1 (* Title: Pure/library.ML
3 Author: Lawrence C Paulson, Cambridge University Computer Laboratory
4 Copyright 1992 University of Cambridge
6 Basic library: functions, options, pairs, booleans, lists, integers,
7 strings, lists as sets, association lists, generic tables, balanced trees,
8 orders, input / output, timing, filenames, misc functions.
11 infix |> ~~ \ \\ orelf ins ins_string ins_int orf andf prefix upto downto
12 mem mem_int mem_string union union_int union_string
13 inter inter_int inter_string subset subset_int subset_string subdir_of;
22 fun curry f x y = f (x, y);
23 fun uncurry f (x, y) = f x y;
30 (*combine two functions forming the union of their domains*)
31 fun (f orelf g) = fn x => f x handle Match => g x;
33 (*application of (infix) operator to its left or right argument*)
34 fun apl (x, f) y = f (x, y);
35 fun apr (f, y) x = f (x, y);
37 (*functional for pairs*)
38 fun pairself f (x, y) = (f x, f y);
40 (*function exponentiation: f(...(f x)...) with n applications of f*)
42 let fun rep (0, x) = x
43 | rep (n, x) = rep (n - 1, f x)
50 type stamp = unit ref;
51 val stamp: unit -> stamp = ref;
57 datatype 'a option = None | Some of 'a;
59 exception OPTION of string;
62 | the None = raise OPTION "the";
64 fun if_none None y = y
65 | if_none (Some x) _ = x;
67 fun is_some (Some _) = true
68 | is_some None = false;
70 fun is_none (Some _) = false
71 | is_none None = true;
73 fun apsome f (Some x) = Some (f x)
74 | apsome _ None = None;
80 fun pair x y = (x, y);
81 fun rpair x y = (y, x);
86 fun eq_fst ((x1, _), (x2, _)) = x1 = x2;
87 fun eq_snd ((_, y1), (_, y2)) = y1 = y2;
89 fun swap (x, y) = (y, x);
91 (*apply the function to a component of a pair*)
92 fun apfst f (x, y) = (f x, y);
93 fun apsnd f (x, y) = (x, f y);
101 fun equal x y = x = y;
102 fun not_equal x y = x <> y;
105 (* operators for combining predicates *)
107 fun (p orf q) = fn x => p x orelse q x;
109 fun (p andf q) = fn x => p x andalso q x;
111 fun notf p x = not (p x);
114 (* predicates on lists *)
117 | orl (x :: xs) = x orelse orl xs;
120 | andl (x :: xs) = x andalso andl xs;
122 (*Several object-logics declare theories named List or Option, hiding the
123 eponymous basis library structures.*)
124 structure List_ = List
125 and Option_ = Option;
127 (*exists pred [x1, ..., xn] ===> pred x1 orelse ... orelse pred xn*)
128 fun exists (pred: 'a -> bool) : 'a list -> bool =
129 let fun boolf [] = false
130 | boolf (x :: xs) = pred x orelse boolf xs
133 (*forall pred [x1, ..., xn] ===> pred x1 andalso ... andalso pred xn*)
134 fun forall (pred: 'a -> bool) : 'a list -> bool =
135 let fun boolf [] = true
136 | boolf (x :: xs) = pred x andalso boolf xs
142 fun set flag = (flag := true; true);
143 fun reset flag = (flag := false; false);
144 fun toggle flag = (flag := not (! flag); ! flag);
146 fun setmp flag value f x =
148 val orig_value = ! flag;
149 fun return y = (flag := orig_value; y);
152 return (f x handle exn => (return (); raise exn))
159 exception LIST of string;
162 | null (_ :: _) = false;
164 fun hd [] = raise LIST "hd"
167 fun tl [] = raise LIST "tl"
170 fun cons x xs = x :: xs;
175 (*the following versions of fold are designed to fit nicely with infixes*)
177 (* (op @) (e, [x1, ..., xn]) ===> ((e @ x1) @ x2) ... @ xn
