1 (* Title: HOL/Groups_Big.thy
2 Author: Tobias Nipkow, Lawrence C Paulson and Markus Wenzel
3 with contributions by Jeremy Avigad
6 header {* Big sum and product over finite (non-empty) sets *}
12 subsection {* Generic monoid operation over a set *}
14 no_notation times (infixl "*" 70)
15 no_notation Groups.one ("1")
17 locale comm_monoid_set = comm_monoid
20 interpretation comp_fun_commute f
21 by default (simp add: fun_eq_iff left_commute)
23 interpretation comp?: comp_fun_commute "f \<circ> g"
24 by (fact comp_comp_fun_commute)
26 definition F :: "('b \<Rightarrow> 'a) \<Rightarrow> 'b set \<Rightarrow> 'a"
28 eq_fold: "F g A = Finite_Set.fold (f \<circ> g) 1 A"
30 lemma infinite [simp]:
31 "\<not> finite A \<Longrightarrow> F g A = 1"
32 by (simp add: eq_fold)
36 by (simp add: eq_fold)
39 assumes "finite A" and "x \<notin> A"
40 shows "F g (insert x A) = g x * F g A"
41 using assms by (simp add: eq_fold)
44 assumes "finite A" and "x \<in> A"
45 shows "F g A = g x * F g (A - {x})"
47 from `x \<in> A` obtain B where A: "A = insert x B" and "x \<notin> B"
48 by (auto dest: mk_disjoint_insert)
49 moreover from `finite A` A have "finite B" by simp
50 ultimately show ?thesis by simp
55 shows "F g (insert x A) = g x * F g (A - {x})"
56 using assms by (cases "x \<in> A") (simp_all add: remove insert_absorb)
59 assumes "\<forall>x\<in>A. g x = 1"
61 using assms by (induct A rule: infinite_finite_induct) simp_all
63 lemma neutral_const [simp]:
64 "F (\<lambda>_. 1) A = 1"
65 by (simp add: neutral)
68 assumes "finite A" and "finite B"
69 shows "F g (A \<union> B) * F g (A \<inter> B) = F g A * F g B"
70 -- {* The reversed orientation looks more natural, but LOOPS as a simprule! *}
71 using assms proof (induct A)
72 case empty then show ?case by simp
74 case (insert x A) then show ?case
75 by (auto simp add: insert_absorb Int_insert_left commute [of _ "g x"] assoc left_commute)
78 corollary union_inter_neutral:
79 assumes "finite A" and "finite B"
80 and I0: "\<forall>x \<in> A \<inter> B. g x = 1"
81 shows "F g (A \<union> B) = F g A * F g B"
82 using assms by (simp add: union_inter [symmetric] neutral)
84 corollary union_disjoint:
85 assumes "finite A" and "finite B"
86 assumes "A \<inter> B = {}"
87 shows "F g (A \<union> B) = F g A * F g B"
88 using assms by (simp add: union_inter_neutral)
91 assumes "B \<subseteq> A" and "finite A"
92 shows "F g A = F g (A - B) * F g B"
94 from assms have "finite (A - B)" by auto
95 moreover from assms have "finite B" by (rule finite_subset)
96 moreover from assms have "(A - B) \<inter> B = {}" by auto
97 ultimately have "F g (A - B \<union> B) = F g (A - B) * F g B" by (rule union_disjoint)
98 moreover from assms have "A \<union> B = A" by auto
99 ultimately show ?thesis by simp
102 lemma setdiff_irrelevant:
104 shows "F g (A - {x. g x = z}) = F g A"
105 using assms by (induct A) (simp_all add: insert_Diff_if)
107 lemma not_neutral_contains_not_neutral:
108 assumes "F g A \<noteq> z"
109 obtains a where "a \<in> A" and "g a \<noteq> z"
111 from assms have "\<exists>a\<in>A. g a \<noteq> z"
112 proof (induct A rule: infinite_finite_induct)
114 then show ?case by simp (rule, simp)
116 with that show thesis by blast
121 shows "F g (h ` A) = F (g \<circ> h) A"
122 proof (cases "finite A")
124 with assms show ?thesis by (simp add: eq_fold fold_image comp_assoc)
126 case False with assms have "\<not> finite (h ` A)" by (blast dest: finite_imageD)
127 with False show ?thesis by simp
132 assumes g_h: "\<And>x. x \<in> B \<Longrightarrow> g x = h x"
133 shows "F g A = F h B"
134 using g_h unfolding `A = B`
135 by (induct B rule: infinite_finite_induct) auto
137 lemma strong_cong [cong]:
138 assumes "A = B" "\<And>x. x \<in> B =simp=> g x = h x"
139 shows "F (\<lambda>x. g x) A = F (\<lambda>x. h x) B"
140 by (rule cong) (insert assms, simp_all add: simp_implies_def)
142 lemma UNION_disjoint:
143 assumes "finite I" and "\<forall>i\<in>I. finite (A i)"
144 and "\<forall>i\<in>I. \<forall>j\<in>I. i \<noteq> j \<longrightarrow> A i \<inter> A j = {}"
145 shows "F g (UNION I A) = F (\<lambda>x. F g (A x)) I"
147 apply (induct rule: finite_induct)
150 apply (subgoal_tac "\<forall>i\<in>Fa. x \<noteq> i")
152 apply (subgoal_tac "A x Int UNION Fa A = {}")
154 apply (simp add: union_disjoint)
157 lemma Union_disjoint:
158 assumes "\<forall>A\<in>C. finite A" "\<forall>A\<in>C. \<forall>B\<in>C. A \<noteq> B \<longrightarrow> A \<inter> B = {}"
159 shows "F g (Union C) = F (F g) C"
162 from UNION_disjoint [OF this assms]
164 qed (auto dest: finite_UnionD intro: infinite)
167 "F (\<lambda>x. g x * h x) A = F g A * F h A"
168 using assms by (induct A rule: infinite_finite_induct) (simp_all add: assoc commute left_commute)
171 "finite A \<Longrightarrow> \<forall>x\<in>A. finite (B x) \<Longrightarrow> F (\<lambda>x. F (g x) (B x)) A = F (split g) (SIGMA x:A. B x)"
172 apply (subst Sigma_def)
173 apply (subst UNION_disjoint, assumption, simp)
177 apply (simp add: fun_eq_iff)
178 apply (subst UNION_disjoint, simp, simp)
180 apply (simp add: comp_def)
185 and Rop: "\<forall>x1 y1 x2 y2. R x1 x2 \<and> R y1 y2 \<longrightarrow> R (x1 * y1) (x2 * y2)"
186 and fS: "finite S" and Rfg: "\<forall>x\<in>S. R (h x) (g x)"
187 shows "R (F h S) (F g S)"
188 using fS by (rule finite_subset_induct) (insert assms, auto)
190 lemma mono_neutral_cong_left:
191 assumes "finite T" and "S \<subseteq> T" and "\<forall>i \<in> T - S. h i = 1"
192 and "\<And>x. x \<in> S \<Longrightarrow> g x = h x" shows "F g S = F h T"
