author Andreas Lochbihler
Tue Apr 14 11:32:01 2015 +0200 (2015-04-14)
changeset 60057 86fa63ce8156
parent 58889 5b7a9633cfa8
child 60061 279472fa0b1d
permissions -rw-r--r--
add lemmas
     1 (* Title:    HOL/Complete_Partial_Order.thy
     2    Author:   Brian Huffman, Portland State University
     3    Author:   Alexander Krauss, TU Muenchen
     4 *)
     6 section {* Chain-complete partial orders and their fixpoints *}
     8 theory Complete_Partial_Order
     9 imports Product_Type
    10 begin
    12 subsection {* Monotone functions *}
    14 text {* Dictionary-passing version of @{const Orderings.mono}. *}
    16 definition monotone :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool"
    17 where "monotone orda ordb f \<longleftrightarrow> (\<forall>x y. orda x y \<longrightarrow> ordb (f x) (f y))"
    19 lemma monotoneI[intro?]: "(\<And>x y. orda x y \<Longrightarrow> ordb (f x) (f y))
    20  \<Longrightarrow> monotone orda ordb f"
    21 unfolding monotone_def by iprover
    23 lemma monotoneD[dest?]: "monotone orda ordb f \<Longrightarrow> orda x y \<Longrightarrow> ordb (f x) (f y)"
    24 unfolding monotone_def by iprover
    27 subsection {* Chains *}
    29 text {* A chain is a totally-ordered set. Chains are parameterized over
    30   the order for maximal flexibility, since type classes are not enough.
    31 *}
    33 definition
    34   chain :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> bool"
    35 where
    36   "chain ord S \<longleftrightarrow> (\<forall>x\<in>S. \<forall>y\<in>S. ord x y \<or> ord y x)"
    38 lemma chainI:
    39   assumes "\<And>x y. x \<in> S \<Longrightarrow> y \<in> S \<Longrightarrow> ord x y \<or> ord y x"
    40   shows "chain ord S"
    41 using assms unfolding chain_def by fast
    43 lemma chainD:
    44   assumes "chain ord S" and "x \<in> S" and "y \<in> S"
    45   shows "ord x y \<or> ord y x"
    46 using assms unfolding chain_def by fast
    48 lemma chainE:
    49   assumes "chain ord S" and "x \<in> S" and "y \<in> S"
    50   obtains "ord x y" | "ord y x"
    51 using assms unfolding chain_def by fast
    53 lemma chain_empty: "chain ord {}"
    54 by(simp add: chain_def)
    56 lemma chain_equality: "chain op = A \<longleftrightarrow> (\<forall>x\<in>A. \<forall>y\<in>A. x = y)"
    57 by(auto simp add: chain_def)
    59 subsection {* Chain-complete partial orders *}
    61 text {*
    62   A ccpo has a least upper bound for any chain.  In particular, the
    63   empty set is a chain, so every ccpo must have a bottom element.
    64 *}
    66 class ccpo = order + Sup +
    67   assumes ccpo_Sup_upper: "\<lbrakk>chain (op \<le>) A; x \<in> A\<rbrakk> \<Longrightarrow> x \<le> Sup A"
    68   assumes ccpo_Sup_least: "\<lbrakk>chain (op \<le>) A; \<And>x. x \<in> A \<Longrightarrow> x \<le> z\<rbrakk> \<Longrightarrow> Sup A \<le> z"
    69 begin
    71 subsection {* Transfinite iteration of a function *}
    73 inductive_set iterates :: "('a \<Rightarrow> 'a) \<Rightarrow> 'a set"
    74 for f :: "'a \<Rightarrow> 'a"
    75 where
    76   step: "x \<in> iterates f \<Longrightarrow> f x \<in> iterates f"
    77 | Sup: "chain (op \<le>) M \<Longrightarrow> \<forall>x\<in>M. x \<in> iterates f \<Longrightarrow> Sup M \<in> iterates f"
    79 lemma iterates_le_f:
    80   "x \<in> iterates f \<Longrightarrow> monotone (op \<le>) (op \<le>) f \<Longrightarrow> x \<le> f x"
    81 by (induct x rule: iterates.induct)
    82   (force dest: monotoneD intro!: ccpo_Sup_upper ccpo_Sup_least)+
    84 lemma chain_iterates:
    85   assumes f: "monotone (op \<le>) (op \<le>) f"
    86   shows "chain (op \<le>) (iterates f)" (is "chain _ ?C")
    87 proof (rule chainI)
    88   fix x y assume "x \<in> ?C" "y \<in> ?C"
    89   then show "x \<le> y \<or> y \<le> x"
    90   proof (induct x arbitrary: y rule: iterates.induct)
    91     fix x y assume y: "y \<in> ?C"
    92     and IH: "\<And>z. z \<in> ?C \<Longrightarrow> x \<le> z \<or> z \<le> x"
    93     from y show "f x \<le> y \<or> y \<le> f x"
    94     proof (induct y rule: iterates.induct)
    95       case (step y) with IH f show ?case by (auto dest: monotoneD)
    96     next
    97       case (Sup M)
    98       then have chM: "chain (op \<le>) M"
    99         and IH': "\<And>z. z \<in> M \<Longrightarrow> f x \<le> z \<or> z \<le> f x" by auto
   100       show "f x \<le> Sup M \<or> Sup M \<le> f x"
   101       proof (cases "\<exists>z\<in>M. f x \<le> z")
   102         case True then have "f x \<le> Sup M"
   103           apply rule
   104           apply (erule order_trans)
   105           by (rule ccpo_Sup_upper[OF chM])
   106         thus ?thesis ..