178 for operators that associate to the left (TAIL RECURSIVE)*)
179 fun foldl (f: 'a * 'b -> 'a) : 'a * 'b list -> 'a =
180 let fun itl (e, []) = e
181 | itl (e, a::l) = itl (f(e, a), l)
184 (* (op @) ([x1, ..., xn], e) ===> x1 @ (x2 ... @ (xn @ e))
185 for operators that associate to the right (not tail recursive)*)
188 | itr (a::l) = f(a, itr l)
191 (* (op @) [x1, ..., xn] ===> x1 @ (x2 ... @ (x[n-1] @ xn))
192 for n > 0, operators that associate to the right (not tail recursive)*)
194 let fun itr [x] = x (* FIXME [] case: elim warn (?) *)
195 | itr (x::l) = f(x, itr l)
199 (* basic list functions *)
201 (*length of a list, should unquestionably be a standard function*)
202 local fun length1 (n, []) = n (*TAIL RECURSIVE*)
203 | length1 (n, x :: xs) = length1 (n + 1, xs)
204 in fun length l = length1 (0, l) end;
206 (*take the first n elements from a list*)
207 fun take (n, []) = []
208 | take (n, x :: xs) =
209 if n > 0 then x :: take (n - 1, xs) else [];
211 (*drop the first n elements from a list*)
212 fun drop (n, []) = []
213 | drop (n, x :: xs) =
214 if n > 0 then drop (n - 1, xs) else x :: xs;
216 (*return nth element of a list, where 0 designates the first element;
217 raise EXCEPTION if list too short*)
220 [] => raise LIST "nth_elem"
223 (*last element of a list*)
224 fun last_elem [] = raise LIST "last_elem"
226 | last_elem (_ :: xs) = last_elem xs;
228 (*find the position of an element in a list*)
230 let fun f (y :: ys, i) = if x = y then i else f (ys, i + 1)
231 | f (_, _) = raise LIST "find"
234 (*flatten a list of lists to a list*)
235 fun flat (ls: 'c list list) : 'c list = foldr (op @) (ls, []);
238 (*like Lisp's MAPC -- seq proc [x1, ..., xn] evaluates
239 (proc x1; ...; proc xn) for side effects*)
240 fun seq (proc: 'a -> unit) : 'a list -> unit =
242 | seqf (x :: xs) = (proc x; seqf xs)
246 (*separate s [x1, x2, ..., xn] ===> [x1, s, x2, s, ..., s, xn]*)
247 fun separate s (x :: (xs as _ :: _)) = x :: s :: separate s xs
248 | separate _ xs = xs;
250 (*make the list [x, x, ..., x] of length n*)
251 fun replicate n (x: 'a) : 'a list =
252 let fun rep (0, xs) = xs
253 | rep (n, xs) = rep (n - 1, x :: xs)
255 if n < 0 then raise LIST "replicate"
262 (*copy the list preserving elements that satisfy the predicate*)
263 fun filter (pred: 'a->bool) : 'a list -> 'a list =
265 | filt (x :: xs) = if pred x then x :: filt xs else filt xs
268 fun filter_out f = filter (not o f);
271 fun mapfilter (f: 'a -> 'b option) ([]: 'a list) = [] : 'b list
272 | mapfilter f (x :: xs) =
274 None => mapfilter f xs
275 | Some y => y :: mapfilter f xs);
278 fun find_first _ [] = None
279 | find_first pred (x :: xs) =
280 if pred x then Some x else find_first pred xs;
285 fun map2 _ ([], []) = []
286 | map2 f (x :: xs, y :: ys) = (f (x, y) :: map2 f (xs, ys))
287 | map2 _ _ = raise LIST "map2";
289 fun exists2 _ ([], []) = false
290 | exists2 pred (x :: xs, y :: ys) = pred (x, y) orelse exists2 pred (xs, ys)
291 | exists2 _ _ = raise LIST "exists2";
293 fun forall2 _ ([], []) = true
294 | forall2 pred (x :: xs, y :: ys) = pred (x, y) andalso forall2 pred (xs, ys)
295 | forall2 _ _ = raise LIST "forall2";
297 (*combine two lists forming a list of pairs:
298 [x1, ..., xn] ~~ [y1, ..., yn] ===> [(x1, y1), ..., (xn, yn)]*)
