2 Author: Tobias Nipkow, Markus Wenzel, and Larry Paulson
5 header {* The basis of Higher-Order Logic *}
8 imports Pure "~~/src/Tools/Code_Generator"
11 "~~/src/Tools/IsaPlanner/zipper.ML"
12 "~~/src/Tools/IsaPlanner/isand.ML"
13 "~~/src/Tools/IsaPlanner/rw_tools.ML"
14 "~~/src/Tools/IsaPlanner/rw_inst.ML"
15 "~~/src/Tools/intuitionistic.ML"
16 "~~/src/Tools/project_rule.ML"
17 "~~/src/Tools/cong_tac.ML"
18 "~~/src/Tools/misc_legacy.ML"
19 "~~/src/Provers/hypsubst.ML"
20 "~~/src/Provers/splitter.ML"
21 "~~/src/Provers/classical.ML"
22 "~~/src/Provers/blast.ML"
23 "~~/src/Provers/clasimp.ML"
24 "~~/src/Tools/coherent.ML"
25 "~~/src/Tools/eqsubst.ML"
26 "~~/src/Provers/quantifier1.ML"
28 "~~/src/Tools/atomize_elim.ML"
29 "~~/src/Tools/induct.ML"
30 ("~~/src/Tools/induct_tacs.ML")
31 ("Tools/recfun_codegen.ML")
32 ("Tools/cnf_funcs.ML")
33 "~~/src/Tools/subtyping.ML"
34 "~~/src/Tools/case_product.ML"
37 setup {* Intuitionistic.method_setup @{binding iprover} *}
39 setup Case_Product.setup
42 subsection {* Primitive logic *}
44 subsubsection {* Core syntax *}
48 setup {* Object_Logic.add_base_sort @{sort type} *}
51 "fun" :: (type, type) type
57 Trueprop :: "bool => prop" ("(_)" 5)
62 Not :: "bool => bool" ("~ _" [40] 40)
64 conj :: "[bool, bool] => bool" (infixr "&" 35)
65 disj :: "[bool, bool] => bool" (infixr "|" 30)
66 implies :: "[bool, bool] => bool" (infixr "-->" 25)
68 eq :: "['a, 'a] => bool" (infixl "=" 50)
70 The :: "('a => bool) => 'a"
71 All :: "('a => bool) => bool" (binder "ALL " 10)
72 Ex :: "('a => bool) => bool" (binder "EX " 10)
73 Ex1 :: "('a => bool) => bool" (binder "EX! " 10)
76 subsubsection {* Additional concrete syntax *}
82 not_equal :: "['a, 'a] => bool" (infixl "~=" 50) where
86 not_equal (infix "~=" 50)
89 Not ("\<not> _" [40] 40) and
90 conj (infixr "\<and>" 35) and
91 disj (infixr "\<or>" 30) and
92 implies (infixr "\<longrightarrow>" 25) and
93 not_equal (infix "\<noteq>" 50)
95 notation (HTML output)
96 Not ("\<not> _" [40] 40) and
97 conj (infixr "\<and>" 35) and
98 disj (infixr "\<or>" 30) and
99 not_equal (infix "\<noteq>" 50)
102 iff :: "[bool, bool] => bool" (infixr "<->" 25) where
106 iff (infixr "\<longleftrightarrow>" 25)
108 nonterminal letbinds and letbind
109 nonterminal case_pat and case_syn and cases_syn
112 "_The" :: "[pttrn, bool] => 'a" ("(3THE _./ _)" [0, 10] 10)
114 "_bind" :: "[pttrn, 'a] => letbind" ("(2_ =/ _)" 10)
115 "" :: "letbind => letbinds" ("_")
116 "_binds" :: "[letbind, letbinds] => letbinds" ("_;/ _")
117 "_Let" :: "[letbinds, 'a] => 'a" ("(let (_)/ in (_))" [0, 10] 10)
119 "_case_syntax" :: "['a, cases_syn] => 'b" ("(case _ of/ _)" 10)
120 "_case1" :: "[case_pat, 'b] => case_syn" ("(2_ =>/ _)" 10)
121 "" :: "case_syn => cases_syn" ("_")
122 "_case2" :: "[case_syn, cases_syn] => cases_syn" ("_/ | _")
123 "_strip_positions" :: "'a => case_pat" ("_")
126 "_case1" :: "[case_pat, 'b] => case_syn" ("(2_ \<Rightarrow>/ _)" 10)
129 "THE x. P" == "CONST The (%x. P)"
132 [(@{const_syntax The}, fn [Abs abs] =>
133 let val (x, t) = Syntax_Trans.atomic_abs_tr' abs
134 in Syntax.const @{syntax_const "_The"} $ x $ t end)]
135 *} -- {* To avoid eta-contraction of body *}
138 All (binder "\<forall>" 10) and
139 Ex (binder "\<exists>" 10) and
140 Ex1 (binder "\<exists>!" 10)
142 notation (HTML output)
143 All (binder "\<forall>" 10) and
144 Ex (binder "\<exists>" 10) and
145 Ex1 (binder "\<exists>!" 10)
148 All (binder "! " 10) and
149 Ex (binder "? " 10) and
150 Ex1 (binder "?! " 10)
153 subsubsection {* Axioms and basic definitions *}
157 subst: "s = t \<Longrightarrow> P s \<Longrightarrow> P t"
158 ext: "(!!x::'a. (f x ::'b) = g x) ==> (%x. f x) = (%x. g x)"
159 -- {*Extensionality is built into the meta-logic, and this rule expresses
160 a related property. It is an eta-expanded version of the traditional
161 rule, and similar to the ABS rule of HOL*}
163 the_eq_trivial: "(THE x. x = a) = (a::'a)"
165 impI: "(P ==> Q) ==> P-->Q"
166 mp: "[| P-->Q; P |] ==> Q"
170 True_def: "True == ((%x::bool. x) = (%x. x))"
171 All_def: "All(P) == (P = (%x. True))"
172 Ex_def: "Ex(P) == !Q. (!x. P x --> Q) --> Q"
173 False_def: "False == (!P. P)"
174 not_def: "~ P == P-->False"
175 and_def: "P & Q == !R. (P-->Q-->R) --> R"
176 or_def: "P | Q == !R. (P-->R) --> (Q-->R) --> R"
177 Ex1_def: "Ex1(P) == ? x. P(x) & (! y. P(y) --> y=x)"
180 iff: "(P-->Q) --> (Q-->P) --> (P=Q)"
181 True_or_False: "(P=True) | (P=False)"
188 definition If :: "bool \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'a" ("(if (_)/ then (_)/ else (_))" [0, 0, 10] 10) where
189 "If P x y \<equiv> (THE z::'a. (P=True --> z=x) & (P=False --> z=y))"
191 definition Let :: "'a \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'b" where
192 "Let s f \<equiv> f s"
195 "_Let (_binds b bs) e" == "_Let b (_Let bs e)"
196 "let x = a in e" == "CONST Let a (%x. e)"
205 subsection {* Fundamental rules *}
207 subsubsection {* Equality *}
209 lemma sym: "s = t ==> t = s"
210 by (erule subst) (rule refl)
212 lemma ssubst: "t = s ==> P s ==> P t"
213 by (drule sym) (erule subst)
215 lemma trans: "[| r=s; s=t |] ==> r=t"
218 lemma trans_sym [Pure.elim?]: "r = s ==> t = s ==> r = t"
219 by (rule trans [OF _ sym])
221 lemma meta_eq_to_obj_eq:
222 assumes meq: "A == B"
224 by (unfold meq) (rule refl)
226 text {* Useful with @{text erule} for proving equalities from known equalities. *}
230 lemma box_equals: "[| a=b; a=c; b=d |] ==> c=d"
237 text {* For calculational reasoning: *}
239 lemma forw_subst: "a = b ==> P b ==> P a"
242 lemma back_subst: "P a ==> a = b ==> P b"
246 subsubsection {* Congruence rules for application *}
248 text {* Similar to @{text AP_THM} in Gordon's HOL. *}
249 lemma fun_cong: "(f::'a=>'b) = g ==> f(x)=g(x)"
254 text {* Similar to @{text AP_TERM} in Gordon's HOL and FOL's @{text subst_context}. *}
255 lemma arg_cong: "x=y ==> f(x)=f(y)"
260 lemma arg_cong2: "\<lbrakk> a = b; c = d \<rbrakk> \<Longrightarrow> f a c = f b d"
261 apply (erule ssubst)+
265 lemma cong: "[| f = g; (x::'a) = y |] ==> f x = g y"
270 ML {* val cong_tac = Cong_Tac.cong_tac @{thm cong} *}
273 subsubsection {* Equality of booleans -- iff *}
275 lemma iffI: assumes "P ==> Q" and "Q ==> P" shows "P=Q"
276 by (iprover intro: iff [THEN mp, THEN mp] impI assms)
278 lemma iffD2: "[| P=Q; Q |] ==> P"
281 lemma rev_iffD2: "[| Q; P=Q |] ==> P"
284 lemma iffD1: "Q = P \<Longrightarrow> Q \<Longrightarrow> P"
285 by (drule sym) (rule iffD2)
287 lemma rev_iffD1: "Q \<Longrightarrow> Q = P \<Longrightarrow> P"
288 by (drule sym) (rule rev_iffD2)
292 and minor: "[| P --> Q; Q --> P |] ==> R"
294 by (iprover intro: minor impI major [THEN iffD2] major [THEN iffD1])
297 subsubsection {*True*}
300 unfolding True_def by (rule refl)
302 lemma eqTrueI: "P ==> P = True"
303 by (iprover intro: iffI TrueI)
305 lemma eqTrueE: "P = True ==> P"
306 by (erule iffD2) (rule TrueI)
309 subsubsection {*Universal quantifier*}
311 lemma allI: assumes "!!x::'a. P(x)" shows "ALL x. P(x)"
312 unfolding All_def by (iprover intro: ext eqTrueI assms)
314 lemma spec: "ALL x::'a. P(x) ==> P(x)"
315 apply (unfold All_def)
317 apply (erule fun_cong)
321 assumes major: "ALL x. P(x)"
322 and minor: "P(x) ==> R"
324 by (iprover intro: minor major [THEN spec])
327 assumes major: "ALL x. P(x)"
328 and minor: "[| P(x); ALL x. P(x) |] ==> R"
330 by (iprover intro: minor major major [THEN spec])
333 subsubsection {* False *}
336 Depends upon @{text spec}; it is impossible to do propositional
337 logic before quantifiers!
