3 Author: Lawrence C Paulson, Cambridge University Computer Laboratory
4 Copyright 1991 University of Cambridge
6 The theory underlying permutation groups
7 -- Composition of relations, the identity relation
8 -- Injections, surjections, bijections
9 -- Lemmas for the Schroeder-Bernstein Theorem
14 (** Surjective function space **)
16 goalw Perm.thy [surj_def] "!!f A B. f: surj(A,B) ==> f: A->B";
17 by (etac CollectD1 1);
20 goalw Perm.thy [surj_def] "!!f A B. f : Pi(A,B) ==> f: surj(A,range(f))";
21 by (fast_tac (!claset addIs [apply_equality]
22 addEs [range_of_fun,domain_type]) 1);
25 goalw Perm.thy [surj_def] "!!f A B. f: surj(A,B) ==> range(f)=B";
26 by (best_tac (!claset addIs [apply_Pair] addEs [range_type]) 1);
29 (** A function with a right inverse is a surjection **)
31 val prems = goalw Perm.thy [surj_def]
32 "[| f: A->B; !!y. y:B ==> d(y): A; !!y. y:B ==> f`d(y) = y \
33 \ |] ==> f: surj(A,B)";
34 by (fast_tac (!claset addIs prems) 1);
35 qed "f_imp_surjective";
37 val prems = goal Perm.thy
38 "[| !!x. x:A ==> c(x): B; \
39 \ !!y. y:B ==> d(y): A; \
40 \ !!y. y:B ==> c(d(y)) = y \
41 \ |] ==> (lam x:A.c(x)) : surj(A,B)";
42 by (res_inst_tac [("d", "d")] f_imp_surjective 1);
43 by (ALLGOALS (asm_simp_tac (!simpset addsimps ([lam_type]@prems)) ));
46 (*Cantor's theorem revisited*)
47 goalw Perm.thy [surj_def] "f ~: surj(A,Pow(A))";
48 by (safe_tac (!claset));
49 by (cut_facts_tac [cantor] 1);
50 by (fast_tac subset_cs 1);
54 (** Injective function space **)
56 goalw Perm.thy [inj_def] "!!f A B. f: inj(A,B) ==> f: A->B";
57 by (etac CollectD1 1);
60 (*Good for dealing with sets of pairs, but a bit ugly in use [used in AC]*)
61 goalw Perm.thy [inj_def]
62 "!!f A B. [| <a,b>:f; <c,b>:f; f: inj(A,B) |] ==> a=c";
63 by (REPEAT (eresolve_tac [asm_rl, Pair_mem_PiE, CollectE] 1));
67 goalw thy [inj_def] "!!A B f. [| f:inj(A,B); a:A; b:A; f`a=f`b |] ==> a=b";
69 val inj_apply_equality = result();
71 (** A function with a left inverse is an injection **)
73 goal Perm.thy "!!f. [| f: A->B; ALL x:A. d(f`x)=x |] ==> f: inj(A,B)";
74 by (asm_simp_tac (!simpset addsimps [inj_def]) 1);
75 by (deepen_tac (!claset addEs [subst_context RS box_equals]) 0 1);
76 bind_thm ("f_imp_injective", ballI RSN (2,result()));
78 val prems = goal Perm.thy
79 "[| !!x. x:A ==> c(x): B; \
80 \ !!x. x:A ==> d(c(x)) = x \
81 \ |] ==> (lam x:A.c(x)) : inj(A,B)";
82 by (res_inst_tac [("d", "d")] f_imp_injective 1);
83 by (ALLGOALS (asm_simp_tac (!simpset addsimps ([lam_type]@prems)) ));
88 goalw Perm.thy [bij_def] "!!f A B. f: bij(A,B) ==> f: inj(A,B)";
92 goalw Perm.thy [bij_def] "!!f A B. f: bij(A,B) ==> f: surj(A,B)";