300 | (x :: xs) ~~ (y :: ys) = (x, y) :: (xs ~~ ys)
301 | _ ~~ _ = raise LIST "~~";
304 (*inverse of ~~; the old 'split':
305 [(x1, y1), ..., (xn, yn)] ===> ([x1, ..., xn], [y1, ..., yn])*)
306 fun split_list (l: ('a * 'b) list) = (map #1 l, map #2 l);
309 (* prefixes, suffixes *)
311 fun [] prefix _ = true
312 | (x :: xs) prefix (y :: ys) = x = y andalso (xs prefix ys)
313 | _ prefix _ = false;
315 (* [x1, ..., xi, ..., xn] ---> ([x1, ..., x(i-1)], [xi, ..., xn])
316 where xi is the first element that does not satisfy the predicate*)
317 fun take_prefix (pred : 'a -> bool) (xs: 'a list) : 'a list * 'a list =
318 let fun take (rxs, []) = (rev rxs, [])
319 | take (rxs, x :: xs) =
320 if pred x then take(x :: rxs, xs) else (rev rxs, x :: xs)
323 (* [x1, ..., xi, ..., xn] ---> ([x1, ..., xi], [x(i+1), ..., xn])
324 where xi is the last element that does not satisfy the predicate*)
325 fun take_suffix _ [] = ([], [])
326 | take_suffix pred (x :: xs) =
327 (case take_suffix pred xs of
328 ([], sffx) => if pred x then ([], x :: sffx) else ([x], sffx)
329 | (prfx, sffx) => (x :: prfx, sffx));
335 fun inc i = (i := ! i + 1; ! i);
336 fun dec i = (i := ! i - 1; ! i);
339 (* lists of integers *)
341 (*make the list [from, from + 1, ..., to]*)
343 if from > to then [] else from :: ((from + 1) upto to);
345 (*make the list [from, from - 1, ..., to]*)
346 fun (from downto to) =
347 if from < to then [] else from :: ((from - 1) downto to);
349 (*predicate: downto0 (is, n) <=> is = [n, n - 1, ..., 0]*)
350 fun downto0 (i :: is, n) = i = n andalso downto0 (is, n - 1)
351 | downto0 ([], n) = n = ~1;
354 (* convert integers to strings *)
356 (*expand the number in the given base;
357 example: radixpand (2, 8) gives [1, 0, 0, 0]*)
358 fun radixpand (base, num) : int list =
360 fun radix (n, tail) =
361 if n < base then n :: tail
362 else radix (n div base, (n mod base) :: tail)
363 in radix (num, []) end;
365 (*expands a number into a string of characters starting from "zerochar";
366 example: radixstring (2, "0", 8) gives "1000"*)
367 fun radixstring (base, zerochar, num) =
368 let val offset = ord zerochar;
369 fun chrof n = chr (offset + n)
370 in implode (map chrof (radixpand (base, num))) end;
373 fun string_of_int n =
374 if n < 0 then "~" ^ radixstring (10, "0", ~n) else radixstring (10, "0", n);
381 ord "A" <= ord ch andalso ord ch <= ord "Z" orelse
382 ord "a" <= ord ch andalso ord ch <= ord "z";
385 ord "0" <= ord ch andalso ord ch <= ord "9";
387 (*letter or _ or prime (')*)
388 fun is_quasi_letter "_" = true
389 | is_quasi_letter "'" = true
390 | is_quasi_letter ch = is_letter ch;
392 (*white space: blanks, tabs, newlines, formfeeds*)
393 val is_blank : string -> bool =
394 fn " " => true | "\t" => true | "\n" => true | "\^L" => true | "160" => true
397 val is_letdig = is_quasi_letter orf is_digit;
400 fun is_printable c = ord c > ord " " andalso ord c <= ord "~";
403 (*lower all chars of string*)
407 if ch >= "A" andalso ch <= "Z" then
408 chr (ord ch - ord "A" + ord "a")
410 in implode o (map lower) o explode end;
413 (*enclose in brackets*)
414 fun enclose lpar rpar str = lpar ^ str ^ rpar;
416 (*simple quoting (does not escape special chars)*)
417 val quote = enclose "\"" "\"";
419 (*space_implode "..." (explode "hello"); gives "h...e...l...l...o"*)