340 lemma FalseE: "False ==> P"
341 apply (unfold False_def)
345 lemma False_neq_True: "False = True ==> P"
346 by (erule eqTrueE [THEN FalseE])
349 subsubsection {* Negation *}
352 assumes "P ==> False"
354 apply (unfold not_def)
355 apply (iprover intro: impI assms)
358 lemma False_not_True: "False ~= True"
360 apply (erule False_neq_True)
363 lemma True_not_False: "True ~= False"
366 apply (erule False_neq_True)
369 lemma notE: "[| ~P; P |] ==> R"
370 apply (unfold not_def)
371 apply (erule mp [THEN FalseE])
375 lemma notI2: "(P \<Longrightarrow> \<not> Pa) \<Longrightarrow> (P \<Longrightarrow> Pa) \<Longrightarrow> \<not> P"
376 by (erule notE [THEN notI]) (erule meta_mp)
379 subsubsection {*Implication*}
382 assumes "P-->Q" "P" "Q ==> R"
384 by (iprover intro: assms mp)
386 (* Reduces Q to P-->Q, allowing substitution in P. *)
387 lemma rev_mp: "[| P; P --> Q |] ==> Q"
388 by (iprover intro: mp)
394 by (iprover intro: notI minor major [THEN notE])
396 (*not used at all, but we already have the other 3 combinations *)
399 and minor: "P ==> ~Q"
401 by (iprover intro: notI minor major notE)
403 lemma not_sym: "t ~= s ==> s ~= t"
404 by (erule contrapos_nn) (erule sym)
406 lemma eq_neq_eq_imp_neq: "[| x = a ; a ~= b; b = y |] ==> x ~= y"
407 by (erule subst, erule ssubst, assumption)
409 (*still used in HOLCF*)
411 assumes pq: "P ==> Q"
414 apply (rule nq [THEN contrapos_nn])
418 subsubsection {*Existential quantifier*}
420 lemma exI: "P x ==> EX x::'a. P x"
421 apply (unfold Ex_def)
422 apply (iprover intro: allI allE impI mp)
426 assumes major: "EX x::'a. P(x)"
427 and minor: "!!x. P(x) ==> Q"
429 apply (rule major [unfolded Ex_def, THEN spec, THEN mp])
430 apply (iprover intro: impI [THEN allI] minor)
434 subsubsection {*Conjunction*}
436 lemma conjI: "[| P; Q |] ==> P&Q"
437 apply (unfold and_def)
438 apply (iprover intro: impI [THEN allI] mp)
441 lemma conjunct1: "[| P & Q |] ==> P"
442 apply (unfold and_def)
443 apply (iprover intro: impI dest: spec mp)
446 lemma conjunct2: "[| P & Q |] ==> Q"
447 apply (unfold and_def)
448 apply (iprover intro: impI dest: spec mp)
453 and minor: "[| P; Q |] ==> R"
456 apply (rule major [THEN conjunct1])
457 apply (rule major [THEN conjunct2])
461 assumes "P" "P ==> Q" shows "P & Q"
462 by (iprover intro: conjI assms)
465 subsubsection {*Disjunction*}
467 lemma disjI1: "P ==> P|Q"
468 apply (unfold or_def)
469 apply (iprover intro: allI impI mp)
472 lemma disjI2: "Q ==> P|Q"
473 apply (unfold or_def)
474 apply (iprover intro: allI impI mp)
479 and minorP: "P ==> R"
480 and minorQ: "Q ==> R"
482 by (iprover intro: minorP minorQ impI
483 major [unfolded or_def, THEN spec, THEN mp, THEN mp])
486 subsubsection {*Classical logic*}
489 assumes prem: "~P ==> P"
491 apply (rule True_or_False [THEN disjE, THEN eqTrueE])
493 apply (rule notI [THEN prem, THEN eqTrueI])
498 lemmas ccontr = FalseE [THEN classical, standard]
500 (*notE with premises exchanged; it discharges ~R so that it can be used to
501 make elimination rules*)
504 and premnot: "~R ==> ~P"
507 apply (erule notE [OF premnot premp])
510 (*Double negation law*)
511 lemma notnotD: "~~P ==> P"
512 apply (rule classical)
521 by (iprover intro: classical p1 p2 notE)
524 subsubsection {*Unique existence*}
527 assumes "P a" "!!x. P(x) ==> x=a"
529 by (unfold Ex1_def, iprover intro: assms exI conjI allI impI)
531 text{*Sometimes easier to use: the premises have no shared variables. Safe!*}
533 assumes ex_prem: "EX x. P(x)"
534 and eq: "!!x y. [| P(x); P(y) |] ==> x=y"
536 by (iprover intro: ex_prem [THEN exE] ex1I eq)
539 assumes major: "EX! x. P(x)"
540 and minor: "!!x. [| P(x); ALL y. P(y) --> y=x |] ==> R"
542 apply (rule major [unfolded Ex1_def, THEN exE])
544 apply (iprover intro: minor)
547 lemma ex1_implies_ex: "EX! x. P x ==> EX x. P x"
554 subsubsection {*THE: definite description operator*}
558 and premx: "!!x. P x ==> x=a"
559 shows "(THE x. P x) = a"
560 apply (rule trans [OF _ the_eq_trivial])
561 apply (rule_tac f = "The" in arg_cong)
565 apply (erule ssubst, rule prema)
569 assumes "P a" and "!!x. P x ==> x=a"
570 shows "P (THE x. P x)"
571 by (iprover intro: assms the_equality [THEN ssubst])
573 lemma theI': "EX! x. P x ==> P (THE x. P x)"
581 (*Easier to apply than theI: only one occurrence of P*)
583 assumes "P a" "!!x. P x ==> x=a" "!!x. P x ==> Q x"
584 shows "Q (THE x. P x)"
585 by (iprover intro: assms theI)
587 lemma the1I2: assumes "EX! x. P x" "\<And>x. P x \<Longrightarrow> Q x" shows "Q (THE x. P x)"
588 by(iprover intro:assms(2) theI2[where P=P and Q=Q] ex1E[OF assms(1)]
591 lemma the1_equality [elim?]: "[| EX!x. P x; P a |] ==> (THE x. P x) = a"
592 apply (rule the_equality)
595 apply (erule all_dupE)
604 lemma the_sym_eq_trivial: "(THE y. x=y) = x"
605 apply (rule the_equality)
611 subsubsection {*Classical intro rules for disjunction and existential quantifiers*}
614 assumes "~Q ==> P" shows "P|Q"
615 apply (rule classical)
616 apply (iprover intro: assms disjI1 disjI2 notI elim: notE)
619 lemma excluded_middle: "~P | P"
620 by (iprover intro: disjCI)
623 case distinction as a natural deduction rule.