194 have eq: "T = S \<union> (T - S)" using `S \<subseteq> T` by blast
195 have d: "S \<inter> (T - S) = {}" using `S \<subseteq> T` by blast
196 from `finite T` `S \<subseteq> T` have f: "finite S" "finite (T - S)"
197 by (auto intro: finite_subset)
198 show ?thesis using assms(4)
199 by (simp add: union_disjoint [OF f d, unfolded eq [symmetric]] neutral [OF assms(3)])
202 lemma mono_neutral_cong_right:
203 "\<lbrakk> finite T; S \<subseteq> T; \<forall>i \<in> T - S. g i = 1; \<And>x. x \<in> S \<Longrightarrow> g x = h x \<rbrakk>
204 \<Longrightarrow> F g T = F h S"
205 by (auto intro!: mono_neutral_cong_left [symmetric])
207 lemma mono_neutral_left:
208 "\<lbrakk> finite T; S \<subseteq> T; \<forall>i \<in> T - S. g i = 1 \<rbrakk> \<Longrightarrow> F g S = F g T"
209 by (blast intro: mono_neutral_cong_left)
211 lemma mono_neutral_right:
212 "\<lbrakk> finite T; S \<subseteq> T; \<forall>i \<in> T - S. g i = 1 \<rbrakk> \<Longrightarrow> F g T = F g S"
213 by (blast intro!: mono_neutral_left [symmetric])
215 lemma reindex_bij_betw: "bij_betw h S T \<Longrightarrow> F (\<lambda>x. g (h x)) S = F g T"
216 by (auto simp: bij_betw_def reindex)
218 lemma reindex_bij_witness:
220 "\<And>a. a \<in> S \<Longrightarrow> i (j a) = a"
221 "\<And>a. a \<in> S \<Longrightarrow> j a \<in> T"
222 "\<And>b. b \<in> T \<Longrightarrow> j (i b) = b"
223 "\<And>b. b \<in> T \<Longrightarrow> i b \<in> S"
225 "\<And>a. a \<in> S \<Longrightarrow> h (j a) = g a"
226 shows "F g S = F h T"
228 have "bij_betw j S T"
229 using bij_betw_byWitness[where A=S and f=j and f'=i and A'=T] witness by auto
230 moreover have "F g S = F (\<lambda>x. h (j x)) S"
231 by (intro cong) (auto simp: eq)
232 ultimately show ?thesis
233 by (simp add: reindex_bij_betw)
236 lemma reindex_bij_betw_not_neutral:
237 assumes fin: "finite S'" "finite T'"
238 assumes bij: "bij_betw h (S - S') (T - T')"
240 "\<And>a. a \<in> S' \<Longrightarrow> g (h a) = z"
241 "\<And>b. b \<in> T' \<Longrightarrow> g b = z"
242 shows "F (\<lambda>x. g (h x)) S = F g T"
244 have [simp]: "finite S \<longleftrightarrow> finite T"
245 using bij_betw_finite[OF bij] fin by auto
250 with nn have "F (\<lambda>x. g (h x)) S = F (\<lambda>x. g (h x)) (S - S')"
251 by (intro mono_neutral_cong_right) auto
252 also have "\<dots> = F g (T - T')"
253 using bij by (rule reindex_bij_betw)
254 also have "\<dots> = F g T"
255 using nn `finite S` by (intro mono_neutral_cong_left) auto
256 finally show ?thesis .
260 lemma reindex_bij_witness_not_neutral:
261 assumes fin: "finite S'" "finite T'"
263 "\<And>a. a \<in> S - S' \<Longrightarrow> i (j a) = a"
264 "\<And>a. a \<in> S - S' \<Longrightarrow> j a \<in> T - T'"
265 "\<And>b. b \<in> T - T' \<Longrightarrow> j (i b) = b"
266 "\<And>b. b \<in> T - T' \<Longrightarrow> i b \<in> S - S'"
268 "\<And>a. a \<in> S' \<Longrightarrow> g a = z"
269 "\<And>b. b \<in> T' \<Longrightarrow> h b = z"
271 "\<And>a. a \<in> S \<Longrightarrow> h (j a) = g a"
272 shows "F g S = F h T"
274 have bij: "bij_betw j (S - (S' \<inter> S)) (T - (T' \<inter> T))"
275 using witness by (intro bij_betw_byWitness[where f'=i]) auto
276 have F_eq: "F g S = F (\<lambda>x. h (j x)) S"
277 by (intro cong) (auto simp: eq)
279 unfolding F_eq using fin nn eq
280 by (intro reindex_bij_betw_not_neutral[OF _ _ bij]) auto
284 assumes fS: "finite S"
285 shows "F (\<lambda>k. if k = a then b k else 1) S = (if a \<in> S then b a else 1)"
287 let ?f = "(\<lambda>k. if k=a then b k else 1)"
288 { assume a: "a \<notin> S"
289 hence "\<forall>k\<in>S. ?f k = 1" by simp
290 hence ?thesis using a by simp }
292 { assume a: "a \<in> S"
295 have eq: "S = ?A \<union> ?B" using a by blast
296 have dj: "?A \<inter> ?B = {}" by simp
297 from fS have fAB: "finite ?A" "finite ?B" by auto
298 have "F ?f S = F ?f ?A * F ?f ?B"
299 using union_disjoint [OF fAB dj, of ?f, unfolded eq [symmetric]]
301 then have ?thesis using a by simp }
302 ultimately show ?thesis by blast
306 assumes fS: "finite S"
307 shows "F (\<lambda>k. if a = k then b k else 1) S = (if a \<in> S then b a else 1)"
308 using delta [OF fS, of a b, symmetric] by (auto intro: cong)
311 fixes P :: "'b \<Rightarrow> bool" and g h :: "'b \<Rightarrow> 'a"
312 assumes fA: "finite A"
313 shows "F (\<lambda>x. if P x then h x else g x) A =
314 F h (A \<inter> {x. P x}) * F g (A \<inter> - {x. P x})"
316 have a: "A = A \<inter> {x. P x} \<union> A \<inter> -{x. P x}"
317 "(A \<inter> {x. P x}) \<inter> (A \<inter> -{x. P x}) = {}"
320 have f: "finite (A \<inter> {x. P x})" "finite (A \<inter> -{x. P x})" by auto
321 let ?g = "\<lambda>x. if P x then h x else g x"
322 from union_disjoint [OF f a(2), of ?g] a(1)
324 by (subst (1 2) cong) simp_all
327 lemma cartesian_product:
328 "F (\<lambda>x. F (g x) B) A = F (split g) (A <*> B)"
330 apply (cases "finite A")
331 apply (cases "finite B")
332 apply (simp add: Sigma)
333 apply (cases "A={}", simp)
335 apply (auto intro: infinite dest: finite_cartesian_productD2)
336 apply (cases "B = {}") apply (auto intro: infinite dest: finite_cartesian_productD1)
341 notation times (infixl "*" 70)
342 notation Groups.one ("1")
345 subsection {* Generalized summation over a set *}
347 context comm_monoid_add
350 definition setsum :: "('b \<Rightarrow> 'a) \<Rightarrow> 'b set \<Rightarrow> 'a"
352 "setsum = comm_monoid_set.F plus 0"
354 sublocale setsum!: comm_monoid_set plus 0
356 "comm_monoid_set.F plus 0 = setsum"
358 show "comm_monoid_set plus 0" ..
359 then interpret setsum!: comm_monoid_set plus 0 .
