3 Author: Lawrence C Paulson, Cambridge University Computer Laboratory
4 Copyright 1992 University of Cambridge
6 For Trancl.thy. Theorems about the transitive closure of a relation
11 (** The relation rtrancl **)
13 goal Trancl.thy "mono(%s. id Un (r O s))";
15 by (REPEAT (ares_tac [monoI, subset_refl, comp_mono, Un_mono] 1));
16 qed "rtrancl_fun_mono";
18 val rtrancl_unfold = rtrancl_fun_mono RS (rtrancl_def RS def_lfp_Tarski);
20 (*Reflexivity of rtrancl*)
21 goal Trancl.thy "(a,a) : r^*";
22 by (stac rtrancl_unfold 1);
26 Addsimps [rtrancl_refl];
27 AddSIs [rtrancl_refl];
30 (*Closure under composition with r*)
31 goal Trancl.thy "!!r. [| (a,b) : r^*; (b,c) : r |] ==> (a,c) : r^*";
32 by (stac rtrancl_unfold 1);
34 qed "rtrancl_into_rtrancl";
36 (*rtrancl of r contains r*)
37 goal Trancl.thy "!!p. p : r ==> p : r^*";
39 by (etac (rtrancl_refl RS rtrancl_into_rtrancl) 1);
42 (*monotonicity of rtrancl*)
43 goalw Trancl.thy [rtrancl_def] "!!r s. r <= s ==> r^* <= s^*";
44 by (REPEAT(ares_tac [lfp_mono,Un_mono,comp_mono,subset_refl] 1));
47 (** standard induction rule **)
49 val major::prems = goal Trancl.thy
52 \ !!x y z.[| P((x,y)); (x,y): r^*; (y,z): r |] ==> P((x,z)) |] \
54 by (rtac ([rtrancl_def, rtrancl_fun_mono, major] MRS def_induct) 1);
55 by (blast_tac (claset() addIs prems) 1);
56 qed "rtrancl_full_induct";
58 (*nice induction rule*)
59 val major::prems = goal Trancl.thy
60 "[| (a::'a,b) : r^*; \
62 \ !!y z.[| (a,y) : r^*; (y,z) : r; P(y) |] ==> P(z) |] \
64 (*by induction on this formula*)
65 by (subgoal_tac "! y. (a::'a,b) = (a,y) --> P(y)" 1);
66 (*now solve first subgoal: this formula is sufficient*)
68 (*now do the induction*)
69 by (resolve_tac [major RS rtrancl_full_induct] 1);
70 by (blast_tac (claset() addIs prems) 1);
71 by (blast_tac (claset() addIs prems) 1);
76 Prod_Syntax.split_rule
77 (read_instantiate [("a","(ax,ay)"), ("b","(bx,by)")] rtrancl_induct));
79 (*transitivity of transitive closure!! -- by induction.*)
80 goalw Trancl.thy [trans_def] "trans(r^*)";
82 by (eres_inst_tac [("b","z")] rtrancl_induct 1);
83 by (ALLGOALS(blast_tac (claset() addIs [rtrancl_into_rtrancl])));
86 bind_thm ("rtrancl_trans", trans_rtrancl RS transD);
89 (*elimination of rtrancl -- by induction on a special formula*)
90 val major::prems = goal Trancl.thy
91 "[| (a::'a,b) : r^*; (a = b) ==> P; \
92 \ !!y.[| (a,y) : r^*; (y,b) : r |] ==> P \
94 by (subgoal_tac "(a::'a) = b | (? y. (a,y) : r^* & (y,b) : r)" 1);
95 by (rtac (major RS rtrancl_induct) 2);
96 by (blast_tac (claset() addIs prems) 2);
97 by (blast_tac (claset() addIs prems) 2);
98 by (REPEAT (eresolve_tac ([asm_rl,exE,disjE,conjE]@prems) 1));