624 Note that @{term "~P"} is the second case, not the first
626 lemma case_split [case_names True False]:
627 assumes prem1: "P ==> Q"
628 and prem2: "~P ==> Q"
630 apply (rule excluded_middle [THEN disjE])
635 (*Classical implies (-->) elimination. *)
637 assumes major: "P-->Q"
638 and minor: "~P ==> R" "Q ==> R"
640 apply (rule excluded_middle [of P, THEN disjE])
641 apply (iprover intro: minor major [THEN mp])+
644 (*This version of --> elimination works on Q before P. It works best for
645 those cases in which P holds "almost everywhere". Can't install as
646 default: would break old proofs.*)
648 assumes major: "P-->Q"
649 and minor: "Q ==> R" "~P ==> R"
651 apply (rule excluded_middle [of P, THEN disjE])
652 apply (iprover intro: minor major [THEN mp])+
655 (*Classical <-> elimination. *)
658 and minor: "[| P; Q |] ==> R" "[| ~P; ~Q |] ==> R"
660 apply (rule major [THEN iffE])
661 apply (iprover intro: minor elim: impCE notE)
665 assumes "ALL x. ~P(x) ==> P(a)"
668 apply (iprover intro: assms exI allI notI notE [of "\<exists>x. P x"])
672 subsubsection {* Intuitionistic Reasoning *}
677 and 3: "P --> Q ==> P"
680 from 3 and 1 have P .
681 with 1 have Q by (rule impE)
686 assumes 1: "ALL x. P x"
687 and 2: "P x ==> ALL x. P x ==> Q"
690 from 1 have "P x" by (rule spec)
691 from this and 1 show Q by (rule 2)
699 from 2 and 1 have P .
700 with 1 show R by (rule notE)
703 lemma TrueE: "True ==> P ==> P" .
704 lemma notFalseE: "~ False ==> P ==> P" .
706 lemmas [Pure.elim!] = disjE iffE FalseE conjE exE TrueE notFalseE
707 and [Pure.intro!] = iffI conjI impI TrueI notI allI refl
708 and [Pure.elim 2] = allE notE' impE'
709 and [Pure.intro] = exI disjI2 disjI1
711 lemmas [trans] = trans
712 and [sym] = sym not_sym
713 and [Pure.elim?] = iffD1 iffD2 impE
715 use "Tools/hologic.ML"
718 subsubsection {* Atomizing meta-level connectives *}
721 eq_reflection: "x = y \<Longrightarrow> x \<equiv> y" (*admissible axiom*)
723 lemma atomize_all [atomize]: "(!!x. P x) == Trueprop (ALL x. P x)"
726 then show "ALL x. P x" ..
729 then show "!!x. P x" by (rule allE)
732 lemma atomize_imp [atomize]: "(A ==> B) == Trueprop (A --> B)"
735 show "A --> B" by (rule impI) (rule r)
737 assume "A --> B" and A
738 then show B by (rule mp)
741 lemma atomize_not: "(A ==> False) == Trueprop (~A)"
743 assume r: "A ==> False"
744 show "~A" by (rule notI) (rule r)
747 then show False by (rule notE)
750 lemma atomize_eq [atomize, code]: "(x == y) == Trueprop (x = y)"
753 show "x = y" by (unfold `x == y`) (rule refl)
756 then show "x == y" by (rule eq_reflection)
759 lemma atomize_conj [atomize]: "(A &&& B) == Trueprop (A & B)"
761 assume conj: "A &&& B"
764 from conj show A by (rule conjunctionD1)
765 from conj show B by (rule conjunctionD2)
776 lemmas [symmetric, rulify] = atomize_all atomize_imp
777 and [symmetric, defn] = atomize_all atomize_imp atomize_eq
780 subsubsection {* Atomizing elimination rules *}
782 setup AtomizeElim.setup
784 lemma atomize_exL[atomize_elim]: "(!!x. P x ==> Q) == ((EX x. P x) ==> Q)"
787 lemma atomize_conjL[atomize_elim]: "(A ==> B ==> C) == (A & B ==> C)"
790 lemma atomize_disjL[atomize_elim]: "((A ==> C) ==> (B ==> C) ==> C) == ((A | B ==> C) ==> C)"
793 lemma atomize_elimL[atomize_elim]: "(!!B. (A ==> B) ==> B) == Trueprop A" ..
796 subsection {* Package setup *}
798 subsubsection {* Sledgehammer setup *}
801 Theorems blacklisted to Sledgehammer. These theorems typically produce clauses
802 that are prolific (match too many equality or membership literals) and relate to
803 seldom-used facts. Some duplicate other rules.
807 structure No_ATPs = Named_Thms
810 val description = "theorems that should be filtered out by Sledgehammer"
814 setup {* No_ATPs.setup *}
817 subsubsection {* Classical Reasoner setup *}
819 lemma imp_elim: "P --> Q ==> (~ R ==> P) ==> (Q ==> R) ==> R"
820 by (rule classical) iprover
822 lemma swap: "~ P ==> (~ R ==> P) ==> R"
823 by (rule classical) iprover
826 "\<And>X. \<lbrakk> x=x; PROP W \<rbrakk> \<Longrightarrow> PROP W" .
829 structure Hypsubst = HypsubstFun(
831 structure Simplifier = Simplifier
832 val dest_eq = HOLogic.dest_eq
833 val dest_Trueprop = HOLogic.dest_Trueprop
834 val dest_imp = HOLogic.dest_imp
835 val eq_reflection = @{thm eq_reflection}
836 val rev_eq_reflection = @{thm meta_eq_to_obj_eq}
837 val imp_intr = @{thm impI}
838 val rev_mp = @{thm rev_mp}
839 val subst = @{thm subst}
841 val thin_refl = @{thm thin_refl};
845 structure Classical = ClassicalFun(
847 val imp_elim = @{thm imp_elim}
848 val not_elim = @{thm notE}
849 val swap = @{thm swap}
850 val classical = @{thm classical}
851 val sizef = Drule.size_of_thm
852 val hyp_subst_tacs = [Hypsubst.hyp_subst_tac]
855 structure Basic_Classical: BASIC_CLASSICAL = Classical;
856 open Basic_Classical;
858 ML_Antiquote.value "claset"
859 (Scan.succeed "Classical.claset_of (ML_Context.the_local_context ())");
862 setup Classical.setup
866 fun non_bool_eq (@{const_name HOL.eq}, Type (_, [T, _])) = T <> @{typ bool}
867 | non_bool_eq _ = false;
869 SUBGOAL (fn (goal, i) =>
870 if Term.exists_Const non_bool_eq goal
871 then Hypsubst.hyp_subst_tac i
874 Hypsubst.hypsubst_setup
875 (*prevent substitution on bool*)
876 #> Context_Rules.addSWrapper (fn tac => hyp_subst_tac' ORELSE' tac)
880 declare iffI [intro!]
888 declare iffCE [elim!]
894 declare ex_ex1I [intro!]
896 and the_equality [intro]
902 ML {* val HOL_cs = @{claset} *}
904 lemma contrapos_np: "~ Q ==> (~ P ==> Q) ==> P"
906 apply (erule (1) meta_mp)
909 declare ex_ex1I [rule del, intro! 2]
914 lemmas [intro?] = ext
915 and [elim?] = ex1_implies_ex
917 (*Better then ex1E for classical reasoner: needs no quantifier duplication!*)
918 lemma alt_ex1E [elim!]:
919 assumes major: "\<exists>!x. P x"
920 and prem: "\<And>x. \<lbrakk> P x; \<forall>y y'. P y \<and> P y' \<longrightarrow> y = y' \<rbrakk> \<Longrightarrow> R"
922 apply (rule ex1E [OF major])
924 apply (tactic {* ares_tac @{thms allI} 1 *})+
925 apply (tactic {* etac (Classical.dup_elim @{thm allE}) 1 *})
930 structure Blast = Blast
933 type claset = Classical.claset
934 val equality_name = @{const_name HOL.eq}
935 val not_name = @{const_name Not}
936 val notE = @{thm notE}
937 val ccontr = @{thm ccontr}
938 val contr_tac = Classical.contr_tac
939 val dup_intr = Classical.dup_intr
940 val hyp_subst_tac = Hypsubst.blast_hyp_subst_tac
941 val rep_cs = Classical.rep_cs
942 val cla_modifiers = Classical.cla_modifiers
943 val cla_meth' = Classical.cla_meth'
945 val blast_tac = Blast.blast_tac;
951 subsubsection {* Simplifier *}
953 lemma eta_contract_eq: "(%s. f s) = f" ..