96 (* f: bij(A,B) ==> f: A->B *)
97 bind_thm ("bij_is_fun", (bij_is_inj RS inj_is_fun));
99 val prems = goalw Perm.thy [bij_def]
100 "[| !!x. x:A ==> c(x): B; \
101 \ !!y. y:B ==> d(y): A; \
102 \ !!x. x:A ==> d(c(x)) = x; \
103 \ !!y. y:B ==> c(d(y)) = y \
104 \ |] ==> (lam x:A.c(x)) : bij(A,B)";
105 by (REPEAT (ares_tac (prems @ [IntI, lam_injective, lam_surjective]) 1));
109 (** Identity function **)
111 val [prem] = goalw Perm.thy [id_def] "a:A ==> <a,a> : id(A)";
112 by (rtac (prem RS lamI) 1);
115 val major::prems = goalw Perm.thy [id_def]
116 "[| p: id(A); !!x.[| x:A; p=<x,x> |] ==> P \
118 by (rtac (major RS lamE) 1);
119 by (REPEAT (ares_tac prems 1));
122 goalw Perm.thy [id_def] "id(A) : A->A";
123 by (rtac lam_type 1);
127 goalw Perm.thy [id_def] "!!A x. x:A ==> id(A)`x = x";
133 val [prem] = goalw Perm.thy [id_def] "A<=B ==> id(A) <= id(B)";
134 by (rtac (prem RS lam_mono) 1);
137 goalw Perm.thy [inj_def,id_def] "!!A B. A<=B ==> id(A): inj(A,B)";
138 by (REPEAT (ares_tac [CollectI,lam_type] 1));
139 by (etac subsetD 1 THEN assume_tac 1);
143 val id_inj = subset_refl RS id_subset_inj;
145 goalw Perm.thy [id_def,surj_def] "id(A): surj(A,A)";
146 by (fast_tac (!claset addIs [lam_type,beta]) 1);
149 goalw Perm.thy [bij_def] "id(A): bij(A,A)";
150 by (fast_tac (!claset addIs [id_inj,id_surj]) 1);
153 goalw Perm.thy [id_def] "A <= B <-> id(A) : A->B";
154 by (fast_tac (!claset addSIs [lam_type] addDs [apply_type] addss (!simpset)) 1);
158 (*** Converse of a function ***)
160 goalw Perm.thy [inj_def] "!!f. f: inj(A,B) ==> converse(f) : range(f)->A";
161 by (asm_simp_tac (!simpset addsimps [Pi_iff, function_def]) 1);
162 by (etac CollectE 1);
163 by (asm_simp_tac (!simpset addsimps [apply_iff]) 1);
164 by (fast_tac (!claset addDs [fun_is_rel]) 1);
165 qed "inj_converse_fun";
167 (** Equations for converse(f) **)
169 (*The premises are equivalent to saying that f is injective...*)
170 val prems = goal Perm.thy
171 "[| f: A->B; converse(f): C->A; a: A |] ==> converse(f)`(f`a) = a";
172 by (fast_tac (!claset addIs (prems@[apply_Pair,apply_equality,converseI])) 1);
173 qed "left_inverse_lemma";
176 "!!f. [| f: inj(A,B); a: A |] ==> converse(f)`(f`a) = a";
177 by (fast_tac (!claset addIs [left_inverse_lemma,inj_converse_fun,inj_is_fun]) 1);
180 val left_inverse_bij = bij_is_inj RS left_inverse;
182 val prems = goal Perm.thy
183 "[| f: A->B; converse(f): C->A; b: C |] ==> f`(converse(f)`b) = b";
184 by (rtac (apply_Pair RS (converseD RS apply_equality)) 1);
185 by (REPEAT (resolve_tac prems 1));
186 qed "right_inverse_lemma";
188 (*Should the premises be f:surj(A,B), b:B for symmetry with left_inverse?
