src/HOL/Numeral_Simprocs.thy
author huffman
Fri Oct 28 16:49:15 2011 +0200 (2011-10-28)
changeset 45296 7a97b2bda137
parent 45284 ae78a4ffa81d
child 45308 2e84e5f0463b
permissions -rw-r--r--
more accurate class constraints on cancellation simproc patterns
     1 (* Author: Various *)
     2 
     3 header {* Combination and Cancellation Simprocs for Numeral Expressions *}
     4 
     5 theory Numeral_Simprocs
     6 imports Divides
     7 uses
     8   "~~/src/Provers/Arith/assoc_fold.ML"
     9   "~~/src/Provers/Arith/cancel_numerals.ML"
    10   "~~/src/Provers/Arith/combine_numerals.ML"
    11   "~~/src/Provers/Arith/cancel_numeral_factor.ML"
    12   "~~/src/Provers/Arith/extract_common_term.ML"
    13   ("Tools/numeral_simprocs.ML")
    14   ("Tools/nat_numeral_simprocs.ML")
    15 begin
    16 
    17 declare split_div [of _ _ "number_of k", standard, arith_split]
    18 declare split_mod [of _ _ "number_of k", standard, arith_split]
    19 
    20 text {* For @{text combine_numerals} *}
    21 
    22 lemma left_add_mult_distrib: "i*u + (j*u + k) = (i+j)*u + (k::nat)"
    23 by (simp add: add_mult_distrib)
    24 
    25 text {* For @{text cancel_numerals} *}
    26 
    27 lemma nat_diff_add_eq1:
    28      "j <= (i::nat) ==> ((i*u + m) - (j*u + n)) = (((i-j)*u + m) - n)"
    29 by (simp split add: nat_diff_split add: add_mult_distrib)
    30 
    31 lemma nat_diff_add_eq2:
    32      "i <= (j::nat) ==> ((i*u + m) - (j*u + n)) = (m - ((j-i)*u + n))"
    33 by (simp split add: nat_diff_split add: add_mult_distrib)
    34 
    35 lemma nat_eq_add_iff1:
    36      "j <= (i::nat) ==> (i*u + m = j*u + n) = ((i-j)*u + m = n)"
    37 by (auto split add: nat_diff_split simp add: add_mult_distrib)
    38 
    39 lemma nat_eq_add_iff2:
    40      "i <= (j::nat) ==> (i*u + m = j*u + n) = (m = (j-i)*u + n)"
    41 by (auto split add: nat_diff_split simp add: add_mult_distrib)
    42 
    43 lemma nat_less_add_iff1:
    44      "j <= (i::nat) ==> (i*u + m < j*u + n) = ((i-j)*u + m < n)"
    45 by (auto split add: nat_diff_split simp add: add_mult_distrib)
    46 
    47 lemma nat_less_add_iff2:
    48      "i <= (j::nat) ==> (i*u + m < j*u + n) = (m < (j-i)*u + n)"
    49 by (auto split add: nat_diff_split simp add: add_mult_distrib)
    50 
    51 lemma nat_le_add_iff1:
    52      "j <= (i::nat) ==> (i*u + m <= j*u + n) = ((i-j)*u + m <= n)"
    53 by (auto split add: nat_diff_split simp add: add_mult_distrib)
    54 
    55 lemma nat_le_add_iff2:
    56      "i <= (j::nat) ==> (i*u + m <= j*u + n) = (m <= (j-i)*u + n)"
    57 by (auto split add: nat_diff_split simp add: add_mult_distrib)
    58 
    59 text {* For @{text cancel_numeral_factors} *}
    60 
    61 lemma nat_mult_le_cancel1: "(0::nat) < k ==> (k*m <= k*n) = (m<=n)"
    62 by auto
    63 
    64 lemma nat_mult_less_cancel1: "(0::nat) < k ==> (k*m < k*n) = (m<n)"
    65 by auto
    66 
    67 lemma nat_mult_eq_cancel1: "(0::nat) < k ==> (k*m = k*n) = (m=n)"
    68 by auto
    69 
    70 lemma nat_mult_div_cancel1: "(0::nat) < k ==> (k*m) div (k*n) = (m div n)"
    71 by auto
    72 
    73 lemma nat_mult_dvd_cancel_disj[simp]:
    74   "(k*m) dvd (k*n) = (k=0 | m dvd (n::nat))"
    75 by(auto simp: dvd_eq_mod_eq_0 mod_mult_distrib2[symmetric])
    76 
    77 lemma nat_mult_dvd_cancel1: "0 < k \<Longrightarrow> (k*m) dvd (k*n::nat) = (m dvd n)"