956 shows not_not: "(~ ~ P) = P"
957 and Not_eq_iff: "((~P) = (~Q)) = (P = Q)"
959 "(P ~= Q) = (P = (~Q))"
960 "(P | ~P) = True" "(~P | P) = True"
962 and not_True_eq_False [code]: "(\<not> True) = False"
963 and not_False_eq_True [code]: "(\<not> False) = True"
965 "(~P) ~= P" "P ~= (~P)"
967 and eq_True: "(P = True) = P"
968 and "(False=P) = (~P)"
969 and eq_False: "(P = False) = (\<not> P)"
971 "(True --> P) = P" "(False --> P) = True"
972 "(P --> True) = True" "(P --> P) = True"
973 "(P --> False) = (~P)" "(P --> ~P) = (~P)"
974 "(P & True) = P" "(True & P) = P"
975 "(P & False) = False" "(False & P) = False"
976 "(P & P) = P" "(P & (P & Q)) = (P & Q)"
977 "(P & ~P) = False" "(~P & P) = False"
978 "(P | True) = True" "(True | P) = True"
979 "(P | False) = P" "(False | P) = P"
980 "(P | P) = P" "(P | (P | Q)) = (P | Q)" and
981 "(ALL x. P) = P" "(EX x. P) = P" "EX x. x=t" "EX x. t=x"
983 "!!P. (EX x. x=t & P(x)) = P(t)"
984 "!!P. (EX x. t=x & P(x)) = P(t)"
985 "!!P. (ALL x. x=t --> P(x)) = P(t)"
986 "!!P. (ALL x. t=x --> P(x)) = P(t)"
987 by (blast, blast, blast, blast, blast, iprover+)
989 lemma disj_absorb: "(A | A) = A"
992 lemma disj_left_absorb: "(A | (A | B)) = (A | B)"
995 lemma conj_absorb: "(A & A) = A"
998 lemma conj_left_absorb: "(A & (A & B)) = (A & B)"
1002 shows eq_commute: "(a=b) = (b=a)"
1003 and eq_left_commute: "(P=(Q=R)) = (Q=(P=R))"
1004 and eq_assoc: "((P=Q)=R) = (P=(Q=R))" by (iprover, blast+)
1005 lemma neq_commute: "(a~=b) = (b~=a)" by iprover
1008 shows conj_commute: "(P&Q) = (Q&P)"
1009 and conj_left_commute: "(P&(Q&R)) = (Q&(P&R))" by iprover+
1010 lemma conj_assoc: "((P&Q)&R) = (P&(Q&R))" by iprover
1012 lemmas conj_ac = conj_commute conj_left_commute conj_assoc
1015 shows disj_commute: "(P|Q) = (Q|P)"
1016 and disj_left_commute: "(P|(Q|R)) = (Q|(P|R))" by iprover+
1017 lemma disj_assoc: "((P|Q)|R) = (P|(Q|R))" by iprover
1019 lemmas disj_ac = disj_commute disj_left_commute disj_assoc
1021 lemma conj_disj_distribL: "(P&(Q|R)) = (P&Q | P&R)" by iprover
1022 lemma conj_disj_distribR: "((P|Q)&R) = (P&R | Q&R)" by iprover
1024 lemma disj_conj_distribL: "(P|(Q&R)) = ((P|Q) & (P|R))" by iprover
1025 lemma disj_conj_distribR: "((P&Q)|R) = ((P|R) & (Q|R))" by iprover
1027 lemma imp_conjR: "(P --> (Q&R)) = ((P-->Q) & (P-->R))" by iprover
1028 lemma imp_conjL: "((P&Q) -->R) = (P --> (Q --> R))" by iprover
1029 lemma imp_disjL: "((P|Q) --> R) = ((P-->R)&(Q-->R))" by iprover
1031 text {* These two are specialized, but @{text imp_disj_not1} is useful in @{text "Auth/Yahalom"}. *}
1032 lemma imp_disj_not1: "(P --> Q | R) = (~Q --> P --> R)" by blast
1033 lemma imp_disj_not2: "(P --> Q | R) = (~R --> P --> Q)" by blast
1035 lemma imp_disj1: "((P-->Q)|R) = (P--> Q|R)" by blast
1036 lemma imp_disj2: "(Q|(P-->R)) = (P--> Q|R)" by blast
1038 lemma imp_cong: "(P = P') ==> (P' ==> (Q = Q')) ==> ((P --> Q) = (P' --> Q'))"
1041 lemma de_Morgan_disj: "(~(P | Q)) = (~P & ~Q)" by iprover
1042 lemma de_Morgan_conj: "(~(P & Q)) = (~P | ~Q)" by blast
1043 lemma not_imp: "(~(P --> Q)) = (P & ~Q)" by blast
1044 lemma not_iff: "(P~=Q) = (P = (~Q))" by blast
1045 lemma disj_not1: "(~P | Q) = (P --> Q)" by blast
1046 lemma disj_not2: "(P | ~Q) = (Q --> P)" -- {* changes orientation :-( *}
1048 lemma imp_conv_disj: "(P --> Q) = ((~P) | Q)" by blast
1050 lemma iff_conv_conj_imp: "(P = Q) = ((P --> Q) & (Q --> P))" by iprover
1053 lemma cases_simp: "((P --> Q) & (~P --> Q)) = Q"
1054 -- {* Avoids duplication of subgoals after @{text split_if}, when the true and false *}
1055 -- {* cases boil down to the same thing. *}
1058 lemma not_all: "(~ (! x. P(x))) = (? x.~P(x))" by blast
1059 lemma imp_all: "((! x. P x) --> Q) = (? x. P x --> Q)" by blast
1060 lemma not_ex: "(~ (? x. P(x))) = (! x.~P(x))" by iprover
1061 lemma imp_ex: "((? x. P x) --> Q) = (! x. P x --> Q)" by iprover
1062 lemma all_not_ex: "(ALL x. P x) = (~ (EX x. ~ P x ))" by blast
1064 declare All_def [no_atp]
1066 lemma ex_disj_distrib: "(? x. P(x) | Q(x)) = ((? x. P(x)) | (? x. Q(x)))" by iprover
1067 lemma all_conj_distrib: "(!x. P(x) & Q(x)) = ((! x. P(x)) & (! x. Q(x)))" by iprover
1070 \medskip The @{text "&"} congruence rule: not included by default!
1071 May slow rewrite proofs down by as much as 50\% *}
1074 "(P = P') ==> (P' ==> (Q = Q')) ==> ((P & Q) = (P' & Q'))"
1077 lemma rev_conj_cong:
1078 "(Q = Q') ==> (Q' ==> (P = P')) ==> ((P & Q) = (P' & Q'))"
1081 text {* The @{text "|"} congruence rule: not included by default! *}
1084 "(P = P') ==> (~P' ==> (Q = Q')) ==> ((P | Q) = (P' | Q'))"
1088 text {* \medskip if-then-else rules *}
1090 lemma if_True [code]: "(if True then x else y) = x"
1091 by (unfold If_def) blast
1093 lemma if_False [code]: "(if False then x else y) = y"
1094 by (unfold If_def) blast
1096 lemma if_P: "P ==> (if P then x else y) = x"
1097 by (unfold If_def) blast
1099 lemma if_not_P: "~P ==> (if P then x else y) = y"
1100 by (unfold If_def) blast
1102 lemma split_if: "P (if Q then x else y) = ((Q --> P(x)) & (~Q --> P(y)))"
1103 apply (rule case_split [of Q])
1104 apply (simplesubst if_P)
1105 prefer 3 apply (simplesubst if_not_P, blast+)
1108 lemma split_if_asm: "P (if Q then x else y) = (~((Q & ~P x) | (~Q & ~P y)))"
1109 by (simplesubst split_if, blast)
1111 lemmas if_splits [no_atp] = split_if split_if_asm
1113 lemma if_cancel: "(if c then x else x) = x"
1114 by (simplesubst split_if, blast)
1116 lemma if_eq_cancel: "(if x = y then y else x) = x"
1117 by (simplesubst split_if, blast)
1119 lemma if_bool_eq_conj:
1120 "(if P then Q else R) = ((P-->Q) & (~P-->R))"
1121 -- {* This form is useful for expanding @{text "if"}s on the RIGHT of the @{text "==>"} symbol. *}
1124 lemma if_bool_eq_disj: "(if P then Q else R) = ((P&Q) | (~P&R))"
1125 -- {* And this form is useful for expanding @{text "if"}s on the LEFT. *}
1126 apply (simplesubst split_if, blast)
1129 lemma Eq_TrueI: "P ==> P == True" by (unfold atomize_eq) iprover
1130 lemma Eq_FalseI: "~P ==> P == False" by (unfold atomize_eq) iprover
1132 text {* \medskip let rules for simproc *}
1134 lemma Let_folded: "f x \<equiv> g x \<Longrightarrow> Let x f \<equiv> Let x g"
1137 lemma Let_unfold: "f x \<equiv> g \<Longrightarrow> Let x f \<equiv> g"
1141 The following copy of the implication operator is useful for
1142 fine-tuning congruence rules. It instructs the simplifier to simplify
1146 definition simp_implies :: "[prop, prop] => prop" (infixr "=simp=>" 1) where
1147 "simp_implies \<equiv> op ==>"
1149 lemma simp_impliesI:
1150 assumes PQ: "(PROP P \<Longrightarrow> PROP Q)"
1151 shows "PROP P =simp=> PROP Q"
1152 apply (unfold simp_implies_def)
1157 lemma simp_impliesE:
1158 assumes PQ: "PROP P =simp=> PROP Q"
1160 and QR: "PROP Q \<Longrightarrow> PROP R"
1163 apply (rule PQ [unfolded simp_implies_def])
1167 lemma simp_implies_cong:
1168 assumes PP' :"PROP P == PROP P'"
1169 and P'QQ': "PROP P' ==> (PROP Q == PROP Q')"
1170 shows "(PROP P =simp=> PROP Q) == (PROP P' =simp=> PROP Q')"
1171 proof (unfold simp_implies_def, rule equal_intr_rule)
1172 assume PQ: "PROP P \<Longrightarrow> PROP Q"
1174 from PP' [symmetric] and P' have "PROP P"
1175 by (rule equal_elim_rule1)
1176 then have "PROP Q" by (rule PQ)
1177 with P'QQ' [OF P'] show "PROP Q'" by (rule equal_elim_rule1)
1179 assume P'Q': "PROP P' \<Longrightarrow> PROP Q'"
1181 from PP' and P have P': "PROP P'" by (rule equal_elim_rule1)
1182 then have "PROP Q'" by (rule P'Q')
1183 with P'QQ' [OF P', symmetric] show "PROP Q"
1184 by (rule equal_elim_rule1)
1188 assumes "P \<longrightarrow> Q \<longrightarrow> R"
1189 shows "P \<and> Q \<longrightarrow> R"
1190 using assms by blast
1193 assumes "\<And>x. P x = Q x"
1194 shows "(\<forall>x. P x) = (\<forall>x. Q x)"
1195 using assms by blast
1198 assumes "\<And>x. P x = Q x"
1199 shows "(\<exists>x. P x) = (\<exists>x. Q x)"
1200 using assms by blast
1203 "(\<forall>x y. P x y) = (\<forall>y x. P x y)"
1207 "(\<exists>x y. P x y) = (\<exists>y x. P x y)"
1210 use "Tools/simpdata.ML"
1211 ML {* open Simpdata *}
1214 Simplifier.method_setup Splitter.split_modifiers
1215 #> Simplifier.map_simpset (K Simpdata.simpset_simprocs)
1221 text {* Simproc for proving @{text "(y = x) == False"} from premise @{text "~(x = y)"}: *}
1223 simproc_setup neq ("x = y") = {* fn _ =>
1225 val neq_to_EQ_False = @{thm not_sym} RS @{thm Eq_FalseI};
1226 fun is_neq eq lhs rhs thm =
1227 (case Thm.prop_of thm of
1228 _ $ (Not $ (eq' $ l' $ r')) =>
1229 Not = HOLogic.Not andalso eq' = eq andalso
1230 r' aconv lhs andalso l' aconv rhs
1233 (case Thm.term_of ct of
1235 (case find_first (is_neq eq lhs rhs) (Simplifier.prems_of_ss ss) of
1236 SOME thm => SOME (thm RS neq_to_EQ_False)
1242 simproc_setup let_simp ("Let x f") = {*
1244 val (f_Let_unfold, x_Let_unfold) =
1245 let val [(_ $ (f $ x) $ _)] = prems_of @{thm Let_unfold}
1246 in (cterm_of @{theory} f, cterm_of @{theory} x) end
1247 val (f_Let_folded, x_Let_folded) =
1248 let val [(_ $ (f $ x) $ _)] = prems_of @{thm Let_folded}
1249 in (cterm_of @{theory} f, cterm_of @{theory} x) end;
1251 let val [(_ $ _ $ (g $ _))] = prems_of @{thm Let_folded}
1252 in cterm_of @{theory} g end;
1253 fun count_loose (Bound i) k = if i >= k then 1 else 0
1254 | count_loose (s $ t) k = count_loose s k + count_loose t k
1255 | count_loose (Abs (_, _, t)) k = count_loose t (k + 1)
1256 | count_loose _ _ = 0;
1257 fun is_trivial_let (Const (@{const_name Let}, _) $ x $ t) =
1259 of Abs (_, _, t') => count_loose t' 0 <= 1
1261 in fn _ => fn ss => fn ct => if is_trivial_let (Thm.term_of ct)
1262 then SOME @{thm Let_def} (*no or one ocurrence of bound variable*)
1263 else let (*Norbert Schirmer's case*)
1264 val ctxt = Simplifier.the_context ss;
1265 val thy = Proof_Context.theory_of ctxt;
1266 val t = Thm.term_of ct;
1267 val ([t'], ctxt') = Variable.import_terms false [t] ctxt;
1268 in Option.map (hd o Variable.export ctxt' ctxt o single)
1269 (case t' of Const (@{const_name Let},_) $ x $ f => (* x and f are already in normal form *)
1270 if is_Free x orelse is_Bound x orelse is_Const x
1271 then SOME @{thm Let_def}
1274 val n = case f of (Abs (x, _, _)) => x | _ => "x";
1275 val cx = cterm_of thy x;
1276 val {T = xT, ...} = rep_cterm cx;
1277 val cf = cterm_of thy f;
1278 val fx_g = Simplifier.rewrite ss (Thm.capply cf cx);
1279 val (_ $ _ $ g) = prop_of fx_g;
1280 val g' = abstract_over (x,g);
1285 cterm_instantiate [(f_Let_unfold, cf), (x_Let_unfold, cx)] @{thm Let_unfold};
1286 in SOME (rl OF [fx_g]) end
1287 else if Term.betapply (f, x) aconv g then NONE (*avoid identity conversion*)
1289 val abs_g'= Abs (n,xT,g');
1291 val g_g'x = Thm.symmetric (Thm.beta_conversion false (cterm_of thy g'x));
1292 val rl = cterm_instantiate
1293 [(f_Let_folded, cterm_of thy f), (x_Let_folded, cx),
1294 (g_Let_folded, cterm_of thy abs_g')]
1296 in SOME (rl OF [Thm.transitive fx_g g_g'x])
1303 lemma True_implies_equals: "(True \<Longrightarrow> PROP P) \<equiv> PROP P"
1305 assume "True \<Longrightarrow> PROP P"
1306 from this [OF TrueI] show "PROP P" .
1309 then show "PROP P" .
