (safe_meson_tac 1);
603 goal HOL.thy (axjoin([axa,axb,axc,axd], "! x. T(i(n(n x)) x)"));
604 (*TOO SLOW: more than 3 minutes!
605 by (safe_meson_tac 1);
610 (*Restore original values*)
611 Unify.trace_bound := orig_trace_bound;
612 Unify.search_bound := orig_search_bound;
614 writeln"Reached end of file.";
616 (*26 August 1992: loaded in 277 secs. New Jersey v 75*)