    78 by(auto)
    79 
    80 text {* For @{text cancel_factor} *}
    81 
    82 lemma nat_mult_le_cancel_disj: "(k*m <= k*n) = ((0::nat) < k --> m<=n)"
    83 by auto
    84 
    85 lemma nat_mult_less_cancel_disj: "(k*m < k*n) = ((0::nat) < k & m<n)"
    86 by auto
    87 
    88 lemma nat_mult_eq_cancel_disj: "(k*m = k*n) = (k = (0::nat) | m=n)"
    89 by auto
    90 
    91 lemma nat_mult_div_cancel_disj[simp]:
    92      "(k*m) div (k*n) = (if k = (0::nat) then 0 else m div n)"
    93 by (simp add: nat_mult_div_cancel1)
    94 
    95 use "Tools/numeral_simprocs.ML"
    96 
    97 simproc_setup semiring_assoc_fold
    98   ("(a::'a::comm_semiring_1_cancel) * b") =
    99   {* fn phi => Numeral_Simprocs.assoc_fold *}
   100 
   101 simproc_setup int_combine_numerals
   102   ("(i::'a::number_ring) + j" | "(i::'a::number_ring) - j") =
   103   {* fn phi => Numeral_Simprocs.combine_numerals *}
   104 
   105 simproc_setup field_combine_numerals
   106   ("(i::'a::{field_inverse_zero, number_ring}) + j"
   107   |"(i::'a::{field_inverse_zero, number_ring}) - j") =
   108   {* fn phi => Numeral_Simprocs.field_combine_numerals *}
   109 
   110 simproc_setup inteq_cancel_numerals
   111   ("(l::'a::number_ring) + m = n"
   112   |"(l::'a::number_ring) = m + n"
   113   |"(l::'a::number_ring) - m = n"
   114   |"(l::'a::number_ring) = m - n"
   115   |"(l::'a::number_ring) * m = n"
   116   |"(l::'a::number_ring) = m * n") =
   117   {* fn phi => Numeral_Simprocs.eq_cancel_numerals *}
   118 
   119 simproc_setup intless_cancel_numerals
   120   ("(l::'a::{linordered_idom,number_ring}) + m < n"
   121   |"(l::'a::{linordered_idom,number_ring}) < m + n"
   122   |"(l::'a::{linordered_idom,number_ring}) - m < n"
   123   |"(l::'a::{linordered_idom,number_ring}) < m - n"
   124   |"(l::'a::{linordered_idom,number_ring}) * m < n"
   125   |"(l::'a::{linordered_idom,number_ring}) < m * n") =
   126   {* fn phi => Numeral_Simprocs.less_cancel_numerals *}
   127 
   128 simproc_setup intle_cancel_numerals
   129   ("(l::'a::{linordered_idom,number_ring}) + m \<le> n"
   130   |"(l::'a::{linordered_idom,number_ring}) \<le> m + n"
   131   |"(l::'a::{linordered_idom,number_ring}) - m \<le> n"
   132   |"(l::'a::{linordered_idom,number_ring}) \<le> m - n"
   133   |"(l::'a::{linordered_idom,number_ring}) * m \<le> n"
   134   |"(l::'a::{linordered_idom,number_ring}) \<le> m * n") =
   135   {* fn phi => Numeral_Simprocs.le_cancel_numerals *}
   136 
   137 simproc_setup ring_eq_cancel_numeral_factor
   138   ("(l::'a::{idom,number_ring}) * m = n"
   139   |"(l::'a::{idom,number_ring}) = m * n") =
   140   {* fn phi => Numeral_Simprocs.eq_cancel_numeral_factor *}
   141 
   142 simproc_setup ring_less_cancel_numeral_factor
   143   ("(l::'a::{linordered_idom,number_ring}) * m < n"
   144   |"(l::'a::{linordered_idom,number_ring}) < m * n") =
   145   {* fn phi => Numeral_Simprocs.less_cancel_numeral_factor *}
   146 
   147 simproc_setup ring_le_cancel_numeral_factor
   148   ("(l::'a::{linordered_idom,number_ring}) * m <= n"
   149   |"(l::'a::{linordered_idom,number_ring}) <= m * n") =
   150   {* fn phi => Numeral_Simprocs.le_cancel_numeral_factor *}
   151 
   152 simproc_setup int_div_cancel_numeral_factors
   153   ("((l::'a::{semiring_div,number_ring}) * m) div n"