   107       next
   108         case False with IH'
   109         show ?thesis by (auto intro: ccpo_Sup_least[OF chM])
   110       qed
   111     qed
   112   next
   113     case (Sup M y)
   114     show ?case
   115     proof (cases "\<exists>x\<in>M. y \<le> x")
   116       case True then have "y \<le> Sup M"
   117         apply rule
   118         apply (erule order_trans)
   119         by (rule ccpo_Sup_upper[OF Sup(1)])
   120       thus ?thesis ..
   121     next
   122       case False with Sup
   123       show ?thesis by (auto intro: ccpo_Sup_least)
   124     qed
   125   qed
   126 qed
   128 lemma bot_in_iterates: "Sup {} \<in> iterates f"
   129 by(auto intro: iterates.Sup simp add: chain_empty)
   131 subsection {* Fixpoint combinator *}
   133 definition
   134   fixp :: "('a \<Rightarrow> 'a) \<Rightarrow> 'a"
   135 where
   136   "fixp f = Sup (iterates f)"
   138 lemma iterates_fixp:
   139   assumes f: "monotone (op \<le>) (op \<le>) f" shows "fixp f \<in> iterates f"
   140 unfolding fixp_def
   141 by (simp add: iterates.Sup chain_iterates f)
   143 lemma fixp_unfold:
   144   assumes f: "monotone (op \<le>) (op \<le>) f"
   145   shows "fixp f = f (fixp f)"
   146 proof (rule antisym)
   147   show "fixp f \<le> f (fixp f)"
   148     by (intro iterates_le_f iterates_fixp f)
   149   have "f (fixp f) \<le> Sup (iterates f)"
   150     by (intro ccpo_Sup_upper chain_iterates f iterates.step iterates_fixp)
   151   thus "f (fixp f) \<le> fixp f"
   152     unfolding fixp_def .
   153 qed
   155 lemma fixp_lowerbound:
   156   assumes f: "monotone (op \<le>) (op \<le>) f" and z: "f z \<le> z" shows "fixp f \<le> z"
   157 unfolding fixp_def
   158 proof (rule ccpo_Sup_least[OF chain_iterates[OF f]])
   159   fix x assume "x \<in> iterates f"
   160   thus "x \<le> z"
   161   proof (induct x rule: iterates.induct)
   162     fix x assume "x \<le> z" with f have "f x \<le> f z" by (rule monotoneD)
   163     also note z finally show "f x \<le> z" .
   164   qed (auto intro: ccpo_Sup_least)
   165 qed
   167 end
   169 subsection {* Fixpoint induction *}
   171 setup {* Sign.map_naming (Name_Space.mandatory_path "ccpo") *}
   173 definition admissible :: "('a set \<Rightarrow> 'a) \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool"
   174 where "admissible lub ord P = (\<forall>A. chain ord A \<longrightarrow> (A \<noteq> {}) \<longrightarrow> (\<forall>x\<in>A. P x) \<longrightarrow> P (lub A))"
   176 lemma admissibleI:
   177   assumes "\<And>A. chain ord A \<Longrightarrow> A \<noteq> {} \<Longrightarrow> \<forall>x\<in>A. P x \<Longrightarrow> P (lub A)"
   178   shows "ccpo.admissible lub ord P"
   179 using assms unfolding ccpo.admissible_def by fast
   181 lemma admissibleD:
   182   assumes "ccpo.admissible lub ord P"
   183   assumes "chain ord A"
   184   assumes "A \<noteq> {}"
   185   assumes "\<And>x. x \<in> A \<Longrightarrow> P x"
   186   shows "P (lub A)"
   187 using assms by (auto simp: ccpo.admissible_def)
   189 setup {* Sign.map_naming Name_Space.parent_path *}
   191 lemma (in ccpo) fixp_induct:
   192   assumes adm: "ccpo.admissible Sup (op \<le>) P"
   193   assumes mono: "monotone (op \<le>) (op \<le>) f"
   194   assumes bot: "P (Sup {})"
   195   assumes step: "\<And>x. P x \<Longrightarrow> P (f x)"
   196   shows "P (fixp f)"
   197 unfolding fixp_def using adm chain_iterates[OF mono]
   198 proof (rule ccpo.admissibleD)
   199   show "iterates f \<noteq> {}" using bot_in_iterates by auto
   200   fix x assume "x \<in> iterates f"
   201   thus "P x"
   202     by (induct rule: iterates.induct)
   203       (case_tac "M = {}", auto intro: step bot ccpo.admissibleD adm)
   204 qed
   206 lemma admissible_True: "ccpo.admissible lub ord (\<lambda>x. True)"
   207 unfolding ccpo.admissible_def by simp