189 No: they would not imply that converse(f) was a function! *)
190 goal Perm.thy "!!f. [| f: inj(A,B); b: range(f) |] ==> f`(converse(f)`b) = b";
191 by (rtac right_inverse_lemma 1);
192 by (REPEAT (ares_tac [inj_converse_fun,inj_is_fun] 1));
195 (*Cannot add [left_inverse, right_inverse] to default simpset: there are too
196 many ways of expressing sufficient conditions.*)
198 goal Perm.thy "!!f. [| f: bij(A,B); b: B |] ==> f`(converse(f)`b) = b";
199 by (fast_tac (!claset addss
200 (!simpset addsimps [bij_def, right_inverse, surj_range])) 1);
201 qed "right_inverse_bij";
203 (** Converses of injections, surjections, bijections **)
205 goal Perm.thy "!!f A B. f: inj(A,B) ==> converse(f): inj(range(f), A)";
206 by (rtac f_imp_injective 1);
207 by (etac inj_converse_fun 1);
208 by (rtac right_inverse 1);
209 by (REPEAT (assume_tac 1));
210 qed "inj_converse_inj";
212 goal Perm.thy "!!f A B. f: inj(A,B) ==> converse(f): surj(range(f), A)";
213 by (ITER_DEEPEN (has_fewer_prems 1)
214 (ares_tac [f_imp_surjective, inj_converse_fun, left_inverse,
215 inj_is_fun, range_of_fun RS apply_type]));
216 qed "inj_converse_surj";
218 goalw Perm.thy [bij_def] "!!f A B. f: bij(A,B) ==> converse(f): bij(B,A)";
219 by (fast_tac (!claset addEs [surj_range RS subst, inj_converse_inj,
220 inj_converse_surj]) 1);
221 qed "bij_converse_bij";
222 (*Adding this as an SI seems to cause looping*)
225 (** Composition of two relations **)
227 (*The inductive definition package could derive these theorems for (r O s)*)
229 goalw Perm.thy [comp_def] "!!r s. [| <a,b>:s; <b,c>:r |] ==> <a,c> : r O s";
233 val prems = goalw Perm.thy [comp_def]
235 \ !!x y z. [| xz=<x,z>; <x,y>:s; <y,z>:r |] ==> P \
237 by (cut_facts_tac prems 1);
238 by (REPEAT (eresolve_tac [CollectE, exE, conjE] 1 ORELSE ares_tac prems 1));
241 bind_thm ("compEpair",
242 rule_by_tactic (REPEAT_FIRST (etac Pair_inject ORELSE' bound_hyp_subst_tac)
243 THEN prune_params_tac)
244 (read_instantiate [("xz","<a,c>")] compE));
250 (** Domain and Range -- see Suppes, section 3.1 **)
252 (*Boyer et al., Set Theory in First-Order Logic, JAR 2 (1986), 287-327*)
253 goal Perm.thy "range(r O s) <= range(r)";
257 goal Perm.thy "!!r s. domain(r) <= range(s) ==> range(r O s) = range(r)";
258 by (rtac (range_comp RS equalityI) 1);
262 goal Perm.thy "domain(r O s) <= domain(s)";
266 goal Perm.thy "!!r s. range(s) <= domain(r) ==> domain(r O s) = domain(s)";
267 by (rtac (domain_comp RS equalityI) 1);
269 qed "domain_comp_eq";
271 goal Perm.thy "(r O s)``A = r``(s``A)";
276 (** Other results **)
278 goal Perm.thy "!!r s. [| r'<=r; s'<=s |] ==> (r' O s') <= (r O s)";
282 (*composition preserves relations*)
283 goal Perm.thy "!!r s. [| s<=A*B; r<=B*C |] ==> (r O s) <= A*C";
287 (*associative law for composition*)
288 goal Perm.thy "(r O s) O t = r O (s O t)";
292 (*left identity of composition; provable inclusions are
294 and [| r<=A*B; B<=C |] ==> r <= id(C) O r *)
295 goal Perm.thy "!!r A B. r<=A*B ==> id(B) O r = r";