   154   |"(l::'a::{semiring_div,number_ring}) div (m * n)") =
   155   {* fn phi => Numeral_Simprocs.div_cancel_numeral_factor *}
   156 
   157 simproc_setup divide_cancel_numeral_factor
   158   ("((l::'a::{field_inverse_zero,number_ring}) * m) / n"
   159   |"(l::'a::{field_inverse_zero,number_ring}) / (m * n)"
   160   |"((number_of v)::'a::{field_inverse_zero,number_ring}) / (number_of w)") =
   161   {* fn phi => Numeral_Simprocs.divide_cancel_numeral_factor *}
   162 
   163 simproc_setup ring_eq_cancel_factor
   164   ("(l::'a::idom) * m = n" | "(l::'a::idom) = m * n") =
   165   {* fn phi => Numeral_Simprocs.eq_cancel_factor *}
   166 
   167 simproc_setup linordered_ring_le_cancel_factor
   168   ("(l::'a::linordered_idom) * m <= n"
   169   |"(l::'a::linordered_idom) <= m * n") =
   170   {* fn phi => Numeral_Simprocs.le_cancel_factor *}
   171 
   172 simproc_setup linordered_ring_less_cancel_factor
   173   ("(l::'a::linordered_idom) * m < n"
   174   |"(l::'a::linordered_idom) < m * n") =
   175   {* fn phi => Numeral_Simprocs.less_cancel_factor *}
   176 
   177 simproc_setup int_div_cancel_factor
   178   ("((l::'a::semiring_div) * m) div n"
   179   |"(l::'a::semiring_div) div (m * n)") =
   180   {* fn phi => Numeral_Simprocs.div_cancel_factor *}
   181 
   182 simproc_setup int_mod_cancel_factor
   183   ("((l::'a::semiring_div) * m) mod n"
   184   |"(l::'a::semiring_div) mod (m * n)") =
   185   {* fn phi => Numeral_Simprocs.mod_cancel_factor *}
   186 
   187 simproc_setup dvd_cancel_factor
   188   ("((l::'a::idom) * m) dvd n"
   189   |"(l::'a::idom) dvd (m * n)") =
   190   {* fn phi => Numeral_Simprocs.dvd_cancel_factor *}
   191 
   192 simproc_setup divide_cancel_factor
   193   ("((l::'a::field_inverse_zero) * m) / n"
   194   |"(l::'a::field_inverse_zero) / (m * n)") =
   195   {* fn phi => Numeral_Simprocs.divide_cancel_factor *}
   196 
   197 use "Tools/nat_numeral_simprocs.ML"
   198 
   199 declaration {* 
   200   K (Lin_Arith.add_simps (@{thms neg_simps} @ [@{thm Suc_nat_number_of}, @{thm int_nat_number_of}])
   201   #> Lin_Arith.add_simps (@{thms ring_distribs} @ [@{thm Let_number_of}, @{thm Let_0}, @{thm Let_1},
   202      @{thm nat_0}, @{thm nat_1},
   203      @{thm add_nat_number_of}, @{thm diff_nat_number_of}, @{thm mult_nat_number_of},
   204      @{thm eq_nat_number_of}, @{thm less_nat_number_of}, @{thm le_number_of_eq_not_less},
   205      @{thm le_Suc_number_of}, @{thm le_number_of_Suc},
   206      @{thm less_Suc_number_of}, @{thm less_number_of_Suc},
   207      @{thm Suc_eq_number_of}, @{thm eq_number_of_Suc},
   208      @{thm mult_Suc}, @{thm mult_Suc_right},
   209      @{thm add_Suc}, @{thm add_Suc_right},
   210      @{thm eq_number_of_0}, @{thm eq_0_number_of}, @{thm less_0_number_of},
   211      @{thm of_int_number_of_eq}, @{thm of_nat_number_of_eq}, @{thm nat_number_of},
   212      @{thm if_True}, @{thm if_False}])
   213   #> Lin_Arith.add_simprocs
   214       [@{simproc semiring_assoc_fold},
   215        @{simproc int_combine_numerals},
   216        @{simproc inteq_cancel_numerals},
   217        @{simproc intless_cancel_numerals},
   218        @{simproc intle_cancel_numerals}]
   219   #> Lin_Arith.add_simprocs (Nat_Numeral_Simprocs.combine_numerals :: Nat_Numeral_Simprocs.cancel_numerals))
   220 *}
   221 
   222 end