summary |
shortlog |
changelog |
graph |
tags |
bookmarks |
branches |
files |
changeset |
file |
latest |
revisions |
annotate |
diff |
comparison |
raw |
help

NEWS

author | wenzelm |

Tue, 26 Sep 2017 20:54:40 +0200 | |

changeset 66695 | 91500c024c7f |

parent 66688 | ebb97a834338 |

child 66712 | 4c98c929a12a |

permissions | -rw-r--r-- |

tuned;

Isabelle NEWS -- history of user-relevant changes ================================================= (Note: Isabelle/jEdit shows a tree-view of the NEWS file in Sidekick.) New in this Isabelle version ---------------------------- *** HOL *** * SMT module: - The 'smt_oracle' option is now necessary when using the 'smt' method with a solver other than Z3. INCOMPATIBILITY. New in Isabelle2017 (October 2017) ---------------------------------- *** General *** * Experimental support for Visual Studio Code (VSCode) as alternative Isabelle/PIDE front-end, see also https://marketplace.visualstudio.com/items?itemName=makarius.Isabelle2017 VSCode is a new type of application that continues the concepts of "programmer's editor" and "integrated development environment" towards fully semantic editing and debugging -- in a relatively light-weight manner. Thus it fits nicely on top of the Isabelle/PIDE infrastructure. Technically, VSCode is based on the Electron application framework (Node.js + Chromium browser + V8), which is implemented in JavaScript and TypeScript, while Isabelle/VSCode mainly consists of Isabelle/Scala modules around a Language Server implementation. * Theory names are qualified by the session name that they belong to. This affects imports, but not the theory name space prefix (which is just the theory base name as before). In order to import theories from other sessions, the ROOT file format provides a new 'sessions' keyword. In contrast, a theory that is imported in the old-fashioned manner via an explicit file-system path belongs to the current session, and might cause theory name conflicts later on. Theories that are imported from other sessions are excluded from the current session document. The command-line tool "isabelle imports" helps to update theory imports. * The main theory entry points for some non-HOL sessions have changed, to avoid confusion with the global name "Main" of the session HOL. This leads to the follow renamings: CTT/Main.thy ~> CTT/CTT.thy ZF/Main.thy ~> ZF/ZF.thy ZF/Main_ZF.thy ~> ZF/ZF.thy ZF/Main_ZFC.thy ~> ZF/ZFC.thy ZF/ZF.thy ~> ZF/ZF_Base.thy INCOMPATIBILITY. * Commands 'alias' and 'type_alias' introduce aliases for constants and type constructors, respectively. This allows adhoc changes to name-space accesses within global or local theory contexts, e.g. within a 'bundle'. * Document antiquotations @{prf} and @{full_prf} output proof terms (again) in the same way as commands 'prf' and 'full_prf'. * Computations generated by the code generator can be embedded directly into ML, alongside with @{code} antiquotations, using the following antiquotations: @{computation ... terms: ... datatypes: ...} : ((term -> term) -> 'ml option -> 'a) -> Proof.context -> term -> 'a @{computation_conv ... terms: ... datatypes: ...} : (Proof.context -> 'ml -> conv) -> Proof.context -> conv @{computation_check terms: ... datatypes: ...} : Proof.context -> conv See src/HOL/ex/Computations.thy, src/HOL/Decision_Procs/Commutative_Ring.thy and src/HOL/Decision_Procs/Reflective_Field.thy for examples and the tutorial on code generation. *** Prover IDE -- Isabelle/Scala/jEdit *** * Session-qualified theory imports allow the Prover IDE to process arbitrary theory hierarchies independently of the underlying logic session image (e.g. option "isabelle jedit -l"), but the directory structure needs to be known in advance (e.g. option "isabelle jedit -d" or a line in the file $ISABELLE_HOME_USER/ROOTS). * The PIDE document model maintains file content independently of the status of jEdit editor buffers. Reloading jEdit buffers no longer causes changes of formal document content. Theory dependencies are always resolved internally, without the need for corresponding editor buffers. The system option "jedit_auto_load" has been discontinued: it is effectively always enabled. * The Theories dockable provides a "Purge" button, in order to restrict the document model to theories that are required for open editor buffers. * The Theories dockable indicates the overall status of checking of each entry. When all forked tasks of a theory are finished, the border is painted with thick lines; remaining errors in this situation are represented by a different border color. * Automatic indentation is more careful to avoid redundant spaces in intermediate situations. Keywords are indented after input (via typed characters or completion); see also option "jedit_indent_input". * Action "isabelle.preview" opens an HTML preview of the current theory document in the default web browser. * Command-line invocation "isabelle