299 (*right identity of composition; provable inclusions are
301 and [| r<=A*B; A<=C |] ==> r <= r O id(C) *)
302 goal Perm.thy "!!r A B. r<=A*B ==> r O id(A) = r";
307 (** Composition preserves functions, injections, and surjections **)
309 goalw Perm.thy [function_def]
310 "!!f g. [| function(g); function(f) |] ==> function(f O g)";
311 by (fast_tac (!claset addIs [compI] addSEs [compE, Pair_inject]) 1);
314 goal Perm.thy "!!f g. [| g: A->B; f: B->C |] ==> (f O g) : A->C";
315 by (asm_full_simp_tac
316 (!simpset addsimps [Pi_def, comp_function, Pow_iff, comp_rel]
317 setloop etac conjE) 1);
318 by (stac (range_rel_subset RS domain_comp_eq) 1 THEN assume_tac 2);
322 goal Perm.thy "!!f g. [| g: A->B; f: B->C; a:A |] ==> (f O g)`a = f`(g`a)";
323 by (REPEAT (ares_tac [comp_fun,apply_equality,compI,
324 apply_Pair,apply_type] 1));
325 qed "comp_fun_apply";
327 Addsimps [comp_fun_apply];
329 (*Simplifies compositions of lambda-abstractions*)
330 val [prem] = goal Perm.thy
331 "[| !!x. x:A ==> b(x): B \
332 \ |] ==> (lam y:B.c(y)) O (lam x:A. b(x)) = (lam x:A. c(b(x)))";
333 by (rtac fun_extension 1);
334 by (rtac comp_fun 1);
335 by (rtac lam_funtype 2);
336 by (typechk_tac (prem::ZF_typechecks));
337 by (asm_simp_tac (!simpset
338 setSolver type_auto_tac [lam_type, lam_funtype, prem]) 1);
341 goal Perm.thy "!!f g. [| g: inj(A,B); f: inj(B,C) |] ==> (f O g) : inj(A,C)";
342 by (res_inst_tac [("d", "%y. converse(g) ` (converse(f) ` y)")]
344 by (REPEAT (ares_tac [comp_fun, inj_is_fun] 1));
345 by (asm_simp_tac (!simpset addsimps [left_inverse]
346 setSolver type_auto_tac [inj_is_fun, apply_type]) 1);
349 goalw Perm.thy [surj_def]
350 "!!f g. [| g: surj(A,B); f: surj(B,C) |] ==> (f O g) : surj(A,C)";
351 by (best_tac (!claset addSIs [comp_fun,comp_fun_apply]) 1);
354 goalw Perm.thy [bij_def]
355 "!!f g. [| g: bij(A,B); f: bij(B,C) |] ==> (f O g) : bij(A,C)";
356 by (fast_tac (!claset addIs [comp_inj,comp_surj]) 1);
360 (** Dual properties of inj and surj -- useful for proofs from
361 D Pastre. Automatic theorem proving in set theory.
362 Artificial Intelligence, 10:1--27, 1978. **)
364 goalw Perm.thy [inj_def]
365 "!!f g. [| (f O g): inj(A,C); g: A->B; f: B->C |] ==> g: inj(A,B)";
366 by (safe_tac (!claset));
367 by (REPEAT (eresolve_tac [asm_rl, bspec RS bspec RS mp] 1));
368 by (asm_simp_tac (!simpset ) 1);
369 qed "comp_mem_injD1";
371 goalw Perm.thy [inj_def,surj_def]
372 "!!f g. [| (f O g): inj(A,C); g: surj(A,B); f: B->C |] ==> f: inj(B,C)";
373 by (safe_tac (!claset));
374 by (res_inst_tac [("x1", "x")] (bspec RS bexE) 1);
375 by (eres_inst_tac [("x1", "w")] (bspec RS bexE) 3);
376 by (REPEAT (assume_tac 1));
377 by (safe_tac (!claset));
378 by (res_inst_tac [("t", "op `(g)")] subst_context 1);
379 by (REPEAT (eresolve_tac [asm_rl, bspec RS bspec RS mp] 1));
380 by (asm_simp_tac (!simpset ) 1);
381 qed "comp_mem_injD2";
383 goalw Perm.thy [surj_def]
384 "!!f g. [| (f O g): surj(A,C); g: A->B; f: B->C |] ==> f: surj(B,C)";