360 from setsum_def show "comm_monoid_set.F plus 0 = setsum" by rule
364 Setsum ("\<Sum>_" [1000] 999) where
365 "\<Sum>A \<equiv> setsum (%x. x) A"
369 text{* Now: lot's of fancy syntax. First, @{term "setsum (%x. e) A"} is
370 written @{text"\<Sum>x\<in>A. e"}. *}
373 "_setsum" :: "pttrn => 'a set => 'b => 'b::comm_monoid_add" ("(3SUM _:_. _)" [0, 51, 10] 10)
375 "_setsum" :: "pttrn => 'a set => 'b => 'b::comm_monoid_add" ("(3\<Sum>_\<in>_. _)" [0, 51, 10] 10)
377 "_setsum" :: "pttrn => 'a set => 'b => 'b::comm_monoid_add" ("(3\<Sum>_\<in>_. _)" [0, 51, 10] 10)
379 translations -- {* Beware of argument permutation! *}
380 "SUM i:A. b" == "CONST setsum (%i. b) A"
381 "\<Sum>i\<in>A. b" == "CONST setsum (%i. b) A"
383 text{* Instead of @{term"\<Sum>x\<in>{x. P}. e"} we introduce the shorter
384 @{text"\<Sum>x|P. e"}. *}
387 "_qsetsum" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3SUM _ |/ _./ _)" [0,0,10] 10)
389 "_qsetsum" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3\<Sum>_ | (_)./ _)" [0,0,10] 10)
391 "_qsetsum" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3\<Sum>_ | (_)./ _)" [0,0,10] 10)
394 "SUM x|P. t" => "CONST setsum (%x. t) {x. P}"
395 "\<Sum>x|P. t" => "CONST setsum (%x. t) {x. P}"
399 fun setsum_tr' [Abs (x, Tx, t), Const (@{const_syntax Collect}, _) $ Abs (y, Ty, P)] =
400 if x <> y then raise Match
403 val x' = Syntax_Trans.mark_bound_body (x, Tx);
404 val t' = subst_bound (x', t);
405 val P' = subst_bound (x', P);
407 Syntax.const @{syntax_const "_qsetsum"} $ Syntax_Trans.mark_bound_abs (x, Tx) $ P' $ t'
409 | setsum_tr' _ = raise Match;
410 in [(@{const_syntax setsum}, K setsum_tr')] end
413 text {* TODO These are candidates for generalization *}
415 context comm_monoid_add
418 lemma setsum_reindex_id:
419 "inj_on f B \<Longrightarrow> setsum f B = setsum id (f ` B)"
420 by (simp add: setsum.reindex)
422 lemma setsum_reindex_nonzero:
423 assumes fS: "finite S"
424 and nz: "\<And>x y. x \<in> S \<Longrightarrow> y \<in> S \<Longrightarrow> x \<noteq> y \<Longrightarrow> f x = f y \<Longrightarrow> h (f x) = 0"
425 shows "setsum h (f ` S) = setsum (h \<circ> f) S"
426 proof (subst setsum.reindex_bij_betw_not_neutral[symmetric])
427 show "bij_betw f (S - {x\<in>S. h (f x) = 0}) (f`S - f`{x\<in>S. h (f x) = 0})"
428 using nz by (auto intro!: inj_onI simp: bij_betw_def)
429 qed (insert fS, auto)
432 "(\<And>x. x \<in> A \<Longrightarrow> f x = g x) \<Longrightarrow> setsum f A = setsum g A"
433 by (auto intro: setsum.cong)
435 lemma setsum_reindex_cong:
436 "[|inj_on f A; B = f ` A; !!a. a:A \<Longrightarrow> g a = h (f a)|]
437 ==> setsum h B = setsum g A"
438 by (simp add: setsum.reindex)
440 lemma setsum_restrict_set:
441 assumes fA: "finite A"
442 shows "setsum f (A \<inter> B) = setsum (\<lambda>x. if x \<in> B then f x else 0) A"
444 from fA have fab: "finite (A \<inter> B)" by auto
445 have aba: "A \<inter> B \<subseteq> A" by blast
446 let ?g = "\<lambda>x. if x \<in> A\<inter>B then f x else 0"
447 from setsum.mono_neutral_left [OF fA aba, of ?g]
451 lemma setsum_Union_disjoint:
452 assumes "\<forall>A\<in>C. finite A" "\<forall>A\<in>C. \<forall>B\<in>C. A \<noteq> B \<longrightarrow> A Int B = {}"
453 shows "setsum f (Union C) = setsum (setsum f) C"
454 using assms by (fact setsum.Union_disjoint)
456 lemma setsum_cartesian_product:
457 "(\<Sum>x\<in>A. (\<Sum>y\<in>B. f x y)) = (\<Sum>(x,y) \<in> A <*> B. f x y)"
458 by (fact setsum.cartesian_product)
460 lemma setsum_UNION_zero:
461 assumes fS: "finite S" and fSS: "\<forall>T \<in> S. finite T"
462 and f0: "\<And>T1 T2 x. T1\<in>S \<Longrightarrow> T2\<in>S \<Longrightarrow> T1 \<noteq> T2 \<Longrightarrow> x \<in> T1 \<Longrightarrow> x \<in> T2 \<Longrightarrow> f x = 0"
463 shows "setsum f (\<Union>S) = setsum (\<lambda>T. setsum f T) S"
465 proof(induct rule: finite_induct[OF fS])
466 case 1 thus ?case by simp
469 then have fTF: "finite T" "\<forall>T\<in>F. finite T" "finite F" and TF: "T \<notin> F"
470 and H: "setsum f (\<Union> F) = setsum (setsum f) F" by auto
471 from fTF have fUF: "finite (\<Union>F)" by auto
472 from "2.prems" TF fTF
474 by (auto simp add: H [symmetric] intro: setsum.union_inter_neutral [OF fTF(1) fUF, of f])
477 text {* Commuting outer and inner summation *}
479 lemma setsum_commute:
480 "(\<Sum>i\<in>A. \<Sum>j\<in>B. f i j) = (\<Sum>j\<in>B. \<Sum>i\<in>A. f i j)"
481 unfolding setsum_cartesian_product
482 by (rule setsum.reindex_bij_witness[where i="\<lambda>(i, j). (j, i)" and j="\<lambda>(i, j). (j, i)"]) auto
485 fixes A :: "'a set" and B :: "'b set"
486 assumes fin: "finite A" "finite B"
487 shows "setsum f (A <+> B) = setsum (f \<circ> Inl) A + setsum (f \<circ> Inr) B"
489 have "A <+> B = Inl ` A \<union> Inr ` B" by auto
490 moreover from fin have "finite (Inl ` A :: ('a + 'b) set)" "finite (Inr ` B :: ('a + 'b) set)"
492 moreover have "Inl ` A \<inter> Inr ` B = ({} :: ('a + 'b) set)" by auto
493 moreover have "inj_on (Inl :: 'a \<Rightarrow> 'a + 'b) A" "inj_on (Inr :: 'b \<Rightarrow> 'a + 'b) B" by(auto intro: inj_onI)
494 ultimately show ?thesis using fin by(simp add: setsum.union_disjoint setsum.reindex)
499 text {* TODO These are legacy *}
503 by (fact setsum.empty)
506 "finite F ==> a \<notin> F ==> setsum f (insert a F) = f a + setsum f F"
507 by (fact setsum.insert)
509 lemma setsum_infinite:
510 "~ finite A ==> setsum f A = 0"
511 by (fact setsum.infinite)
513 lemma setsum_reindex:
514 "inj_on f B \<Longrightarrow> setsum h (f ` B) = setsum (h \<circ> f) B"
515 by (fact setsum.reindex)
518 "A = B ==> (!!x. x:B ==> f x = g x) ==> setsum f A = setsum g B"
519 by (fact setsum.cong)
521 lemma strong_setsum_cong:
522 "A = B ==> (!!x. x:B =simp=> f x = g x)