420 fun space_implode a bs = implode (separate a bs);
422 val commas = space_implode ", ";
423 val commas_quote = commas o map quote;
425 (*concatenate messages, one per line, into a string*)
426 val cat_lines = space_implode "\n";
428 (*space_explode "." "h.e..l.lo"; gives ["h", "e", "l", "lo"]*)
429 fun space_explode sep s =
430 let fun divide [] "" = []
431 | divide [] part = [part]
432 | divide (c::s) part =
434 (if part = "" then divide s "" else part :: divide s "")
435 else divide s (part ^ c)
436 in divide (explode s) "" end;
439 (** lists as sets **)
441 (*membership in a list*)
443 | x mem (y :: ys) = x = y orelse x mem ys;
445 (*membership in a list, optimized version for ints*)
446 fun (x:int) mem_int [] = false
447 | x mem_int (y :: ys) = x = y orelse x mem_int ys;
449 (*membership in a list, optimized version for strings*)
450 fun (x:string) mem_string [] = false
451 | x mem_string (y :: ys) = x = y orelse x mem_string ys;
453 (*generalized membership test*)
454 fun gen_mem eq (x, []) = false
455 | gen_mem eq (x, y :: ys) = eq (x, y) orelse gen_mem eq (x, ys);
458 (*insertion into list if not already there*)
459 fun (x ins xs) = if x mem xs then xs else x :: xs;
461 (*insertion into list, optimized version for ints*)
462 fun (x ins_int xs) = if x mem_int xs then xs else x :: xs;
464 (*insertion into list, optimized version for strings*)
465 fun (x ins_string xs) = if x mem_string xs then xs else x :: xs;
467 (*generalized insertion*)
468 fun gen_ins eq (x, xs) = if gen_mem eq (x, xs) then xs else x :: xs;
471 (*union of sets represented as lists: no repetitions*)
474 | (x :: xs) union ys = xs union (x ins ys);
476 (*union of sets, optimized version for ints*)
477 fun (xs:int list) union_int [] = xs
478 | [] union_int ys = ys
479 | (x :: xs) union_int ys = xs union_int (x ins_int ys);
481 (*union of sets, optimized version for strings*)
482 fun (xs:string list) union_string [] = xs
483 | [] union_string ys = ys
484 | (x :: xs) union_string ys = xs union_string (x ins_string ys);
486 (*generalized union*)
487 fun gen_union eq (xs, []) = xs
488 | gen_union eq ([], ys) = ys
489 | gen_union eq (x :: xs, ys) = gen_union eq (xs, gen_ins eq (x, ys));
494 | (x :: xs) inter ys =
495 if x mem ys then x :: (xs inter ys) else xs inter ys;
497 (*intersection, optimized version for ints*)
498 fun ([]:int list) inter_int ys = []
499 | (x :: xs) inter_int ys =
500 if x mem_int ys then x :: (xs inter_int ys) else xs inter_int ys;
502 (*intersection, optimized version for strings *)
503 fun ([]:string list) inter_string ys = []
504 | (x :: xs) inter_string ys =
505 if x mem_string ys then x :: (xs inter_string ys) else xs inter_string ys;
509 fun [] subset ys = true
510 | (x :: xs) subset ys = x mem ys andalso xs subset ys;
512 (*subset, optimized version for ints*)
513 fun ([]:int list) subset_int ys = true
514 | (x :: xs) subset_int ys = x mem_int ys andalso xs subset_int ys;
516 (*subset, optimized version for strings*)
517 fun ([]:string list) subset_string ys = true
518 | (x :: xs) subset_string ys = x mem_string ys andalso xs subset_string ys;
520 (*set equality for strings*)
521 fun eq_set_string ((xs:string list), ys) =
522 xs = ys orelse (xs subset_string ys andalso ys subset_string xs);
524 fun gen_subset eq (xs, ys) = forall (fn x => gen_mem eq (x, ys)) xs;