1313 "!!P Q. (EX x. P x & Q) = ((EX x. P x) & Q)"
1314 "!!P Q. (EX x. P & Q x) = (P & (EX x. Q x))"
1315 "!!P Q. (EX x. P x | Q) = ((EX x. P x) | Q)"
1316 "!!P Q. (EX x. P | Q x) = (P | (EX x. Q x))"
1317 "!!P Q. (EX x. P x --> Q) = ((ALL x. P x) --> Q)"
1318 "!!P Q. (EX x. P --> Q x) = (P --> (EX x. Q x))"
1319 -- {* Miniscoping: pushing in existential quantifiers. *}
1320 by (iprover | blast)+
1323 "!!P Q. (ALL x. P x & Q) = ((ALL x. P x) & Q)"
1324 "!!P Q. (ALL x. P & Q x) = (P & (ALL x. Q x))"
1325 "!!P Q. (ALL x. P x | Q) = ((ALL x. P x) | Q)"
1326 "!!P Q. (ALL x. P | Q x) = (P | (ALL x. Q x))"
1327 "!!P Q. (ALL x. P x --> Q) = ((EX x. P x) --> Q)"
1328 "!!P Q. (ALL x. P --> Q x) = (P --> (ALL x. Q x))"
1329 -- {* Miniscoping: pushing in universal quantifiers. *}
1330 by (iprover | blast)+
1333 triv_forall_equality (*prunes params*)
1334 True_implies_equals (*prune asms `True'*)
1340 (*In general it seems wrong to add distributive laws by default: they
1341 might cause exponential blow-up. But imp_disjL has been in for a while
1342 and cannot be removed without affecting existing proofs. Moreover,
1343 rewriting by "(P|Q --> R) = ((P-->R)&(Q-->R))" might be justified on the
1344 grounds that it allows simplification of R in the two cases.*)
1362 lemmas [cong] = imp_cong simp_implies_cong
1363 lemmas [split] = split_if
1365 ML {* val HOL_ss = @{simpset} *}
1367 text {* Simplifies x assuming c and y assuming ~c *}
1370 and "c \<Longrightarrow> x = u"
1371 and "\<not> c \<Longrightarrow> y = v"
1372 shows "(if b then x else y) = (if c then u else v)"
1375 text {* Prevents simplification of x and y:
1376 faster and allows the execution of functional programs. *}
1377 lemma if_weak_cong [cong]:
1379 shows "(if b then x else y) = (if c then x else y)"
1380 using assms by (rule arg_cong)
1382 text {* Prevents simplification of t: much faster *}
1383 lemma let_weak_cong:
1385 shows "(let x = a in t x) = (let x = b in t x)"
1386 using assms by (rule arg_cong)
1388 text {* To tidy up the result of a simproc. Only the RHS will be simplified. *}
1391 shows "(t \<equiv> u) \<equiv> (t \<equiv> u')"
1395 "f (if c then x else y) = (if c then f x else f y)"
1399 subsubsection {* Generic cases and induction *}
1401 text {* Rule projections: *}
1404 structure Project_Rule = Project_Rule
1406 val conjunct1 = @{thm conjunct1}
1407 val conjunct2 = @{thm conjunct2}
1412 definition induct_forall where
1413 "induct_forall P == \<forall>x. P x"
1415 definition induct_implies where
1416 "induct_implies A B == A \<longrightarrow> B"
1418 definition induct_equal where
1419 "induct_equal x y == x = y"
1421 definition induct_conj where
1422 "induct_conj A B == A \<and> B"
1424 definition induct_true where
1425 "induct_true == True"
1427 definition induct_false where
1428 "induct_false == False"
1430 lemma induct_forall_eq: "(!!x. P x) == Trueprop (induct_forall (\<lambda>x. P x))"
1431 by (unfold atomize_all induct_forall_def)
1433 lemma induct_implies_eq: "(A ==> B) == Trueprop (induct_implies A B)"
1434 by (unfold atomize_imp induct_implies_def)
1436 lemma induct_equal_eq: "(x == y) == Trueprop (induct_equal x y)"
1437 by (unfold atomize_eq induct_equal_def)
1439 lemma induct_conj_eq: "(A &&& B) == Trueprop (induct_conj A B)"
1440 by (unfold atomize_conj induct_conj_def)
1442 lemmas induct_atomize' = induct_forall_eq induct_implies_eq induct_conj_eq
1443 lemmas induct_atomize = induct_atomize' induct_equal_eq
1444 lemmas induct_rulify' [symmetric, standard] = induct_atomize'
1445 lemmas induct_rulify [symmetric, standard] = induct_atomize
1446 lemmas induct_rulify_fallback =
1447 induct_forall_def induct_implies_def induct_equal_def induct_conj_def
1448 induct_true_def induct_false_def
1451 lemma induct_forall_conj: "induct_forall (\<lambda>x. induct_conj (A x) (B x)) =
1452 induct_conj (induct_forall A) (induct_forall B)"
1453 by (unfold induct_forall_def induct_conj_def) iprover
1455 lemma induct_implies_conj: "induct_implies C (induct_conj A B) =
1456 induct_conj (induct_implies C A) (induct_implies C B)"
1457 by (unfold induct_implies_def induct_conj_def) iprover
1459 lemma induct_conj_curry: "(induct_conj A B ==> PROP C) == (A ==> B ==> PROP C)"
1461 assume r: "induct_conj A B ==> PROP C" and A B
1462 show "PROP C" by (rule r) (simp add: induct_conj_def `A` `B`)
1464 assume r: "A ==> B ==> PROP C" and "induct_conj A B"
1465 show "PROP C" by (rule r) (simp_all add: `induct_conj A B` [unfolded induct_conj_def])
1468 lemmas induct_conj = induct_forall_conj induct_implies_conj induct_conj_curry
1470 lemma induct_trueI: "induct_true"
1471 by (simp add: induct_true_def)
1473 text {* Method setup. *}
1476 structure Induct = Induct
1478 val cases_default = @{thm case_split}
1479 val atomize = @{thms induct_atomize}
1480 val rulify = @{thms induct_rulify'}
1481 val rulify_fallback = @{thms induct_rulify_fallback}
1482 val equal_def = @{thm induct_equal_def}
1483 fun dest_def (Const (@{const_name induct_equal}, _) $ t $ u) = SOME (t, u)
1485 val trivial_tac = match_tac @{thms induct_trueI}
1491 Context.theory_map (Induct.map_simpset (fn ss => ss
1492 setmksimps (fn ss => Simpdata.mksimps Simpdata.mksimps_pairs ss #>
1493 map (Simplifier.rewrite_rule (map Thm.symmetric
1494 @{thms induct_rulify_fallback})))
1496 [Simplifier.simproc_global @{theory} "swap_induct_false"
1497 ["induct_false ==> PROP P ==> PROP Q"]
1499 (fn _ $ (P as _ $ @{const induct_false}) $ (_ $ Q $ _) =>
1500 if P <> Q then SOME Drule.swap_prems_eq else NONE
1502 Simplifier.simproc_global @{theory} "induct_equal_conj_curry"
1503 ["induct_conj P Q ==> PROP R"]
1505 (fn _ $ (_ $ P) $ _ =>
1507 fun is_conj (@{const induct_conj} $ P $ Q) =
1508 is_conj P andalso is_conj Q
1509 | is_conj (Const (@{const_name induct_equal}, _) $ _ $ _) = true
1510 | is_conj @{const induct_true} = true
1511 | is_conj @{const induct_false} = true
1513 in if is_conj P then SOME @{thm induct_conj_curry} else NONE end
1517 text {* Pre-simplification of induction and cases rules *}
1519 lemma [induct_simp]: "(!!x. induct_equal x t ==> PROP P x) == PROP P t"
1520 unfolding induct_equal_def
1522 assume R: "!!x. x = t ==> PROP P x"
1523 show "PROP P t" by (rule R [OF refl])
1525 fix x assume "PROP P t" "x = t"
1526 then show "PROP P x" by simp
1529 lemma [induct_simp]: "(!!x. induct_equal t x ==> PROP P x) == PROP P t"
1530 unfolding induct_equal_def
1532 assume R: "!!x. t = x ==> PROP P x"
1533 show "PROP P t" by (rule R [OF refl])
1535 fix x assume "PROP P t" "t = x"
1536 then show "PROP P x" by simp
1539 lemma [induct_simp]: "(induct_false ==> P) == Trueprop induct_true"
1540 unfolding induct_false_def induct_true_def
1541 by (iprover intro: equal_intr_rule)
1543 lemma [induct_simp]: "(induct_true ==> PROP P) == PROP P"
1544 unfolding induct_true_def
1546 assume R: "True \<Longrightarrow> PROP P"
1547 from TrueI show "PROP P" by (rule R)
1550 then show "PROP P" .