523 ==> setsum (%x. f x) A = setsum (%x. g x) B"
524 by (fact setsum.strong_cong)
526 lemmas setsum_0 = setsum.neutral_const
527 lemmas setsum_0' = setsum.neutral
529 lemma setsum_Un_Int: "finite A ==> finite B ==>
530 setsum g (A Un B) + setsum g (A Int B) = setsum g A + setsum g B"
531 -- {* The reversed orientation looks more natural, but LOOPS as a simprule! *}
532 by (fact setsum.union_inter)
534 lemma setsum_Un_disjoint: "finite A ==> finite B
535 ==> A Int B = {} ==> setsum g (A Un B) = setsum g A + setsum g B"
536 by (fact setsum.union_disjoint)
538 lemma setsum_subset_diff: "\<lbrakk> B \<subseteq> A; finite A \<rbrakk> \<Longrightarrow>
539 setsum f A = setsum f (A - B) + setsum f B"
540 by (fact setsum.subset_diff)
542 lemma setsum_mono_zero_left:
543 "\<lbrakk> finite T; S \<subseteq> T; \<forall>i \<in> T - S. f i = 0 \<rbrakk> \<Longrightarrow> setsum f S = setsum f T"
544 by (fact setsum.mono_neutral_left)
546 lemmas setsum_mono_zero_right = setsum.mono_neutral_right
548 lemma setsum_mono_zero_cong_left:
549 "\<lbrakk> finite T; S \<subseteq> T; \<forall>i \<in> T - S. g i = 0; \<And>x. x \<in> S \<Longrightarrow> f x = g x \<rbrakk>
550 \<Longrightarrow> setsum f S = setsum g T"
551 by (fact setsum.mono_neutral_cong_left)
553 lemmas setsum_mono_zero_cong_right = setsum.mono_neutral_cong_right
555 lemma setsum_delta: "finite S \<Longrightarrow>
556 setsum (\<lambda>k. if k=a then b k else 0) S = (if a \<in> S then b a else 0)"
557 by (fact setsum.delta)
559 lemma setsum_delta': "finite S \<Longrightarrow>
560 setsum (\<lambda>k. if a = k then b k else 0) S = (if a\<in> S then b a else 0)"
561 by (fact setsum.delta')
565 shows "setsum (\<lambda>x. if P x then f x else g x) A =
566 setsum f (A \<inter> {x. P x}) + setsum g (A \<inter> - {x. P x})"
567 using assms by (fact setsum.If_cases)
569 (*But we can't get rid of finite I. If infinite, although the rhs is 0,
570 the lhs need not be, since UNION I A could still be finite.*)
571 lemma setsum_UN_disjoint:
572 assumes "finite I" and "ALL i:I. finite (A i)"
573 and "ALL i:I. ALL j:I. i \<noteq> j --> A i Int A j = {}"
574 shows "setsum f (UNION I A) = (\<Sum>i\<in>I. setsum f (A i))"
575 using assms by (fact setsum.UNION_disjoint)
577 (*But we can't get rid of finite A. If infinite, although the lhs is 0,
578 the rhs need not be, since SIGMA A B could still be finite.*)
580 assumes "finite A" and "ALL x:A. finite (B x)"
581 shows "(\<Sum>x\<in>A. (\<Sum>y\<in>B x. f x y)) = (\<Sum>(x,y)\<in>(SIGMA x:A. B x). f x y)"
582 using assms by (fact setsum.Sigma)
584 lemma setsum_addf: "setsum (%x. f x + g x) A = (setsum f A + setsum g A)"
585 by (fact setsum.distrib)
587 lemma setsum_Un_zero:
588 "\<lbrakk> finite S; finite T; \<forall>x \<in> S\<inter>T. f x = 0 \<rbrakk> \<Longrightarrow>
589 setsum f (S \<union> T) = setsum f S + setsum f T"
590 by (fact setsum.union_inter_neutral)
592 subsubsection {* Properties in more restricted classes of structures *}
594 lemma setsum_Un: "finite A ==> finite B ==>
595 (setsum f (A Un B) :: 'a :: ab_group_add) =
596 setsum f A + setsum f B - setsum f (A Int B)"
597 by (subst setsum_Un_Int [symmetric], auto simp add: algebra_simps)
600 assumes "finite (A \<union> B)"
601 shows "setsum f (A \<union> B) = setsum f (A - B) + setsum f (B - A) + setsum f (A \<inter> B)"
603 have "A \<union> B = A - B \<union> (B - A) \<union> A \<inter> B"
605 with assms show ?thesis by simp (subst setsum_Un_disjoint, auto)+
608 lemma setsum_diff1: "finite A \<Longrightarrow>
609 (setsum f (A - {a}) :: ('a::ab_group_add)) =
610 (if a:A then setsum f A - f a else setsum f A)"
611 by (erule finite_induct) (auto simp add: insert_Diff_if)
614 assumes le: "finite A" "B \<subseteq> A"
615 shows "setsum f (A - B) = setsum f A - ((setsum f B)::('a::ab_group_add))"
617 from le have finiteB: "finite B" using finite_subset by auto
618 show ?thesis using finiteB le
624 thus ?case using le finiteB
625 by (simp add: Diff_insert[where a=x and B=F] setsum_diff1 insert_absorb)
630 assumes le: "\<And>i. i\<in>K \<Longrightarrow> f (i::'a) \<le> ((g i)::('b::{comm_monoid_add, ordered_ab_semigroup_add}))"
631 shows "(\<Sum>i\<in>K. f i) \<le> (\<Sum>i\<in>K. g i)"
632 proof (cases "finite K")
634 thus ?thesis using le
640 thus ?case using add_mono by fastforce
643 case False then show ?thesis by simp
646 lemma setsum_strict_mono:
647 fixes f :: "'a \<Rightarrow> 'b::{ordered_cancel_ab_semigroup_add,comm_monoid_add}"
648 assumes "finite A" "A \<noteq> {}"
649 and "!!x. x:A \<Longrightarrow> f x < g x"
650 shows "setsum f A < setsum g A"
652 proof (induct rule: finite_ne_induct)
653 case singleton thus ?case by simp
655 case insert thus ?case by (auto simp: add_strict_mono)
658 lemma setsum_strict_mono_ex1:
659 fixes f :: "'a \<Rightarrow> 'b::{comm_monoid_add, ordered_cancel_ab_semigroup_add}"
660 assumes "finite A" and "ALL x:A. f x \<le> g x" and "EX a:A. f a < g a"
661 shows "setsum f A < setsum g A"
663 from assms(3) obtain a where a: "a:A" "f a < g a" by blast
664 have "setsum f A = setsum f ((A-{a}) \<union> {a})"
665 by(simp add:insert_absorb[OF `a:A`])
666 also have "\<dots> = setsum f (A-{a}) + setsum f {a}"
667 using `finite A` by(subst setsum_Un_disjoint) auto
668 also have "setsum f (A-{a}) \<le> setsum g (A-{a})"
669 by(rule setsum_mono)(simp add: assms(2))
670 also have "setsum f {a} < setsum g {a}" using a by simp
671 also have "setsum g (A - {a}) + setsum g {a} = setsum g((A-{a}) \<union> {a})"
672 using `finite A` by(subst setsum_Un_disjoint[symmetric]) auto
673 also have "\<dots> = setsum g A" by(simp add:insert_absorb[OF `a:A`])
674 finally show ?thesis by (auto simp add: add_right_mono add_strict_left_mono)