527 (*removing an element from a list WITHOUT duplicates*)
528 fun (y :: ys) \ x = if x = y then ys else y :: (ys \ x)
531 fun ys \\ xs = foldl (op \) (ys,xs);
533 (*removing an element from a list -- possibly WITH duplicates*)
534 fun gen_rem eq (xs, y) = filter_out (fn x => eq (x, y)) xs;
536 fun gen_rems eq = foldl (gen_rem eq);
539 (*makes a list of the distinct members of the input; preserves order, takes
540 first of equal elements*)
541 fun gen_distinct eq lst =
543 val memb = gen_mem eq;
545 fun dist (rev_seen, []) = rev rev_seen
546 | dist (rev_seen, x :: xs) =
547 if memb (x, rev_seen) then dist (rev_seen, xs)
548 else dist (x :: rev_seen, xs);
553 fun distinct l = gen_distinct (op =) l;
556 (*returns the tail beginning with the first repeated element, or []*)
558 | findrep (x :: xs) = if x mem xs then x :: xs else findrep xs;
561 (*returns a list containing all repeated elements exactly once; preserves
562 order, takes first of equal elements*)
563 fun gen_duplicates eq lst =
565 val memb = gen_mem eq;
567 fun dups (rev_dups, []) = rev rev_dups
568 | dups (rev_dups, x :: xs) =
569 if memb (x, rev_dups) orelse not (memb (x, xs)) then
571 else dups (x :: rev_dups, xs);
576 fun duplicates l = gen_duplicates (op =) l;
580 (** association lists **)
582 (*association list lookup*)
583 fun assoc ([], key) = None
584 | assoc ((keyi, xi) :: pairs, key) =
585 if key = keyi then Some xi else assoc (pairs, key);
587 (*association list lookup, optimized version for ints*)
588 fun assoc_int ([], (key:int)) = None
589 | assoc_int ((keyi, xi) :: pairs, key) =
590 if key = keyi then Some xi else assoc_int (pairs, key);
592 (*association list lookup, optimized version for strings*)
593 fun assoc_string ([], (key:string)) = None
594 | assoc_string ((keyi, xi) :: pairs, key) =
595 if key = keyi then Some xi else assoc_string (pairs, key);
597 (*association list lookup, optimized version for string*ints*)
598 fun assoc_string_int ([], (key:string*int)) = None
599 | assoc_string_int ((keyi, xi) :: pairs, key) =
600 if key = keyi then Some xi else assoc_string_int (pairs, key);
603 (case assoc (ps, x) of
607 (*two-fold association list lookup*)
608 fun assoc2 (aal, (key1, key2)) =
609 (case assoc (aal, key1) of
610 Some al => assoc (al, key2)
613 (*generalized association list lookup*)
614 fun gen_assoc eq ([], key) = None
615 | gen_assoc eq ((keyi, xi) :: pairs, key) =
616 if eq (key, keyi) then Some xi else gen_assoc eq (pairs, key);
618 (*association list update*)
619 fun overwrite (al, p as (key, _)) =
620 let fun over ((q as (keyi, _)) :: pairs) =
621 if keyi = key then p :: pairs else q :: (over pairs)
625 fun gen_overwrite eq (al, p as (key, _)) =
626 let fun over ((q as (keyi, _)) :: pairs) =
627 if eq (keyi, key) then p :: pairs else q :: (over pairs)
633 (** generic tables **)
635 (*Tables are supposed to be 'efficient' encodings of lists of elements distinct
636 wrt. an equality "eq". The extend and merge operations below are optimized
637 for long-term space efficiency.*)
639 (*append (new) elements to a table*)
640 fun generic_extend _ _ _ tab [] = tab
641 | generic_extend eq dest_tab mk_tab tab1 lst2 =
643 val lst1 = dest_tab tab1;
644 val new_lst2 = gen_rems eq (lst2, lst1);
646 if null new_lst2 then tab1