1553 lemma [induct_simp]: "(PROP P ==> induct_true) == Trueprop induct_true"
1554 unfolding induct_true_def
1555 by (iprover intro: equal_intr_rule)
1557 lemma [induct_simp]: "(!!x. induct_true) == Trueprop induct_true"
1558 unfolding induct_true_def
1559 by (iprover intro: equal_intr_rule)
1561 lemma [induct_simp]: "induct_implies induct_true P == P"
1562 by (simp add: induct_implies_def induct_true_def)
1564 lemma [induct_simp]: "(x = x) = True"
1567 hide_const induct_forall induct_implies induct_equal induct_conj induct_true induct_false
1569 use "~~/src/Tools/induct_tacs.ML"
1570 setup InductTacs.setup
1573 subsubsection {* Coherent logic *}
1576 structure Coherent = Coherent
1578 val atomize_elimL = @{thm atomize_elimL}
1579 val atomize_exL = @{thm atomize_exL}
1580 val atomize_conjL = @{thm atomize_conjL}
1581 val atomize_disjL = @{thm atomize_disjL}
1582 val operator_names =
1583 [@{const_name HOL.disj}, @{const_name HOL.conj}, @{const_name Ex}]
1587 setup Coherent.setup
1590 subsubsection {* Reorienting equalities *}
1593 signature REORIENT_PROC =
1595 val add : (term -> bool) -> theory -> theory
1596 val proc : morphism -> simpset -> cterm -> thm option
1599 structure Reorient_Proc : REORIENT_PROC =
1601 structure Data = Theory_Data
1603 type T = ((term -> bool) * stamp) list;
1606 fun merge data : T = Library.merge (eq_snd op =) data;
1608 fun add m = Data.map (cons (m, stamp ()));
1609 fun matches thy t = exists (fn (m, _) => m t) (Data.get thy);
1611 val meta_reorient = @{thm eq_commute [THEN eq_reflection]};
1612 fun proc phi ss ct =
1614 val ctxt = Simplifier.the_context ss;
1615 val thy = Proof_Context.theory_of ctxt;
1617 case Thm.term_of ct of
1618 (_ $ t $ u) => if matches thy u then NONE else SOME meta_reorient
1625 subsection {* Other simple lemmas and lemma duplicates *}
1627 lemma ex1_eq [iff]: "EX! x. x = t" "EX! x. t = x"
1630 lemma choice_eq: "(ALL x. EX! y. P x y) = (EX! f. ALL x. P x (f x))"
1632 apply (rule_tac a = "%x. THE y. P x y" in ex1I)
1633 apply (fast dest!: theI')
1634 apply (fast intro: ext the1_equality [symmetric])
1639 apply (erule_tac x = "%z. if z = x then y else f z" in allE)
1642 apply (case_tac "xa = x")
1643 apply (drule_tac [3] x = x in fun_cong, simp_all)
1646 lemmas eq_sym_conv = eq_commute
1649 "(\<not>(P \<and> Q)) = (\<not> P \<or> \<not> Q)" "(\<not> (P \<or> Q)) = (\<not> P \<and> \<not>Q)" "(P \<longrightarrow> Q) = (\<not>P \<or> Q)"
1650 "(P = Q) = ((P \<and> Q) \<or> (\<not>P \<and> \<not> Q))" "(\<not>(P = Q)) = ((P \<and> \<not> Q) \<or> (\<not>P \<and> Q))"
1651 "(\<not> \<not>(P)) = P"
1654 subsection {* Basic ML bindings *}
1657 val FalseE = @{thm FalseE}
1658 val Let_def = @{thm Let_def}
1659 val TrueI = @{thm TrueI}
1660 val allE = @{thm allE}
1661 val allI = @{thm allI}
1662 val all_dupE = @{thm all_dupE}
1663 val arg_cong = @{thm arg_cong}
1664 val box_equals = @{thm box_equals}
1665 val ccontr = @{thm ccontr}
1666 val classical = @{thm classical}
1667 val conjE = @{thm conjE}
1668 val conjI = @{thm conjI}
1669 val conjunct1 = @{thm conjunct1}
1670 val conjunct2 = @{thm conjunct2}
1671 val disjCI = @{thm disjCI}
1672 val disjE = @{thm disjE}
1673 val disjI1 = @{thm disjI1}
1674 val disjI2 = @{thm disjI2}
1675 val eq_reflection = @{thm eq_reflection}
1676 val ex1E = @{thm ex1E}
1677 val ex1I = @{thm ex1I}
1678 val ex1_implies_ex = @{thm ex1_implies_ex}
1679 val exE = @{thm exE}
1680 val exI = @{thm exI}
1681 val excluded_middle = @{thm excluded_middle}
1682 val ext = @{thm ext}
1683 val fun_cong = @{thm fun_cong}
1684 val iffD1 = @{thm iffD1}
1685 val iffD2 = @{thm iffD2}
1686 val iffI = @{thm iffI}
1687 val impE = @{thm impE}
1688 val impI = @{thm impI}
1689 val meta_eq_to_obj_eq = @{thm meta_eq_to_obj_eq}
1691 val notE = @{thm notE}
1692 val notI = @{thm notI}
1693 val not_all = @{thm not_all}
1694 val not_ex = @{thm not_ex}
1695 val not_iff = @{thm not_iff}
1696 val not_not = @{thm not_not}
1697 val not_sym = @{thm not_sym}
1698 val refl = @{thm refl}
1699 val rev_mp = @{thm rev_mp}
1700 val spec = @{thm spec}
1701 val ssubst = @{thm ssubst}
1702 val subst = @{thm subst}
1703 val sym = @{thm sym}
1704 val trans = @{thm trans}
1707 use "Tools/cnf_funcs.ML"
1709 subsection {* Code generator setup *}
1711 subsubsection {* SML code generator setup *}
1713 use "Tools/recfun_codegen.ML"
1717 #> RecfunCodegen.setup
1718 #> Codegen.map_unfold (K HOL_basic_ss)
1724 fun term_of_bool b = if b then HOLogic.true_const else HOLogic.false_const;
1728 let val b = one_of [false, true]
1729 in (b, fn () => term_of_bool b) end;
1733 fun term_of_prop b =
1734 HOLogic.mk_Trueprop (if b then HOLogic.true_const else HOLogic.false_const);
1742 HOL.disj ("(_ orelse/ _)")
1743 HOL.conj ("(_ andalso/ _)")
1744 "If" ("(if _/ then _/ else _)")
1749 fun eq_codegen thy mode defs dep thyname b t gr =
1750 (case strip_comb t of
1751 (Const (@{const_name HOL.eq}, Type (_, [Type ("fun", _), _])), _) => NONE
1752 | (Const (@{const_name HOL.eq}, _), [t, u]) =>
1754 val (pt, gr') = Codegen.invoke_codegen thy mode defs dep thyname false t gr;
1755 val (pu, gr'') = Codegen.invoke_codegen thy mode defs dep thyname false u gr';
1757 Codegen.invoke_tycodegen thy mode defs dep thyname false HOLogic.boolT gr'';
1759 SOME (Codegen.parens
1760 (Pretty.block [pt, Codegen.str " =", Pretty.brk 1, pu]), gr''')
1762 | (t as Const (@{const_name HOL.eq}, _), ts) => SOME (Codegen.invoke_codegen
1763 thy mode defs dep thyname b (Codegen.eta_expand t ts 2) gr)
1767 Codegen.add_codegen "eq_codegen" eq_codegen
1771 subsubsection {* Generic code generator preprocessor setup *}
1774 Code_Preproc.map_pre (K HOL_basic_ss)
1775 #> Code_Preproc.map_post (K HOL_basic_ss)
1776 #> Code_Simp.map_ss (K HOL_basic_ss)
1779 subsubsection {* Equality *}
1782 fixes equal :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
1783 assumes equal_eq: "equal x y \<longleftrightarrow> x = y"
1786 lemma equal [code_unfold, code_inline del]: "equal = (op =)"
1787 by (rule ext equal_eq)+
1789 lemma equal_refl: "equal x x \<longleftrightarrow> True"
1790 unfolding equal by rule+
1792 lemma eq_equal: "(op =) \<equiv> equal"
1793 by (rule eq_reflection) (rule ext, rule ext, rule sym, rule equal_eq)
1797 declare eq_equal [symmetric, code_post]
1798 declare eq_equal [code]
1801 Code_Preproc.map_pre (fn simpset =>
1802 simpset addsimprocs [Simplifier.simproc_global_i @{theory} "equal" [@{term HOL.eq}]
1804 fn Const (_, Type ("fun", [Type _, _])) => SOME @{thm eq_equal} | _ => NONE)])
1808 subsubsection {* Generic code generator foundation *}
1810 text {* Datatype @{typ bool} *}
1812 code_datatype True False
1815 shows "False \<and> P \<longleftrightarrow> False"
1816 and "True \<and> P \<longleftrightarrow> P"
1817 and "P \<and> False \<longleftrightarrow> False"
1818 and "P \<and> True \<longleftrightarrow> P" by simp_all
1821 shows "False \<or> P \<longleftrightarrow> P"
1822 and "True \<or> P \<longleftrightarrow> True"
1823 and "P \<or> False \<longleftrightarrow> P"
1824 and "P \<or> True \<longleftrightarrow> True" by simp_all
1827 shows "(False \<longrightarrow> P) \<longleftrightarrow> True"
1828 and "(True \<longrightarrow> P) \<longleftrightarrow> P"
1829 and "(P \<longrightarrow> False) \<longleftrightarrow> \<not> P"
1830 and "(P \<longrightarrow> True) \<longleftrightarrow> True" by simp_all
1832 text {* More about @{typ prop} *}
1835 shows "(True \<Longrightarrow> PROP Q) \<equiv> PROP Q"
1836 and "(PROP Q \<Longrightarrow> True) \<equiv> Trueprop True"
1837 and "(P \<Longrightarrow> R) \<equiv> Trueprop (P \<longrightarrow> R)" by (auto intro!: equal_intr_rule)
1839 lemma Trueprop_code [code]:
1840 "Trueprop True \<equiv> Code_Generator.holds"
1841 by (auto intro!: equal_intr_rule holds)