678 "setsum (%x. - (f x)::'a::ab_group_add) A = - setsum f A"
679 proof (cases "finite A")
680 case True thus ?thesis by (induct set: finite) auto
682 case False thus ?thesis by simp
685 lemma setsum_subtractf:
686 "setsum (%x. ((f x)::'a::ab_group_add) - g x) A =
687 setsum f A - setsum g A"
688 using setsum_addf [of f "- g" A] by (simp add: setsum_negf)
691 assumes nn: "\<forall>x\<in>A. (0::'a::{ordered_ab_semigroup_add,comm_monoid_add}) \<le> f x"
692 shows "0 \<le> setsum f A"
693 proof (cases "finite A")
694 case True thus ?thesis using nn
696 case empty then show ?case by simp
699 then have "0 + 0 \<le> f x + setsum f F" by (blast intro: add_mono)
700 with insert show ?case by simp
703 case False thus ?thesis by simp
707 assumes np: "\<forall>x\<in>A. f x \<le> (0::'a::{ordered_ab_semigroup_add,comm_monoid_add})"
708 shows "setsum f A \<le> 0"
709 proof (cases "finite A")
710 case True thus ?thesis using np
712 case empty then show ?case by simp
715 then have "f x + setsum f F \<le> 0 + 0" by (blast intro: add_mono)
716 with insert show ?case by simp
719 case False thus ?thesis by simp
722 lemma setsum_nonneg_leq_bound:
723 fixes f :: "'a \<Rightarrow> 'b::{ordered_ab_group_add}"
724 assumes "finite s" "\<And>i. i \<in> s \<Longrightarrow> f i \<ge> 0" "(\<Sum>i \<in> s. f i) = B" "i \<in> s"
727 have "0 \<le> (\<Sum> i \<in> s - {i}. f i)" and "0 \<le> f i"
728 using assms by (auto intro!: setsum_nonneg)
730 have "(\<Sum> i \<in> s - {i}. f i) + f i = B"
731 using assms by (simp add: setsum_diff1)
732 ultimately show ?thesis by auto
735 lemma setsum_nonneg_0:
736 fixes f :: "'a \<Rightarrow> 'b::{ordered_ab_group_add}"
737 assumes "finite s" and pos: "\<And> i. i \<in> s \<Longrightarrow> f i \<ge> 0"
738 and "(\<Sum> i \<in> s. f i) = 0" and i: "i \<in> s"
740 using setsum_nonneg_leq_bound[OF assms] pos[OF i] by auto
743 fixes f :: "'a \<Rightarrow> 'b :: ordered_comm_monoid_add"
744 assumes fin: "finite B" and sub: "A \<subseteq> B" and nn: "\<And>b. b \<in> B-A \<Longrightarrow> 0 \<le> f b"
745 shows "setsum f A \<le> setsum f B"
747 have "setsum f A \<le> setsum f A + setsum f (B-A)"
748 by(simp add: add_increasing2[OF setsum_nonneg] nn Ball_def)
749 also have "\<dots> = setsum f (A \<union> (B-A))" using fin finite_subset[OF sub fin]
750 by (simp add:setsum_Un_disjoint del:Un_Diff_cancel)
751 also have "A \<union> (B-A) = B" using sub by blast
752 finally show ?thesis .
755 lemma setsum_mono3: "finite B ==> A <= B ==>
757 0 <= ((f x)::'a::{comm_monoid_add,ordered_ab_semigroup_add}) ==>
758 setsum f A <= setsum f B"
759 apply (subgoal_tac "setsum f B = setsum f A + setsum f (B - A)")
761 apply (subgoal_tac "setsum f A + 0 <= setsum f A + setsum f (B - A)")
763 apply (rule add_left_mono)
764 apply (erule setsum_nonneg)
765 apply (subst setsum_Un_disjoint [THEN sym])
766 apply (erule finite_subset, assumption)
767 apply (rule finite_subset)
770 apply (auto simp add: sup_absorb2)
773 lemma setsum_right_distrib:
774 fixes f :: "'a => ('b::semiring_0)"
775 shows "r * setsum f A = setsum (%n. r * f n) A"
776 proof (cases "finite A")
780 case empty thus ?case by simp
782 case (insert x A) thus ?case by (simp add: distrib_left)
785 case False thus ?thesis by simp
788 lemma setsum_left_distrib:
789 "setsum f A * (r::'a::semiring_0) = (\<Sum>n\<in>A. f n * r)"
790 proof (cases "finite A")
794 case empty thus ?case by simp
796 case (insert x A) thus ?case by (simp add: distrib_right)
799 case False thus ?thesis by simp
802 lemma setsum_divide_distrib:
803 "setsum f A / (r::'a::field) = (\<Sum>n\<in>A. f n / r)"
804 proof (cases "finite A")
808 case empty thus ?case by simp
810 case (insert x A) thus ?case by (simp add: add_divide_distrib)
813 case False thus ?thesis by simp
816 lemma setsum_abs[iff]:
817 fixes f :: "'a => ('b::ordered_ab_group_add_abs)"
818 shows "abs (setsum f A) \<le> setsum (%i. abs(f i)) A"
819 proof (cases "finite A")
823 case empty thus ?case by simp
826 thus ?case by (auto intro: abs_triangle_ineq order_trans)
829 case False thus ?thesis by simp
832 lemma setsum_abs_ge_zero[iff]:
833 fixes f :: "'a => ('b::ordered_ab_group_add_abs)"
834 shows "0 \<le> setsum (%i. abs(f i)) A"
835 proof (cases "finite A")
839 case empty thus ?case by simp
841 case (insert x A) thus ?case by auto
844 case False thus ?thesis by simp
847 lemma abs_setsum_abs[simp]:
848 fixes f :: "'a => ('b::ordered_ab_group_add_abs)"
849 shows "abs (\<Sum>a\<in>A. abs(f a)) = (\<Sum>a\<in>A. abs(f a))"
850 proof (cases "finite A")
854 case empty thus ?case by simp
857 hence "\<bar>\<Sum>a\<in>insert a A. \<bar>f a\<bar>\<bar> = \<bar>\<bar>f a\<bar> + (\<Sum>a\<in>A. \<bar>f a\<bar>)\<bar>" by simp
858 also have "\<dots> = \<bar>\<bar>f a\<bar> + \<bar>\<Sum>a\<in>A. \<bar>f a\<bar>\<bar>\<bar>" using insert by simp
859 also have "\<dots> = \<bar>f a\<bar> + \<bar>\<Sum>a\<in>A. \<bar>f a\<bar>\<bar>"
860 by (simp del: abs_of_nonneg)
861 also have "\<dots> = (\<Sum>a\<in>insert a A. \<bar>f a\<bar>)" using insert by simp
865 case False thus ?thesis by simp
868 lemma setsum_diff1'[rule_format]:
869 "finite A \<Longrightarrow> a \<in> A \<longrightarrow> (\<Sum> x \<in> A. f x) = f a + (\<Sum> x \<in> (A - {a}). f x)"
870 apply (erule finite_induct[where F=A and P="% A. (a \<in> A \<longrightarrow> (\<Sum> x \<in> A. f x) = f a + (\<Sum> x \<in> (A - {a}). f x))"])
871 apply (auto simp add: insert_Diff_if add_ac)
874 lemma setsum_diff1_ring: assumes "finite A" "a \<in> A"
875 shows "setsum f (A - {a}) = setsum f A - (f a::'a::ring)"
876 unfolding setsum_diff1'[OF assms] by auto
878 lemma setsum_product:
879 fixes f :: "'a => ('b::semiring_0)"
880 shows "setsum f A * setsum g B = (\<Sum>i\<in>A. \<Sum>j\<in>B. f i * g j)"