647 else mk_tab (lst1 @ new_lst2)
650 (*append (new) elements of 2nd table to 1st table*)
651 fun generic_merge eq dest_tab mk_tab tab1 tab2 =
653 val lst1 = dest_tab tab1;
654 val lst2 = dest_tab tab2;
655 val new_lst2 = gen_rems eq (lst2, lst1);
657 if null new_lst2 then tab1
658 else if gen_subset eq (lst1, lst2) then tab2
659 else mk_tab (lst1 @ new_lst2)
664 fun extend_list tab = generic_extend (op =) I I tab;
665 fun merge_lists tab = generic_merge (op =) I I tab;
667 fun merge_rev_lists xs [] = xs
668 | merge_rev_lists [] ys = ys
669 | merge_rev_lists xs (y :: ys) =
670 (if y mem xs then I else cons y) (merge_rev_lists xs ys);
674 (** balanced trees **)
676 exception Balance; (*indicates non-positive argument to balancing fun*)
678 (*balanced folding; avoids deep nesting*)
679 fun fold_bal f [x] = x
680 | fold_bal f [] = raise Balance
682 let val k = length xs div 2
683 in f (fold_bal f (take(k, xs)),
684 fold_bal f (drop(k, xs)))
687 (*construct something of the form f(...g(...(x)...)) for balanced access*)
688 fun access_bal (f, g, x) n i =
689 let fun acc n i = (*1<=i<=n*)
692 in if i<=n2 then f (acc n2 i)
693 else g (acc (n-n2) (i-n2))
695 in if 1<=i andalso i<=n then acc n i else raise Balance end;
697 (*construct ALL such accesses; could try harder to share recursive calls!*)
698 fun accesses_bal (f, g, x) n =
703 in if n-n2=n2 then map f acc2 @ map g acc2
704 else map f acc2 @ map g (acc (n-n2)) end
705 in if 1<=n then acc n else raise Balance end;
711 datatype order = LESS | EQUAL | GREATER;
713 fun intord (i, j: int) =
715 else if i = j then EQUAL
718 fun stringord (a, b: string) =
720 else if a = b then EQUAL
725 (** input / output **)
727 val cd = OS.FileSys.chDir;
728 val pwd = OS.FileSys.getDir;
730 val prs_fn = ref(fn s => TextIO.output (TextIO.stdOut, s));
732 fun prs s = !prs_fn s;
733 fun writeln s = prs (s ^ "\n");
735 (* TextIO.output to LaTeX / xdvi *)
737 execute ( "( cd /tmp ; echo \"" ^ s ^
738 "\" | isa2latex -s > $$.tex ; latex $$.tex ; xdvi $$.dvi ; rm $$.* ) > /dev/null &" ) ;
741 val warning_fn = ref(fn s => TextIO.output (TextIO.stdOut, s ^ "\n"));
742 fun warning s = !warning_fn ("Warning: " ^ s);
744 (*print error message and abort to top level*)
746 val error_fn = ref(fn s => TextIO.output
747 (TextIO.stdOut, "\n*** " ^ s ^ "\n\n"));
750 fun error msg = (!error_fn msg;
751 TextIO.flushOut TextIO.stdOut;
753 fun sys_error msg = (!error_fn "*** SYSTEM ERROR ***"; error msg);
755 fun assert p msg = if p then () else error msg;
756 fun deny p msg = if p then error msg else ();
758 (*Assert pred for every member of l, generating a message if pred fails*)
759 fun assert_all pred l msg_fn =
761 | asl (x::xs) = if pred x then asl xs
762 else error (msg_fn x)
765 (*for the "test" target in Makefiles -- signifies successful termination*)
768 let val os = TextIO.openOut "test"
769 in TextIO.output (os, "Test examples ran successfully\n");
774 (*print a list surrounded by the brackets lpar and rpar, with comma separator
775 print nothing for empty list*)
776 fun print_list (lpar, rpar, pre: 'a -> unit) (l : 'a list) =
777 let fun prec x = (prs ","; pre x)
781 | x::l => (prs lpar; pre x; seq prec l; prs rpar))
784 (*print a list of items separated by newlines*)