101 bind_thm ("rtrancl_into_rtrancl2", r_into_rtrancl RS rtrancl_trans);
104 (*** More r^* equations and inclusions ***)
106 goal Trancl.thy "(r^*)^* = r^*";
108 by (res_inst_tac [("p","x")] PairE 1);
109 by (hyp_subst_tac 1);
111 by (etac rtrancl_induct 1);
112 by (rtac rtrancl_refl 1);
113 by (blast_tac (claset() addIs [rtrancl_trans]) 1);
114 by (etac r_into_rtrancl 1);
116 Addsimps [rtrancl_idemp];
118 goal Trancl.thy "!!r s. r <= s^* ==> r^* <= s^*";
119 by (dtac rtrancl_mono 1);
120 by (Asm_full_simp_tac 1);
121 qed "rtrancl_subset_rtrancl";
123 goal Trancl.thy "!!R. [| R <= S; S <= R^* |] ==> S^* = R^*";
124 by (dtac rtrancl_mono 1);
125 by (dtac rtrancl_mono 1);
126 by (Asm_full_simp_tac 1);
128 qed "rtrancl_subset";
130 goal Trancl.thy "!!R. (R^* Un S^*)^* = (R Un S)^*";
131 by (blast_tac (claset() addSIs [rtrancl_subset]
132 addIs [r_into_rtrancl, rtrancl_mono RS subsetD]) 1);
133 qed "rtrancl_Un_rtrancl";
135 goal Trancl.thy "(R^=)^* = R^*";
136 by (blast_tac (claset() addSIs [rtrancl_subset]
137 addIs [rtrancl_refl, r_into_rtrancl]) 1);
138 qed "rtrancl_reflcl";
139 Addsimps [rtrancl_reflcl];
141 goal Trancl.thy "!!r. (x,y) : (r^-1)^* ==> (x,y) : (r^*)^-1";
142 by (rtac converseI 1);
143 by (etac rtrancl_induct 1);
144 by (rtac rtrancl_refl 1);
145 by (blast_tac (claset() addIs [r_into_rtrancl,rtrancl_trans]) 1);
146 qed "rtrancl_converseD";
148 goal Trancl.thy "!!r. (x,y) : (r^*)^-1 ==> (x,y) : (r^-1)^*";
149 by (dtac converseD 1);
150 by (etac rtrancl_induct 1);
151 by (rtac rtrancl_refl 1);
152 by (blast_tac (claset() addIs [r_into_rtrancl,rtrancl_trans]) 1);
153 qed "rtrancl_converseI";
155 goal Trancl.thy "(r^-1)^* = (r^*)^-1";
156 by (safe_tac (claset() addSDs [rtrancl_converseD] addSIs [rtrancl_converseI]
157 addSaltern ("split_all_tac", split_all_tac)));
158 qed "rtrancl_converse";
160 val major::prems = goal Trancl.thy
161 "[| (a,b) : r^*; P(b); \
162 \ !!y z.[| (y,z) : r; (z,b) : r^*; P(z) |] ==> P(y) |] \
164 by (rtac ((major RS converseI RS rtrancl_converseI) RS rtrancl_induct) 1);
165 by (resolve_tac prems 1);
166 by (blast_tac (claset() addIs prems addSDs[rtrancl_converseD])1);
167 qed "converse_rtrancl_induct";
169 val prems = goal Trancl.thy
170 "[| ((a,b),(c,d)) : r^*; P c d; \
171 \ !!x y z u.[| ((x,y),(z,u)) : r; ((z,u),(c,d)) : r^*; P z u |] ==> P x y\
173 by (res_inst_tac[("R","P")]splitD 1);
174 by (res_inst_tac[("P","split P")]converse_rtrancl_induct 1);
175 by (resolve_tac prems 1);
177 by (resolve_tac prems 1);
178 by (split_all_tac 1);
179 by (Asm_full_simp_tac 1);
180 by (REPEAT(ares_tac prems 1));
181 qed "converse_rtrancl_induct2";
183 val major::prems = goal Trancl.thy