1843 declare Trueprop_code [symmetric, code_post]
1847 declare simp_thms(6) [code nbe]
1849 instantiation itself :: (type) equal
1852 definition equal_itself :: "'a itself \<Rightarrow> 'a itself \<Rightarrow> bool" where
1853 "equal_itself x y \<longleftrightarrow> x = y"
1856 qed (fact equal_itself_def)
1860 lemma equal_itself_code [code]:
1861 "equal TYPE('a) TYPE('a) \<longleftrightarrow> True"
1862 by (simp add: equal)
1865 Sign.add_const_constraint (@{const_name equal}, SOME @{typ "'a\<Colon>type \<Rightarrow> 'a \<Rightarrow> bool"})
1868 lemma equal_alias_cert: "OFCLASS('a, equal_class) \<equiv> ((op = :: 'a \<Rightarrow> 'a \<Rightarrow> bool) \<equiv> equal)" (is "?ofclass \<equiv> ?equal")
1870 assume "PROP ?ofclass"
1872 by (tactic {* ALLGOALS (rtac (Thm.unconstrainT @{thm eq_equal})) *})
1873 (fact `PROP ?ofclass`)
1875 assume "PROP ?equal"
1876 show "PROP ?ofclass" proof
1877 qed (simp add: `PROP ?equal`)
1881 Sign.add_const_constraint (@{const_name equal}, SOME @{typ "'a\<Colon>equal \<Rightarrow> 'a \<Rightarrow> bool"})
1885 Nbe.add_const_alias @{thm equal_alias_cert}
1890 lemma Let_case_cert:
1891 assumes "CASE \<equiv> (\<lambda>x. Let x f)"
1892 shows "CASE x \<equiv> f x"
1893 using assms by simp_all
1896 assumes "CASE \<equiv> (\<lambda>b. If b f g)"
1897 shows "(CASE True \<equiv> f) &&& (CASE False \<equiv> g)"
1898 using assms by simp_all
1901 Code.add_case @{thm Let_case_cert}
1902 #> Code.add_case @{thm If_case_cert}
1903 #> Code.add_undefined @{const_name undefined}
1906 code_abort undefined
1909 subsubsection {* Generic code generator target languages *}
1911 text {* type @{typ bool} *}
1919 code_const True and False and Not and HOL.conj and HOL.disj and HOL.implies and If
1920 (SML "true" and "false" and "not"
1921 and infixl 1 "andalso" and infixl 0 "orelse"
1922 and "!(if (_)/ then (_)/ else true)"
1923 and "!(if (_)/ then (_)/ else (_))")
1924 (OCaml "true" and "false" and "not"
1925 and infixl 3 "&&" and infixl 2 "||"
1926 and "!(if (_)/ then (_)/ else true)"
1927 and "!(if (_)/ then (_)/ else (_))")
1928 (Haskell "True" and "False" and "not"
1929 and infixr 3 "&&" and infixr 2 "||"
1930 and "!(if (_)/ then (_)/ else True)"
1931 and "!(if (_)/ then (_)/ else (_))")
1932 (Scala "true" and "false" and "'! _"
1933 and infixl 3 "&&" and infixl 1 "||"
1934 and "!(if ((_))/ (_)/ else true)"
1935 and "!(if ((_))/ (_)/ else (_))")
1946 code_modulename SML Pure HOL
1947 code_modulename OCaml Pure HOL
1948 code_modulename Haskell Pure HOL
1950 text {* using built-in Haskell equality *}
1955 code_const "HOL.equal"
1956 (Haskell infix 4 "==")
1959 (Haskell infix 4 "==")
1961 text {* undefined *}
1963 code_const undefined
1964 (SML "!(raise/ Fail/ \"undefined\")")
1965 (OCaml "failwith/ \"undefined\"")
1966 (Haskell "error/ \"undefined\"")
1967 (Scala "!error(\"undefined\")")
1969 subsubsection {* Evaluation and normalization by evaluation *}
1972 Value.add_evaluator ("SML", Codegen.eval_term)
1976 fun gen_eval_method conv ctxt = SIMPLE_METHOD'
1977 (CONVERSION (Conv.params_conv ~1 (K (Conv.concl_conv ~1 (conv ctxt))) ctxt)
1981 method_setup eval = {*
1982 Scan.succeed (gen_eval_method (Code_Runtime.dynamic_holds_conv o Proof_Context.theory_of))
1983 *} "solve goal by evaluation"
1985 method_setup evaluation = {*
1986 Scan.succeed (gen_eval_method Codegen.evaluation_conv)
1987 *} "solve goal by evaluation"
1989 method_setup normalization = {*
1990 Scan.succeed (fn ctxt => SIMPLE_METHOD'
1991 (CHANGED_PROP o (CONVERSION (Nbe.dynamic_conv (Proof_Context.theory_of ctxt))
1992 THEN' (fn k => TRY (rtac TrueI k)))))
1993 *} "solve goal by normalization"
1996 subsection {* Counterexample Search Units *}
1998 subsubsection {* Quickcheck *}
2000 quickcheck_params [size = 5, iterations = 50]
2003 subsubsection {* Nitpick setup *}
2006 structure Nitpick_Unfolds = Named_Thms
2008 val name = "nitpick_unfold"
2009 val description = "alternative definitions of constants as needed by Nitpick"
2011 structure Nitpick_Simps = Named_Thms
2013 val name = "nitpick_simp"
2014 val description = "equational specification of constants as needed by Nitpick"
2016 structure Nitpick_Psimps = Named_Thms
2018 val name = "nitpick_psimp"
2019 val description = "partial equational specification of constants as needed by Nitpick"
2021 structure Nitpick_Choice_Specs = Named_Thms
2023 val name = "nitpick_choice_spec"
2024 val description = "choice specification of constants as needed by Nitpick"
2029 Nitpick_Unfolds.setup
2030 #> Nitpick_Simps.setup
2031 #> Nitpick_Psimps.setup
2032 #> Nitpick_Choice_Specs.setup
2035 declare if_bool_eq_conj [nitpick_unfold, no_atp]
2036 if_bool_eq_disj [no_atp]
2039 subsection {* Preprocessing for the predicate compiler *}
2042 structure Predicate_Compile_Alternative_Defs = Named_Thms
2044 val name = "code_pred_def"
2045 val description = "alternative definitions of constants for the Predicate Compiler"
2047 structure Predicate_Compile_Inline_Defs = Named_Thms
2049 val name = "code_pred_inline"
2050 val description = "inlining definitions for the Predicate Compiler"
2052 structure Predicate_Compile_Simps = Named_Thms
2054 val name = "code_pred_simp"
2055 val description = "simplification rules for the optimisations in the Predicate Compiler"
2060 Predicate_Compile_Alternative_Defs.setup
2061 #> Predicate_Compile_Inline_Defs.setup
2062 #> Predicate_Compile_Simps.setup
2066 subsection {* Legacy tactics and ML bindings *}
2069 fun strip_tac i = REPEAT (resolve_tac [impI, allI] i);
2071 (* combination of (spec RS spec RS ...(j times) ... spec RS mp) *)
2073 fun wrong_prem (Const (@{const_name All}, _) $ Abs (_, _, t)) = wrong_prem t
2074 | wrong_prem (Bound _) = true
2075 | wrong_prem _ = false;
2076 val filter_right = filter (not o wrong_prem o HOLogic.dest_Trueprop o hd o Thm.prems_of);
2078 fun smp i = funpow i (fn m => filter_right ([spec] RL m)) ([mp]);
2079 fun smp_tac j = EVERY'[dresolve_tac (smp j), atac];
2082 val all_conj_distrib = @{thm all_conj_distrib};
2083 val all_simps = @{thms all_simps};
2084 val atomize_not = @{thm atomize_not};
2085 val case_split = @{thm case_split};
2086 val cases_simp = @{thm cases_simp};
2087 val choice_eq = @{thm choice_eq};
2088 val cong = @{thm cong};
2089 val conj_comms = @{thms conj_comms};
2090 val conj_cong = @{thm conj_cong};
2091 val de_Morgan_conj = @{thm de_Morgan_conj};
2092 val de_Morgan_disj = @{thm de_Morgan_disj};
2093 val disj_assoc = @{thm disj_assoc};
2094 val disj_comms = @{thms disj_comms};
2095 val disj_cong = @{thm disj_cong};
2096 val eq_ac = @{thms eq_ac};
2097 val eq_cong2 = @{thm eq_cong2}
2098 val Eq_FalseI = @{thm Eq_FalseI};
2099 val Eq_TrueI = @{thm Eq_TrueI};
2100 val Ex1_def = @{thm Ex1_def};
2101 val ex_disj_distrib = @{thm ex_disj_distrib};
2102 val ex_simps = @{thms ex_simps};
2103 val if_cancel = @{thm if_cancel};
2104 val if_eq_cancel = @{thm if_eq_cancel};
2105 val if_False = @{thm if_False};
2106 val iff_conv_conj_imp = @{thm iff_conv_conj_imp};
2107 val iff = @{thm iff};
2108 val if_splits = @{thms if_splits};
2109 val if_True = @{thm if_True};
2110 val if_weak_cong = @{thm if_weak_cong};
2111 val imp_all = @{thm imp_all};
2112 val imp_cong = @{thm imp_cong};
2113 val imp_conjL = @{thm imp_conjL};
2114 val imp_conjR = @{thm imp_conjR};
2115 val imp_conv_disj = @{thm imp_conv_disj};
2116 val simp_implies_def = @{thm simp_implies_def};
2117 val simp_thms = @{thms simp_thms};
2118 val split_if = @{thm split_if};
2119 val the1_equality = @{thm the1_equality};
2120 val theI = @{thm theI};
2121 val theI' = @{thm theI'};
2122 val True_implies_equals = @{thm True_implies_equals};
2123 val nnf_conv = Simplifier.rewrite (HOL_basic_ss addsimps simp_thms @ @{thms "nnf_simps"})
2127 hide_const (open) eq equal