785 fun print_list_ln (pre: 'a -> unit) : 'a list -> unit =
786 seq (fn x => (pre x; writeln ""));
789 val print_int = prs o string_of_int;
795 (*unconditional timing function*)
796 fun timeit x = cond_timeit true x;
798 (*timed application function*)
799 fun timeap f x = timeit (fn () => f x);
801 (*timed "use" function, printing filenames*)
802 fun time_use fname = timeit (fn () =>
803 (writeln ("\n**** Starting " ^ fname ^ " ****"); use fname;
804 writeln ("\n**** Finished " ^ fname ^ " ****")));
806 (*For Makefiles: use the file, but exit with error code if errors found.*)
807 fun exit_use fname = use fname handle _ => exit 1;
810 (** filenames and paths **)
812 (*Convert UNIX filename of the form "path/file" to "path/" and "file";
813 if filename contains no slash, then it returns "" and "file"*)
815 (pairself implode) o take_suffix (not_equal "/") o explode;
817 val base_name = #2 o split_filename;
819 (*Merge splitted filename (path and file);
820 if path does not end with one a slash is appended*)
821 fun tack_on "" name = name
822 | tack_on path name =
823 if last_elem (explode path) = "/" then path ^ name
824 else path ^ "/" ^ name;
826 (*Remove the extension of a filename, i.e. the part after the last '.'*)
827 val remove_ext = implode o #1 o take_suffix (not_equal ".") o explode;
829 (*Make relative path to reach an absolute location from a different one*)
830 fun relative_path cur_path dest_path =
831 let (*Remove common beginning of both paths and make relative path*)
832 fun mk_relative [] [] = []
833 | mk_relative [] ds = ds
834 | mk_relative cs [] = map (fn _ => "..") cs
835 | mk_relative (c::cs) (d::ds) =
836 if c = d then mk_relative cs ds
837 else ".." :: map (fn _ => "..") cs @ (d::ds);
838 in if cur_path = "" orelse hd (explode cur_path) <> "/" orelse
839 dest_path = "" orelse hd (explode dest_path) <> "/" then
840 error "Relative or empty path passed to relative_path"
842 space_implode "/" (mk_relative (space_explode "/" cur_path)
843 (space_explode "/" dest_path))
846 (*Determine if absolute path1 is a subdirectory of absolute path2*)
847 fun path1 subdir_of path2 =
848 if hd (explode path1) <> "/" orelse hd (explode path2) <> "/" then
849 error "Relative or empty path passed to subdir_of"
850 else (space_explode "/" path2) prefix (space_explode "/" path1);
852 fun absolute_path cwd file =
853 let fun rm_points [] result = rev result
854 | rm_points (".."::ds) result = rm_points ds (tl result)
855 | rm_points ("."::ds) result = rm_points ds result
856 | rm_points (d::ds) result = rm_points ds (d::result);
857 in if file = "" then ""
858 else if hd (explode file) = "/" then file
859 else "/" ^ space_implode "/"
860 (rm_points (space_explode "/" (tack_on cwd file)) [])
864 (** misc functions **)
866 (*use the keyfun to make a list of (x, key) pairs*)
867 fun make_keylist (keyfun: 'a->'b) : 'a list -> ('a * 'b) list =
868 let fun keypair x = (x, keyfun x)
871 (*given a list of (x, key) pairs and a searchkey
872 return the list of xs from each pair whose key equals searchkey*)
873 fun keyfilter [] searchkey = []
874 | keyfilter ((x, key) :: pairs) searchkey =
875 if key = searchkey then x :: keyfilter pairs searchkey
876 else keyfilter pairs searchkey;
879 (*Partition list into elements that satisfy predicate and those that don't.