881 by (simp add: setsum_right_distrib setsum_left_distrib) (rule setsum_commute)
883 lemma setsum_mult_setsum_if_inj:
884 fixes f :: "'a => ('b::semiring_0)"
885 shows "inj_on (%(a,b). f a * g b) (A \<times> B) ==>
886 setsum f A * setsum g B = setsum id {f a * g b|a b. a:A & b:B}"
887 by(auto simp: setsum_product setsum_cartesian_product
888 intro!: setsum_reindex_cong[symmetric])
890 lemma setsum_SucD: "setsum f A = Suc n ==> EX a:A. 0 < f a"
891 apply (case_tac "finite A")
894 apply (erule finite_induct, auto)
897 lemma setsum_eq_0_iff [simp]:
898 "finite F ==> (setsum f F = 0) = (ALL a:F. f a = (0::nat))"
899 by (induct set: finite) auto
901 lemma setsum_eq_Suc0_iff: "finite A \<Longrightarrow>
902 setsum f A = Suc 0 \<longleftrightarrow> (EX a:A. f a = Suc 0 & (ALL b:A. a\<noteq>b \<longrightarrow> f b = 0))"
903 apply(erule finite_induct)
904 apply (auto simp add:add_is_1)
907 lemmas setsum_eq_1_iff = setsum_eq_Suc0_iff[simplified One_nat_def[symmetric]]
909 lemma setsum_Un_nat: "finite A ==> finite B ==>
910 (setsum f (A Un B) :: nat) = setsum f A + setsum f B - setsum f (A Int B)"
911 -- {* For the natural numbers, we have subtraction. *}
912 by (subst setsum_Un_Int [symmetric], auto simp add: algebra_simps)
914 lemma setsum_diff1_nat: "(setsum f (A - {a}) :: nat) =
915 (if a:A then setsum f A - f a else setsum f A)"
916 apply (case_tac "finite A")
918 apply (erule finite_induct)
919 apply (auto simp add: insert_Diff_if)
920 apply (drule_tac a = a in mk_disjoint_insert, auto)
923 lemma setsum_diff_nat:
924 assumes "finite B" and "B \<subseteq> A"
925 shows "(setsum f (A - B) :: nat) = (setsum f A) - (setsum f B)"
928 show "setsum f (A - {}) = (setsum f A) - (setsum f {})" by simp
930 fix F x assume finF: "finite F" and xnotinF: "x \<notin> F"
931 and xFinA: "insert x F \<subseteq> A"
932 and IH: "F \<subseteq> A \<Longrightarrow> setsum f (A - F) = setsum f A - setsum f F"
933 from xnotinF xFinA have xinAF: "x \<in> (A - F)" by simp
934 from xinAF have A: "setsum f ((A - F) - {x}) = setsum f (A - F) - f x"
935 by (simp add: setsum_diff1_nat)
936 from xFinA have "F \<subseteq> A" by simp
937 with IH have "setsum f (A - F) = setsum f A - setsum f F" by simp
938 with A have B: "setsum f ((A - F) - {x}) = setsum f A - setsum f F - f x"
940 from xnotinF have "A - insert x F = (A - F) - {x}" by auto
941 with B have C: "setsum f (A - insert x F) = setsum f A - setsum f F - f x"
943 from finF xnotinF have "setsum f (insert x F) = setsum f F + f x" by simp
944 with C have "setsum f (A - insert x F) = setsum f A - setsum f (insert x F)"
946 thus "setsum f (A - insert x F) = setsum f A - setsum f (insert x F)" by simp
949 lemma setsum_comp_morphism:
950 assumes "h 0 = 0" and "\<And>x y. h (x + y) = h x + h y"
951 shows "setsum (h \<circ> g) A = h (setsum g A)"
952 proof (cases "finite A")
953 case False then show ?thesis by (simp add: assms)
955 case True then show ?thesis by (induct A) (simp_all add: assms)
959 subsubsection {* Cardinality as special case of @{const setsum} *}
961 lemma card_eq_setsum:
962 "card A = setsum (\<lambda>x. 1) A"
964 have "plus \<circ> (\<lambda>_. Suc 0) = (\<lambda>_. Suc)"
965 by (simp add: fun_eq_iff)
966 then have "Finite_Set.fold (plus \<circ> (\<lambda>_. Suc 0)) = Finite_Set.fold (\<lambda>_. Suc)"
968 then have "Finite_Set.fold (plus \<circ> (\<lambda>_. Suc 0)) 0 A = Finite_Set.fold (\<lambda>_. Suc) 0 A"
969 by (blast intro: fun_cong)
970 then show ?thesis by (simp add: card.eq_fold setsum.eq_fold)
973 lemma setsum_constant [simp]:
974 "(\<Sum>x \<in> A. y) = of_nat (card A) * y"
975 apply (cases "finite A")
976 apply (erule finite_induct)
977 apply (auto simp add: algebra_simps)
980 lemma setsum_bounded:
981 assumes le: "\<And>i. i\<in>A \<Longrightarrow> f i \<le> (K::'a::{semiring_1, ordered_ab_semigroup_add})"
982 shows "setsum f A \<le> of_nat (card A) * K"
983 proof (cases "finite A")
985 thus ?thesis using le setsum_mono[where K=A and g = "%x. K"] by simp
987 case False thus ?thesis by simp
990 lemma card_UN_disjoint:
991 assumes "finite I" and "\<forall>i\<in>I. finite (A i)"
992 and "\<forall>i\<in>I. \<forall>j\<in>I. i \<noteq> j \<longrightarrow> A i \<inter> A j = {}"
993 shows "card (UNION I A) = (\<Sum>i\<in>I. card(A i))"
995 have "(\<Sum>i\<in>I. card (A i)) = (\<Sum>i\<in>I. \<Sum>x\<in>A i. 1)" by simp
996 with assms show ?thesis by (simp add: card_eq_setsum setsum_UN_disjoint del: setsum_constant)
999 lemma card_Union_disjoint:
1000 "finite C ==> (ALL A:C. finite A) ==>
1001 (ALL A:C. ALL B:C. A \<noteq> B --> A Int B = {})
1002 ==> card (Union C) = setsum card C"
1003 apply (frule card_UN_disjoint [of C id])
1008 subsubsection {* Cardinality of products *}
1010 lemma card_SigmaI [simp]:
1011 "\<lbrakk> finite A; ALL a:A. finite (B a) \<rbrakk>
1012 \<Longrightarrow> card (SIGMA x: A. B x) = (\<Sum>a\<in>A. card (B a))"
1013 by(simp add: card_eq_setsum setsum_Sigma del:setsum_constant)
1016 lemma SigmaI_insert: "y \<notin> A ==>
1017 (SIGMA x:(insert y A). B x) = (({y} <*> (B y)) \<union> (SIGMA x: A. B x))"
1021 lemma card_cartesian_product: "card (A <*> B) = card(A) * card(B)"
1022 by (cases "finite A \<and> finite B")
1023 (auto simp add: card_eq_0_iff dest: finite_cartesian_productD1 finite_cartesian_productD2)
1025 lemma card_cartesian_product_singleton: "card({x} <*> A) = card(A)"
1026 by (simp add: card_cartesian_product)
1029 subsection {* Generalized product over a set *}
1031 context comm_monoid_mult
1034 definition setprod :: "('b \<Rightarrow> 'a) \<Rightarrow> 'b set \<Rightarrow> 'a"
1036 "setprod = comm_monoid_set.F times 1"
1038 sublocale setprod!: comm_monoid_set times 1
1040 "comm_monoid_set.F times 1 = setprod"
1042 show "comm_monoid_set times 1" ..