   209 (*lemma admissible_False: "\<not> ccpo.admissible lub ord (\<lambda>x. False)"
   210 unfolding ccpo.admissible_def chain_def by simp
   211 *)
   212 lemma admissible_const: "ccpo.admissible lub ord (\<lambda>x. t)"
   213 by(auto intro: ccpo.admissibleI)
   215 lemma admissible_conj:
   216   assumes "ccpo.admissible lub ord (\<lambda>x. P x)"
   217   assumes "ccpo.admissible lub ord (\<lambda>x. Q x)"
   218   shows "ccpo.admissible lub ord (\<lambda>x. P x \<and> Q x)"
   219 using assms unfolding ccpo.admissible_def by simp
   221 lemma admissible_all:
   222   assumes "\<And>y. ccpo.admissible lub ord (\<lambda>x. P x y)"
   223   shows "ccpo.admissible lub ord (\<lambda>x. \<forall>y. P x y)"
   224 using assms unfolding ccpo.admissible_def by fast
   226 lemma admissible_ball:
   227   assumes "\<And>y. y \<in> A \<Longrightarrow> ccpo.admissible lub ord (\<lambda>x. P x y)"
   228   shows "ccpo.admissible lub ord (\<lambda>x. \<forall>y\<in>A. P x y)"
   229 using assms unfolding ccpo.admissible_def by fast
   231 lemma chain_compr: "chain ord A \<Longrightarrow> chain ord {x \<in> A. P x}"
   232 unfolding chain_def by fast
   234 context ccpo begin
   236 lemma admissible_disj_lemma:
   237   assumes A: "chain (op \<le>)A"
   238   assumes P: "\<forall>x\<in>A. \<exists>y\<in>A. x \<le> y \<and> P y"
   239   shows "Sup A = Sup {x \<in> A. P x}"
   240 proof (rule antisym)
   241   have *: "chain (op \<le>) {x \<in> A. P x}"
   242     by (rule chain_compr [OF A])
   243   show "Sup A \<le> Sup {x \<in> A. P x}"
   244     apply (rule ccpo_Sup_least [OF A])
   245     apply (drule P [rule_format], clarify)
   246     apply (erule order_trans)
   247     apply (simp add: ccpo_Sup_upper [OF *])
   248     done
   249   show "Sup {x \<in> A. P x} \<le> Sup A"
   250     apply (rule ccpo_Sup_least [OF *])
   251     apply clarify
   252     apply (simp add: ccpo_Sup_upper [OF A])
   253     done
   254 qed
   256 lemma admissible_disj:
   257   fixes P Q :: "'a \<Rightarrow> bool"
   258   assumes P: "ccpo.admissible Sup (op \<le>) (\<lambda>x. P x)"
   259   assumes Q: "ccpo.admissible Sup (op \<le>) (\<lambda>x. Q x)"
   260   shows "ccpo.admissible Sup (op \<le>) (\<lambda>x. P x \<or> Q x)"
   261 proof (rule ccpo.admissibleI)
   262   fix A :: "'a set" assume A: "chain (op \<le>) A"
   263   assume "A \<noteq> {}"
   264     and "\<forall>x\<in>A. P x \<or> Q x"
   265   hence "(\<exists>x\<in>A. P x) \<and> (\<forall>x\<in>A. \<exists>y\<in>A. x \<le> y \<and> P y) \<or> (\<exists>x\<in>A. Q x) \<and> (\<forall>x\<in>A. \<exists>y\<in>A. x \<le> y \<and> Q y)"
   266     using chainD[OF A] by blast
   267   hence "(\<exists>x. x \<in> A \<and> P x) \<and> Sup A = Sup {x \<in> A. P x} \<or> (\<exists>x. x \<in> A \<and> Q x) \<and> Sup A = Sup {x \<in> A. Q x}"
   268     using admissible_disj_lemma [OF A] by blast
   269   thus "P (Sup A) \<or> Q (Sup A)"
   270     apply (rule disjE, simp_all)
   271     apply (rule disjI1, rule ccpo.admissibleD [OF P chain_compr [OF A]], simp, simp)
   272     apply (rule disjI2, rule ccpo.admissibleD [OF Q chain_compr [OF A]], simp, simp)
   273     done
   274 qed
   276 end
   278 instance complete_lattice \<subseteq> ccpo
   279   by default (fast intro: Sup_upper Sup_least)+
   281 lemma lfp_eq_fixp:
   282   assumes f: "mono f" shows "lfp f = fixp f"
   283 proof (rule antisym)
   284   from f have f': "monotone (op \<le>) (op \<le>) f"
   285     unfolding mono_def monotone_def .
   286   show "lfp f \<le> fixp f"
   287     by (rule lfp_lowerbound, subst fixp_unfold [OF f'], rule order_refl)
   288   show "fixp f \<le> lfp f"
   289     by (rule fixp_lowerbound [OF f'], subst lfp_unfold [OF f], rule order_refl)
   290 qed
   292 hide_const (open) iterates fixp
   294 end