385 by (best_tac (!claset addSIs [comp_fun_apply RS sym, apply_type]) 1);
386 qed "comp_mem_surjD1";
389 "!!f g. [| (f O g)`a = c; g: A->B; f: B->C; a:A |] ==> f`(g`a) = c";
390 by (REPEAT (ares_tac [comp_fun_apply RS sym RS trans] 1));
391 qed "comp_fun_applyD";
393 goalw Perm.thy [inj_def,surj_def]
394 "!!f g. [| (f O g): surj(A,C); g: A->B; f: inj(B,C) |] ==> g: surj(A,B)";
395 by (safe_tac (!claset));
396 by (eres_inst_tac [("x1", "f`y")] (bspec RS bexE) 1);
397 by (REPEAT (ares_tac [apply_type] 1 ORELSE dtac comp_fun_applyD 1));
398 by (best_tac (!claset addSIs [apply_type]) 1);
399 qed "comp_mem_surjD2";
402 (** inverses of composition **)
404 (*left inverse of composition; one inclusion is
405 f: A->B ==> id(A) <= converse(f) O f *)
406 goalw Perm.thy [inj_def] "!!f. f: inj(A,B) ==> converse(f) O f = id(A)";
407 by (fast_tac (!claset addIs [apply_Pair]
409 addss (!simpset addsimps [apply_iff])) 1);
410 qed "left_comp_inverse";
412 (*right inverse of composition; one inclusion is
413 f: A->B ==> f O converse(f) <= id(B)
415 val [prem] = goalw Perm.thy [surj_def]
416 "f: surj(A,B) ==> f O converse(f) = id(B)";
417 val appfD = (prem RS CollectD1) RSN (3,apply_equality2);
418 by (cut_facts_tac [prem] 1);
419 by (rtac equalityI 1);
420 by (best_tac (!claset addEs [domain_type, range_type, make_elim appfD]) 1);
421 by (best_tac (!claset addIs [apply_Pair]) 1);
422 qed "right_comp_inverse";
424 (** Proving that a function is a bijection **)
426 goalw Perm.thy [id_def]
427 "!!f A B. [| f: A->B; g: B->A |] ==> \
428 \ f O g = id(B) <-> (ALL y:B. f`(g`y)=y)";
429 by (safe_tac (!claset));
430 by (dres_inst_tac [("t", "%h.h`y ")] subst_context 1);
431 by (Asm_full_simp_tac 1);
432 by (rtac fun_extension 1);
433 by (REPEAT (ares_tac [comp_fun, lam_type] 1));
435 qed "comp_eq_id_iff";
437 goalw Perm.thy [bij_def]
438 "!!f A B. [| f: A->B; g: B->A; f O g = id(B); g O f = id(A) \
439 \ |] ==> f : bij(A,B)";
440 by (asm_full_simp_tac (!simpset addsimps [comp_eq_id_iff]) 1);
441 by (REPEAT (ares_tac [conjI, f_imp_injective, f_imp_surjective] 1
442 ORELSE eresolve_tac [bspec, apply_type] 1));
443 qed "fg_imp_bijective";
445 goal Perm.thy "!!f A. [| f: A->A; f O f = id(A) |] ==> f : bij(A,A)";
446 by (REPEAT (ares_tac [fg_imp_bijective] 1));
447 qed "nilpotent_imp_bijective";
449 goal Perm.thy "!!f A B. [| converse(f): B->A; f: A->B |] ==> f : bij(A,B)";
450 by (asm_simp_tac (!simpset addsimps [fg_imp_bijective, comp_eq_id_iff,
451 left_inverse_lemma, right_inverse_lemma]) 1);
452 qed "invertible_imp_bijective";
454 (** Unions of functions -- cf similar theorems on func.ML **)
456 (*Theorem by KG, proof by LCP*)
458 "!!f g. [| f: inj(A,B); g: inj(C,D); B Int D = 0 |] ==> \
459 \ (lam a: A Un C. if(a:A, f`a, g`a)) : inj(A Un C, B Un D)";
460 by (res_inst_tac [("d","%z. if(z:B, converse(f)`z, converse(g)`z)")]
463 (asm_simp_tac (!simpset addsimps [inj_is_fun RS apply_type, left_inverse]
464 setloop (split_tac [expand_if] ORELSE' etac UnE))));