1043 then interpret setprod!: comm_monoid_set times 1 .
1044 from setprod_def show "comm_monoid_set.F times 1 = setprod" by rule
1048 Setprod ("\<Prod>_" [1000] 999) where
1049 "\<Prod>A \<equiv> setprod (\<lambda>x. x) A"
1054 "_setprod" :: "pttrn => 'a set => 'b => 'b::comm_monoid_mult" ("(3PROD _:_. _)" [0, 51, 10] 10)
1056 "_setprod" :: "pttrn => 'a set => 'b => 'b::comm_monoid_mult" ("(3\<Prod>_\<in>_. _)" [0, 51, 10] 10)
1057 syntax (HTML output)
1058 "_setprod" :: "pttrn => 'a set => 'b => 'b::comm_monoid_mult" ("(3\<Prod>_\<in>_. _)" [0, 51, 10] 10)
1060 translations -- {* Beware of argument permutation! *}
1061 "PROD i:A. b" == "CONST setprod (%i. b) A"
1062 "\<Prod>i\<in>A. b" == "CONST setprod (%i. b) A"
1064 text{* Instead of @{term"\<Prod>x\<in>{x. P}. e"} we introduce the shorter
1065 @{text"\<Prod>x|P. e"}. *}
1068 "_qsetprod" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3PROD _ |/ _./ _)" [0,0,10] 10)
1070 "_qsetprod" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3\<Prod>_ | (_)./ _)" [0,0,10] 10)
1071 syntax (HTML output)
1072 "_qsetprod" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3\<Prod>_ | (_)./ _)" [0,0,10] 10)
1075 "PROD x|P. t" => "CONST setprod (%x. t) {x. P}"
1076 "\<Prod>x|P. t" => "CONST setprod (%x. t) {x. P}"
1078 text {* TODO These are candidates for generalization *}
1080 context comm_monoid_mult
1083 lemma setprod_reindex_id:
1084 "inj_on f B ==> setprod f B = setprod id (f ` B)"
1085 by (auto simp add: setprod.reindex)
1087 lemma setprod_reindex_cong:
1088 "inj_on f A ==> B = f ` A ==> g = h \<circ> f ==> setprod h B = setprod g A"
1089 by (frule setprod.reindex, simp)
1091 lemma strong_setprod_reindex_cong:
1092 "inj_on f A \<Longrightarrow> B = f ` A \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> g x = (h \<circ> f) x) \<Longrightarrow> setprod h B = setprod g A"
1093 by (subst setprod.reindex_bij_betw[symmetric, where h=f])
1094 (auto simp: bij_betw_def)
1096 lemma setprod_Union_disjoint:
1097 assumes "\<forall>A\<in>C. finite A" "\<forall>A\<in>C. \<forall>B\<in>C. A \<noteq> B \<longrightarrow> A Int B = {}"
1098 shows "setprod f (Union C) = setprod (setprod f) C"
1099 using assms by (fact setprod.Union_disjoint)
1101 text{*Here we can eliminate the finiteness assumptions, by cases.*}
1102 lemma setprod_cartesian_product:
1103 "(\<Prod>x\<in>A. (\<Prod>y\<in> B. f x y)) = (\<Prod>(x,y)\<in>(A <*> B). f x y)"
1104 by (fact setprod.cartesian_product)
1107 assumes "finite (A \<union> B)"
1108 shows "setprod f (A \<union> B) = setprod f (A - B) * setprod f (B - A) * setprod f (A \<inter> B)"
1110 have "A \<union> B = A - B \<union> (B - A) \<union> A \<inter> B"
1112 with assms show ?thesis by simp (subst setprod.union_disjoint, auto)+
1117 text {* TODO These are legacy *}
1119 lemma setprod_empty: "setprod f {} = 1"
1120 by (fact setprod.empty)
1122 lemma setprod_insert: "[| finite A; a \<notin> A |] ==>
1123 setprod f (insert a A) = f a * setprod f A"
1124 by (fact setprod.insert)
1126 lemma setprod_infinite: "~ finite A ==> setprod f A = 1"
1127 by (fact setprod.infinite)
1129 lemma setprod_reindex:
1130 "inj_on f B ==> setprod h (f ` B) = setprod (h \<circ> f) B"
1131 by (fact setprod.reindex)
1134 "A = B ==> (!!x. x:B ==> f x = g x) ==> setprod f A = setprod g B"
1135 by (fact setprod.cong)
1137 lemma strong_setprod_cong:
1138 "A = B ==> (!!x. x:B =simp=> f x = g x) ==> setprod f A = setprod g B"
1139 by (fact setprod.strong_cong)
1141 lemma setprod_Un_one:
1142 "\<lbrakk> finite S; finite T; \<forall>x \<in> S\<inter>T. f x = 1 \<rbrakk>
1143 \<Longrightarrow> setprod f (S \<union> T) = setprod f S * setprod f T"
1144 by (fact setprod.union_inter_neutral)
1146 lemmas setprod_1 = setprod.neutral_const
1147 lemmas setprod_1' = setprod.neutral
1149 lemma setprod_Un_Int: "finite A ==> finite B
1150 ==> setprod g (A Un B) * setprod g (A Int B) = setprod g A * setprod g B"
1151 by (fact setprod.union_inter)
1153 lemma setprod_Un_disjoint: "finite A ==> finite B
1154 ==> A Int B = {} ==> setprod g (A Un B) = setprod g A * setprod g B"
1155 by (fact setprod.union_disjoint)
1157 lemma setprod_subset_diff: "\<lbrakk> B \<subseteq> A; finite A \<rbrakk> \<Longrightarrow>
1158 setprod f A = setprod f (A - B) * setprod f B"
1159 by (fact setprod.subset_diff)
1161 lemma setprod_mono_one_left:
1162 "\<lbrakk> finite T; S \<subseteq> T; \<forall>i \<in> T - S. f i = 1 \<rbrakk> \<Longrightarrow> setprod f S = setprod f T"
1163 by (fact setprod.mono_neutral_left)
1165 lemmas setprod_mono_one_right = setprod.mono_neutral_right
1167 lemma setprod_mono_one_cong_left:
1168 "\<lbrakk> finite T; S \<subseteq> T; \<forall>i \<in> T - S. g i = 1; \<And>x. x \<in> S \<Longrightarrow> f x = g x \<rbrakk>
1169 \<Longrightarrow> setprod f S = setprod g T"
1170 by (fact setprod.mono_neutral_cong_left)
1172 lemmas setprod_mono_one_cong_right = setprod.mono_neutral_cong_right
1174 lemma setprod_delta: "finite S \<Longrightarrow>
1175 setprod (\<lambda>k. if k=a then b k else 1) S = (if a \<in> S then b a else 1)"
1176 by (fact setprod.delta)
1178 lemma setprod_delta': "finite S \<Longrightarrow>
1179 setprod (\<lambda>k. if a = k then b k else 1) S = (if a\<in> S then b a else 1)"