186 \ !!y. [| (x,y):r; (y,z):r^* |] ==> P \
188 by (subgoal_tac "x = z | (? y. (x,y) : r & (y,z) : r^*)" 1);
189 by (rtac (major RS converse_rtrancl_induct) 2);
190 by (blast_tac (claset() addIs prems) 2);
191 by (blast_tac (claset() addIs prems) 2);
192 by (REPEAT (eresolve_tac ([asm_rl,exE,disjE,conjE]@prems) 1));
195 goal Trancl.thy "r O r^* = r^* O r";
196 by (blast_tac (claset() addEs [rtranclE, rtranclE2]
197 addIs [rtrancl_into_rtrancl, rtrancl_into_rtrancl2]) 1);
198 qed "r_comp_rtrancl_eq";
201 (**** The relation trancl ****)
203 goalw Trancl.thy [trancl_def] "!!p.[| p:r^+; r <= s |] ==> p:s^+";
204 by (blast_tac (claset() addIs [rtrancl_mono RS subsetD]) 1);
207 (** Conversions between trancl and rtrancl **)
209 goalw Trancl.thy [trancl_def]
210 "!!p. p : r^+ ==> p : r^*";
211 by (split_all_tac 1);
212 by (etac compEpair 1);
213 by (REPEAT (ares_tac [rtrancl_into_rtrancl] 1));
214 qed "trancl_into_rtrancl";
217 goalw Trancl.thy [trancl_def]
218 "!!p. p : r ==> p : r^+";
219 by (split_all_tac 1);
220 by (REPEAT (ares_tac [prem,compI,rtrancl_refl] 1));
223 (*intro rule by definition: from rtrancl and r*)
224 val prems = goalw Trancl.thy [trancl_def]
225 "[| (a,b) : r^*; (b,c) : r |] ==> (a,c) : r^+";
226 by (REPEAT (resolve_tac ([compI]@prems) 1));
227 qed "rtrancl_into_trancl1";
229 (*intro rule from r and rtrancl*)
230 val prems = goal Trancl.thy
231 "[| (a,b) : r; (b,c) : r^* |] ==> (a,c) : r^+";
232 by (resolve_tac (prems RL [rtranclE]) 1);
234 by (resolve_tac (prems RL [r_into_trancl]) 1);
235 by (rtac (rtrancl_trans RS rtrancl_into_trancl1) 1);
236 by (REPEAT (ares_tac (prems@[r_into_rtrancl]) 1));
237 qed "rtrancl_into_trancl2";
239 (*Nice induction rule for trancl*)
240 val major::prems = goal Trancl.thy
242 \ !!y. [| (a,y) : r |] ==> P(y); \
243 \ !!y z.[| (a,y) : r^+; (y,z) : r; P(y) |] ==> P(z) \
245 by (rtac (rewrite_rule [trancl_def] major RS compEpair) 1);
246 (*by induction on this formula*)
247 by (subgoal_tac "ALL z. (y,z) : r --> P(z)" 1);
248 (*now solve first subgoal: this formula is sufficient*)
250 by (etac rtrancl_induct 1);
251 by (ALLGOALS (blast_tac (claset() addIs (rtrancl_into_trancl1::prems))));
254 (*elimination of r^+ -- NOT an induction rule*)
255 val major::prems = goal Trancl.thy
256 "[| (a::'a,b) : r^+; \
258 \ !!y.[| (a,y) : r^+; (y,b) : r |] ==> P \
260 by (subgoal_tac "(a::'a,b) : r | (? y. (a,y) : r^+ & (y,b) : r)" 1);
261 by (REPEAT (eresolve_tac ([asm_rl,disjE,exE,conjE]@prems) 1));
262 by (rtac (rewrite_rule [trancl_def] major RS compEpair) 1);
263 by (etac rtranclE 1);
265 by (blast_tac (claset() addSIs [rtrancl_into_trancl1]) 1);
268 (*Transitivity of r^+.