465 by (fast_tac (!claset addSEs [inj_is_fun RS apply_type] addDs [equals0D]) 1);
466 qed "inj_disjoint_Un";
468 goalw Perm.thy [surj_def]
469 "!!f g. [| f: surj(A,B); g: surj(C,D); A Int C = 0 |] ==> \
470 \ (f Un g) : surj(A Un C, B Un D)";
471 by (DEPTH_SOLVE_1 (eresolve_tac [fun_disjoint_apply1, fun_disjoint_apply2] 1
473 ORELSE (rtac trans 1 THEN atac 2)
474 ORELSE step_tac (!claset addIs [fun_disjoint_Un]) 1));
475 qed "surj_disjoint_Un";
477 (*A simple, high-level proof; the version for injections follows from it,
478 using f:inj(A,B) <-> f:bij(A,range(f)) *)
480 "!!f g. [| f: bij(A,B); g: bij(C,D); A Int C = 0; B Int D = 0 |] ==> \
481 \ (f Un g) : bij(A Un C, B Un D)";
482 by (rtac invertible_imp_bijective 1);
483 by (stac converse_Un 1);
484 by (REPEAT (ares_tac [fun_disjoint_Un, bij_is_fun, bij_converse_bij] 1));
485 qed "bij_disjoint_Un";
488 (** Restrictions as surjections and bijections *)
490 val prems = goalw Perm.thy [surj_def]
491 "f: Pi(A,B) ==> f: surj(A, f``A)";
492 val rls = apply_equality :: (prems RL [apply_Pair,Pi_type]);
493 by (fast_tac (!claset addIs rls) 1);
496 goal Perm.thy "!!f. [| f: Pi(C,B); A<=C |] ==> restrict(f,A)``A = f``A";
497 by (rtac equalityI 1);
498 by (SELECT_GOAL (rewtac restrict_def) 2);
499 by (REPEAT (eresolve_tac [imageE, apply_equality RS subst] 2
500 ORELSE ares_tac [subsetI,lamI,imageI] 2));
501 by (REPEAT (ares_tac [image_mono,restrict_subset,subset_refl] 1));
502 qed "restrict_image";
504 goalw Perm.thy [inj_def]
505 "!!f. [| f: inj(A,B); C<=A |] ==> restrict(f,C): inj(C,B)";
506 by (safe_tac (!claset addSEs [restrict_type2]));
507 by (REPEAT (eresolve_tac [asm_rl, bspec RS bspec RS mp, subsetD,
508 box_equals, restrict] 1));
511 val prems = goal Perm.thy
512 "[| f: Pi(A,B); C<=A |] ==> restrict(f,C): surj(C, f``C)";
513 by (rtac (restrict_image RS subst) 1);
514 by (rtac (restrict_type2 RS surj_image) 3);
515 by (REPEAT (resolve_tac prems 1));
518 goalw Perm.thy [inj_def,bij_def]
519 "!!f. [| f: inj(A,B); C<=A |] ==> restrict(f,C): bij(C, f``C)";
520 by (safe_tac (!claset));
521 by (REPEAT (eresolve_tac [bspec RS bspec RS mp, subsetD,
522 box_equals, restrict] 1
523 ORELSE ares_tac [surj_is_fun,restrict_surj] 1));
527 (*** Lemmas for Ramsey's Theorem ***)
529 goalw Perm.thy [inj_def] "!!f. [| f: inj(A,B); B<=D |] ==> f: inj(A,D)";
530 by (fast_tac (!claset addSEs [fun_weaken_type]) 1);
531 qed "inj_weaken_type";
533 val [major] = goal Perm.thy
534 "[| f: inj(succ(m), A) |] ==> restrict(f,m) : inj(m, A-{f`m})";
535 by (rtac (major RS restrict_bij RS bij_is_inj RS inj_weaken_type) 1);
537 by (cut_facts_tac [major] 1);
539 by (fast_tac (!claset addEs [range_type, mem_irrefl]
540 addDs [apply_equality]) 1);
541 qed "inj_succ_restrict";
543 goalw Perm.thy [inj_def]
544 "!!f. [| f: inj(A,B); a~:A; b~:B |] ==> \
545 \ cons(<a,b>,f) : inj(cons(a,A), cons(b,B))";
546 by (fast_tac (!claset addIs [apply_type]
547 unsafe_addss (!simpset addsimps [fun_extend, fun_extend_apply2,
548 fun_extend_apply1]) ) 1);