880 Preserves order of elements in both lists.*)
881 fun partition (pred: 'a->bool) (ys: 'a list) : ('a list * 'a list) =
882 let fun part ([], answer) = answer
883 | part (x::xs, (ys, ns)) = if pred(x)
884 then part (xs, (x::ys, ns))
885 else part (xs, (ys, x::ns))
886 in part (rev ys, ([], [])) end;
889 fun partition_eq (eq:'a * 'a -> bool) =
891 | part (x::ys) = let val (xs, xs') = partition (apl(x, eq)) ys
892 in (x::xs)::(part xs') end
896 (*Partition a list into buckets [ bi, b(i+1), ..., bj ]
897 putting x in bk if p(k)(x) holds. Preserve order of elements if possible.*)
898 fun partition_list p i j =
902 | _ => raise LIST "partition_list")
904 let val (ns, rest) = partition (p k) xs;
905 in ns :: part(k+1)rest end
911 (*insertion sort; stable (does not reorder equal elements)
912 'less' is less-than test on type 'a*)
913 fun sort (less: 'a*'a -> bool) =
914 let fun insert (x, []) = [x]
915 | insert (x, y::ys) =
916 if less(y, x) then y :: insert (x, ys) else x::y::ys;
918 | sort1 (x::xs) = insert (x, sort1 xs)
922 val sort_strings = sort (op <= : string * string -> bool);
925 (* transitive closure (not Warshall's algorithm) *)
927 fun transitive_closure [] = []
928 | transitive_closure ((x, ys)::ps) =
929 let val qs = transitive_closure ps
930 val zs = foldl (fn (zs, y) => assocs qs y union_string zs) (ys, ys)
931 fun step(u, us) = (u, if x mem_string us then zs union_string us
933 in (x, zs) :: map step qs end;
936 (* generating identifiers *)
939 val a = ord "a" and z = ord "z" and A = ord "A" and Z = ord "Z"
940 and k0 = ord "0" and k9 = ord "9"
945 (*Maps 0-63 to A-Z, a-z, 0-9 or _ or ' for generating random identifiers*)
948 if i<26 then chr (A+i)
949 else if i<52 then chr (a+i-26)
950 else if i<62 then chr (k0+i-52)
951 else if i=62 then "_"
953 in implode (map char (radixpand (64,n))) end;
955 (*Freshly generated identifiers with given prefix; MUST start with a letter*)
956 fun gensym pre = pre ^
960 (*Increment a list of letters like a reversed base 26 number.
961 If head is "z", bumps chars in tail.
962 Digits are incremented as if they were integers.
963 "_" and "'" are not changed.
964 For making variants of identifiers.*)
966 fun bump_int_list(c::cs) = if c="9" then "0" :: bump_int_list cs else
967 if k0 <= ord(c) andalso ord(c) < k9 then chr(ord(c)+1) :: cs
969 | bump_int_list([]) = error("bump_int_list: not an identifier");
971 fun bump_list([], d) = [d]
972 | bump_list(["'"], d) = [d, "'"]
973 | bump_list("z"::cs, _) = "a" :: bump_list(cs, "a")
974 | bump_list("Z"::cs, _) = "A" :: bump_list(cs, "A")
975 | bump_list("9"::cs, _) = "0" :: bump_int_list cs
976 | bump_list(c::cs, _) = let val k = ord(c)
977 in if (a <= k andalso k < z) orelse (A <= k andalso k < Z) orelse
978 (k0 <= k andalso k < k9) then chr(k+1) :: cs else
979 if c="'" orelse c="_" then c :: bump_list(cs, "") else
980 error("bump_list: not legal in identifier: " ^
986 fun bump_string s : string = implode (rev (bump_list(rev(explode s), "")));
989 (* lexical scanning *)
991 (*scan a list of characters into "words" composed of "letters" (recognized by
992 is_let) and separated by any number of non-"letters"*)
993 fun scanwords is_let cs =
994 let fun scan1 [] = []
996 let val (lets, rest) = take_prefix is_let cs
997 in implode lets :: scanwords is_let rest end;
998 in scan1 (#2 (take_prefix (not o is_let) cs)) end;
1002 (*Variable-branching trees: for proof terms*)
1003 datatype 'a mtree = Join of 'a * 'a mtree list;