1180 by (fact setprod.delta')
1182 lemma setprod_UN_disjoint:
1183 "finite I ==> (ALL i:I. finite (A i)) ==>
1184 (ALL i:I. ALL j:I. i \<noteq> j --> A i Int A j = {}) ==>
1185 setprod f (UNION I A) = setprod (%i. setprod f (A i)) I"
1186 by (fact setprod.UNION_disjoint)
1188 lemma setprod_Sigma: "finite A ==> ALL x:A. finite (B x) ==>
1189 (\<Prod>x\<in>A. (\<Prod>y\<in> B x. f x y)) =
1190 (\<Prod>(x,y)\<in>(SIGMA x:A. B x). f x y)"
1191 by (fact setprod.Sigma)
1193 lemma setprod_timesf: "setprod (\<lambda>x. f x * g x) A = setprod f A * setprod g A"
1194 by (fact setprod.distrib)
1197 subsubsection {* Properties in more restricted classes of structures *}
1200 "finite A ==> EX x: A. f x = (0::'a::comm_semiring_1) ==> setprod f A = 0"
1201 apply (induct set: finite, force, clarsimp)
1202 apply (erule disjE, auto)
1205 lemma setprod_zero_iff[simp]: "finite A ==>
1206 (setprod f A = (0::'a::{comm_semiring_1,no_zero_divisors})) =
1208 by (erule finite_induct, auto simp:no_zero_divisors)
1210 lemma setprod_Un: "finite A ==> finite B ==> (ALL x: A Int B. f x \<noteq> 0) ==>
1211 (setprod f (A Un B) :: 'a ::{field})
1212 = setprod f A * setprod f B / setprod f (A Int B)"
1213 by (subst setprod_Un_Int [symmetric], auto)
1215 lemma setprod_nonneg [rule_format]:
1216 "(ALL x: A. (0::'a::linordered_semidom) \<le> f x) --> 0 \<le> setprod f A"
1217 by (cases "finite A", induct set: finite, simp_all)
1219 lemma setprod_pos [rule_format]: "(ALL x: A. (0::'a::linordered_semidom) < f x)
1220 --> 0 < setprod f A"
1221 by (cases "finite A", induct set: finite, simp_all)
1223 lemma setprod_diff1: "finite A ==> f a \<noteq> 0 ==>
1224 (setprod f (A - {a}) :: 'a :: {field}) =
1225 (if a:A then setprod f A / f a else setprod f A)"
1226 by (erule finite_induct) (auto simp add: insert_Diff_if)
1228 lemma setprod_inversef:
1229 fixes f :: "'b \<Rightarrow> 'a::field_inverse_zero"
1230 shows "finite A ==> setprod (inverse \<circ> f) A = inverse (setprod f A)"
1231 by (erule finite_induct) auto
1233 lemma setprod_dividef:
1234 fixes f :: "'b \<Rightarrow> 'a::field_inverse_zero"
1236 ==> setprod (%x. f x / g x) A = setprod f A / setprod g A"
1238 "setprod (%x. f x / g x) A = setprod (%x. f x * (inverse \<circ> g) x) A")
1239 apply (erule ssubst)
1240 apply (subst divide_inverse)
1241 apply (subst setprod_timesf)
1242 apply (subst setprod_inversef, assumption+, rule refl)
1243 apply (rule setprod_cong, rule refl)
1244 apply (subst divide_inverse, auto)
1247 lemma setprod_dvd_setprod [rule_format]:
1248 "(ALL x : A. f x dvd g x) \<longrightarrow> setprod f A dvd setprod g A"
1249 apply (cases "finite A")
1250 apply (induct set: finite)
1251 apply (auto simp add: dvd_def)
1252 apply (rule_tac x = "k * ka" in exI)
1253 apply (simp add: algebra_simps)
1256 lemma setprod_dvd_setprod_subset:
1257 "finite B \<Longrightarrow> A <= B \<Longrightarrow> setprod f A dvd setprod f B"
1258 apply (subgoal_tac "setprod f B = setprod f A * setprod f (B - A)")
1259 apply (unfold dvd_def, blast)
1260 apply (subst setprod_Un_disjoint [symmetric])
1261 apply (auto elim: finite_subset intro: setprod_cong)
1264 lemma setprod_dvd_setprod_subset2:
1265 "finite B \<Longrightarrow> A <= B \<Longrightarrow> ALL x : A. (f x::'a::comm_semiring_1) dvd g x \<Longrightarrow>
1266 setprod f A dvd setprod g B"
1267 apply (rule dvd_trans)
1268 apply (rule setprod_dvd_setprod, erule (1) bspec)
1269 apply (erule (1) setprod_dvd_setprod_subset)
1272 lemma dvd_setprod: "finite A \<Longrightarrow> i:A \<Longrightarrow>
1273 (f i ::'a::comm_semiring_1) dvd setprod f A"
1274 by (induct set: finite) (auto intro: dvd_mult)
1276 lemma dvd_setsum [rule_format]: "(ALL i : A. d dvd f i) \<longrightarrow>
1277 (d::'a::comm_semiring_1) dvd (SUM x : A. f x)"
1278 apply (cases "finite A")
1279 apply (induct set: finite)
1284 fixes f :: "'a \<Rightarrow> 'b\<Colon>linordered_semidom"
1285 assumes "\<forall>i\<in>A. 0 \<le> f i \<and> f i \<le> g i"
1286 shows "setprod f A \<le> setprod g A"
1287 proof (cases "finite A")
1289 hence ?thesis "setprod f A \<ge> 0" using subset_refl[of A]
1290 proof (induct A rule: finite_subset_induct)
1292 thus "setprod f (insert a F) \<le> setprod g (insert a F)" "0 \<le> setprod f (insert a F)"
1293 unfolding setprod_insert[OF insert(1,3)]
1294 using assms[rule_format,OF insert(2)] insert
1295 by (auto intro: mult_mono)
1297 thus ?thesis by simp
1301 fixes f :: "'a \<Rightarrow> 'b\<Colon>{linordered_field,abs}"
1302 shows "abs (setprod f A) = setprod (\<lambda>x. abs (f x)) A"
1303 proof (cases "finite A")
1304 case True thus ?thesis
1305 by induct (auto simp add: field_simps abs_mult)
1308 lemma setprod_eq_1_iff [simp]:
1309 "finite F ==> setprod f F = 1 \<longleftrightarrow> (ALL a:F. f a = (1::nat))"
1310 by (induct set: finite) auto
1312 lemma setprod_pos_nat:
1313 "finite S ==> (ALL x : S. f x > (0::nat)) ==> setprod f S > 0"
1314 using setprod_zero_iff by(simp del:neq0_conv add:neq0_conv[symmetric])
1316 lemma setprod_pos_nat_iff[simp]:
1317 "finite S ==> (setprod f S > 0) = (ALL x : S. f x > (0::nat))"
1318 using setprod_zero_iff by(simp del:neq0_conv add:neq0_conv[symmetric])