269 Proved by unfolding since it uses transitivity of rtrancl. *)
270 goalw Trancl.thy [trancl_def] "trans(r^+)";
272 by (REPEAT (etac compEpair 1));
273 by (rtac (rtrancl_into_rtrancl RS (rtrancl_trans RS compI)) 1);
274 by (REPEAT (assume_tac 1));
277 bind_thm ("trancl_trans", trans_trancl RS transD);
279 goalw Trancl.thy [trancl_def]
280 "!!r. [| (x,y):r^*; (y,z):r^+ |] ==> (x,z):r^+";
281 by (blast_tac (claset() addIs [rtrancl_trans,r_into_rtrancl]) 1);
282 qed "rtrancl_trancl_trancl";
284 val prems = goal Trancl.thy
285 "[| (a,b) : r; (b,c) : r^+ |] ==> (a,c) : r^+";
286 by (rtac (r_into_trancl RS (trans_trancl RS transD)) 1);
287 by (resolve_tac prems 1);
288 by (resolve_tac prems 1);
289 qed "trancl_into_trancl2";
291 (* primitive recursion for trancl over finite relations: *)
292 goal Trancl.thy "(insert (y,x) r)^+ = r^+ Un {(a,b). (a,y):r^* & (x,b):r^*}";
293 by (rtac equalityI 1);
295 by (split_all_tac 1);
296 by (etac trancl_induct 1);
297 by (blast_tac (claset() addIs [r_into_trancl]) 1);
298 by (blast_tac (claset() addIs
299 [rtrancl_into_trancl1,trancl_into_rtrancl,r_into_trancl,trancl_trans]) 1);
301 by (blast_tac (claset() addIs
302 [rtrancl_into_trancl2, rtrancl_trancl_trancl,
303 impOfSubs rtrancl_mono, trancl_mono]) 1);
306 goalw Trancl.thy [trancl_def] "(r^-1)^+ = (r^+)^-1";
307 by (simp_tac (simpset() addsimps [rtrancl_converse,converse_comp]) 1);
308 by (simp_tac (simpset() addsimps [rtrancl_converse RS sym,r_comp_rtrancl_eq])1);
309 qed "trancl_converse";
311 val irrefl_tranclI = prove_goal Trancl.thy
312 "!!r. r^-1 Int r^+ = {} ==> !x. (x, x) ~: r^+" (K [
314 subgoal_tac "!y. (x, y) : r^+ --> x~=y" 1,
317 etac trancl_induct 1,
318 auto_tac (claset() addEs [equals0D, r_into_trancl], simpset())]);
320 val major::prems = goal Trancl.thy
321 "[| (a,b) : r^*; r <= A Times A |] ==> a=b | a:A";
322 by (cut_facts_tac prems 1);
323 by (rtac (major RS rtrancl_induct) 1);
324 by (rtac (refl RS disjI1) 1);
326 val lemma = result();
328 goalw Trancl.thy [trancl_def]
329 "!!r. r <= A Times A ==> r^+ <= A Times A";
330 by (blast_tac (claset() addSDs [lemma]) 1);
331 qed "trancl_subset_Sigma";
334 goal Trancl.thy "(r^+)^= = r^*";
335 by (safe_tac (claset() addSaltern ("split_all_tac", split_all_tac)));
336 by (etac trancl_into_rtrancl 1);
337 by (etac rtranclE 1);
339 by (etac rtrancl_into_trancl1 1);
342 Addsimps[reflcl_trancl];
344 goal Trancl.thy "(r^=)^+ = r^*";
345 by (safe_tac (claset() addSaltern ("split_all_tac", split_all_tac)));
346 by (dtac trancl_into_rtrancl 1);
347 by (Asm_full_simp_tac 1);
348 by (etac rtranclE 1);
350 by (rtac r_into_trancl 1);
352 by (rtac rtrancl_into_trancl1 1);
353 by (etac (rtrancl_reflcl RS equalityD2 RS subsetD) 1);
356 Addsimps[trancl_reflcl];
358 qed_goal "trancl_empty" Trancl.thy "{}^+ = {}"
359 (K [auto_tac (claset() addEs [trancl_induct], simpset())]);
360 Addsimps[trancl_empty];
362 qed_goal "rtrancl_empty" Trancl.thy "{}^* = id"
363 (K [rtac (reflcl_trancl RS subst) 1, Simp_tac 1]);
364 Addsimps[rtrancl_empty];