jedit -R -l LOGIC" opens the ROOT entry of the specified logic session in the editor, while its parent is used for formal checking. * The main Isabelle/jEdit plugin may be restarted manually (using the jEdit Plugin Manager), as long as the "Isabelle Base" plugin remains enabled at all times. * Update to current jedit-5.4.0. *** Pure *** * Deleting the last code equations for a particular function using [code del] results in function with no equations (runtime abort) rather than an unimplemented function (generation time abort). Use explicit [[code drop:]] to enforce the latter. Minor INCOMPATIBILITY. * Proper concept of code declarations in code.ML: - Regular code declarations act only on the global theory level, being ignored with warnings if syntactically malformed. - Explicitly global code declarations yield errors if syntactically malformed. - Default code declarations are silently ignored if syntactically malformed. Minor INCOMPATIBILITY. * Clarified and standardized internal data bookkeeping of code declarations: history of serials allows to track potentially non-monotonous declarations appropriately. Minor INCOMPATIBILITY. *** HOL *** * The Nunchaku model finder is now part of "Main". * SMT module: - A new option, 'smt_nat_as_int', has been added to translate 'nat' to 'int' and benefit from the SMT solver's theory reasoning. It is disabled by default. - The legacy module "src/HOL/Library/Old_SMT.thy" has been removed. - Several small issues have been rectified in the 'smt' command. * (Co)datatype package: The 'size_gen_o_map' lemma is no longer generated for datatypes with type class annotations. As a result, the tactic that derives it no longer fails on nested datatypes. Slight INCOMPATIBILITY. * Command and antiquotation "value" with modified default strategy: terms without free variables are always evaluated using plain evaluation only, with no fallback on normalization by evaluation. Minor INCOMPATIBILITY. * Theories "GCD" and "Binomial" are already included in "Main" (instead of "Complex_Main"). * Constant "surj" is a full input/output abbreviation (again). Minor INCOMPATIBILITY. * Dropped aliasses RangeP, DomainP for Rangep, Domainp respectively. INCOMPATIBILITY. * Renamed ii to imaginary_unit in order to free up ii as a variable name. The syntax \<i> remains available. INCOMPATIBILITY. * Dropped abbreviations transP, antisymP, single_valuedP; use constants transp, antisymp, single_valuedp instead. INCOMPATIBILITY. * Constant "subseq" in Topological_Spaces has been removed -- it is subsumed by "strict_mono". Some basic lemmas specific to "subseq" have been renamed accordingly, e.g. "subseq_o" -> "strict_mono_o" etc. * Theory List: "sublist" renamed to "nths" in analogy with "nth", and "sublisteq" renamed to "subseq". Minor INCOMPATIBILITY. * Theory List: new generic function "sorted_wrt". * Named theorems mod_simps covers various congruence rules concerning mod, replacing former zmod_simps. INCOMPATIBILITY. * Swapped orientation of congruence rules mod_add_left_eq, mod_add_right_eq, mod_add_eq, mod_mult_left_eq, mod_mult_right_eq, mod_mult_eq, mod_minus_eq, mod_diff_left_eq, mod_diff_right_eq, mod_diff_eq. INCOMPATIBILITY. * Generalized some facts: measure_induct_rule measure_induct zminus_zmod ~> mod_minus_eq zdiff_zmod_left ~> mod_diff_left_eq zdiff_zmod_right ~> mod_diff_right_eq zmod_eq_dvd_iff ~> mod_eq_dvd_iff INCOMPATIBILITY. * Algebraic type class hierarchy of euclidean (semi)rings in HOL: euclidean_(semi)ring, euclidean_(semi)ring_cancel, unique_euclidean_(semi)ring; instantiation requires provision of a euclidean size. * Theory "HOL-Number_Theory.Euclidean_Algorithm" has been reworked: - Euclidean induction is available as rule eucl_induct. - Constants Euclidean_Algorithm.gcd, Euclidean_Algorithm.lcm, Euclidean_Algorithm.Gcd and Euclidean_Algorithm.Lcm allow easy instantiation of euclidean (semi)rings as GCD (semi)rings. - Coefficients obtained by extended euclidean algorithm are available as "bezout_coefficients". INCOMPATIBILITY. * Theory "Number_Theory.Totient" introduces basic notions about Euler's totient function previously hidden as solitary example in theory Residues. Definition changed so that "totient 1 = 1" in agreement with the literature. Minor INCOMPATIBILITY. * New styles in theory "HOL-Library.LaTeXsugar": - "dummy_pats" for printing equations with "_" on the lhs; - "eta_expand" for printing eta-expanded terms. * Theory "HOL-Library.Permutations": theorem bij_swap_ompose_bij has been renamed to bij_swap_compose_bij. INCOMPATIBILITY. * New theory "HOL-Library.Going_To_Filter" providing the "f going_to F" filter for describing points x such that f(x) is in the filter F. * Theory "HOL-Library.Formal_Power_Series": constants X/E/L/F have been renamed to fps_X/fps_exp/fps_ln/fps_hypergeo to avoid polluting the name space. INCOMPATIBILITY. * Theory "HOL-Library.FinFun" has been moved to AFP (again). INCOMPATIBILITY. * Theory "HOL-Library.FuncSet": some old and rarely used ASCII replacement syntax has been removed. INCOMPATIBILITY, standard syntax with symbols should be used instead. The subsequent commands help to reproduce the old forms, e.g. to simplify porting old theories: syntax (ASCII) "_PiE" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<Rightarrow> 'b) set" ("(3PIE _:_./ _)" 10) "_Pi" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<Rightarrow> 'b) set" ("(3PI _:_./ _)" 10) "_lam" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a \<Rightarrow> 'b)" ("(3%_:_./ _)" [0,0,3] 3) * Theory "HOL-Library.Multiset": the simprocs on subsets operators of multisets have been renamed: msetless_cancel_numerals ~> msetsubset_cancel msetle_cancel_numerals ~> msetsubset_eq_cancel INCOMPATIBILITY. * Theory "HOL-Library.Pattern_Aliases" provides input and output syntax for pattern aliases as known from Haskell, Scala and ML. * Theory "HOL-Library.Uprod" formalizes the type of unordered pairs. * Session HOL-Analysis: more material involving arcs, paths, covering spaces, innessential maps, retracts, infinite products, simplicial complexes. Baire Category theorem. Major results include the Jordan Curve Theorem and the Great Picard Theorem. * Session HOL-Algebra has been extended by additional lattice theory: the Knaster-Tarski fixed point theorem and Galois Connections. * Sessions HOL-Computational_Algebra and HOL-Number_Theory: new notions of squarefreeness, n-th powers, and prime powers. * Session "HOL-Computional_Algebra" covers many previously scattered theories, notably Euclidean_Algorithm, Factorial_Ring, Formal_Power_Series, Fraction_Field, Fundamental_Theorem_Algebra, Normalized_Fraction, Polynomial_FPS, Polynomial, Primes. Minor INCOMPATIBILITY. *** System *** * Isabelle/Scala: the SQL module supports access to relational databases, either as plain file (SQLite) or full-scale server (PostgreSQL via local port or remote ssh connection). * Results of "isabelle build" are recorded as SQLite database (i.e. "Application File Format" in the sense of https://www.sqlite.org/appfileformat.html). This allows systematic access via operations from module Sessions.Store in Isabelle/Scala. * System option "parallel_proofs" is 1 by default (instead of more aggressive 2). This requires less heap space and avoids burning parallel CPU cycles, while full subproof parallelization is enabled for repeated builds (according to parallel_subproofs_threshold). * System option "record_proofs" allows to change the global Proofterm.proofs variable for a session. Regular values are are 0, 1, 2; a negative value means the current state in the ML heap image remains unchanged. * Isabelle settings variable ISABELLE_SCALA_BUILD_OPTIONS has been renamed to ISABELLE_SCALAC_OPTIONS. Rare INCOMPATIBILITY. * Isabelle settings variables ISABELLE_WINDOWS_PLATFORM, ISABELLE_WINDOWS_PLATFORM32, ISABELLE_WINDOWS_PLATFORM64 indicate the native Windows platform (independently of the Cygwin installation). This is analogous to ISABELLE_PLATFORM, ISABELLE_PLATFORM32, ISABELLE_PLATFORM64. * Command-line tool "isabelle vscode_server" provides a Language Server Protocol implementation, e.g. for the Visual Studio Code editor. It serves as example for alternative PIDE front-ends. * Command-line tool "isabelle imports" helps to maintain theory imports wrt. session structure. Examples for the main Isabelle distribution: isabelle imports -I -a isabelle imports -U -a isabelle imports -U -i -a isabelle imports -M -a -d '~~/src/Benchmarks' New in Isabelle2016-1 (December 2016) ------------------------------------- *** General *** * Splitter in proof methods "simp", "auto" and friends: - The syntax "split add" has been discontinued, use plain "split", INCOMPATIBILITY. - For situations with many conditional or case expressions, there is an alternative splitting strategy that can be much faster. It is selected by writing "split!" instead of "split". It applies safe introduction and elimination rules after each split rule. As a result the subgoal may be split into several subgoals. * Command 'bundle' provides a local theory target to define a bundle from the body of specification commands (such as 'declare', 'declaration', 'notation', 'lemmas', 'lemma'). For example: bundle foo begin declare a [simp] declare b [intro] end * Command 'unbundle' is like 'include', but works within a local theory context. Unlike "context includes ... begin", the effect of 'unbundle' on the target context persists, until different declarations are given. * Simplified outer syntax: uniform category "name" includes long identifiers. Former "xname" / "nameref" / "name reference" has been discontinued. * Embedded content (e.g. the inner syntax of types, terms, props) may be delimited uniformly via cartouches. This works better than old-fashioned quotes when sub-languages are nested. * Mixfix annotations support general block properties, with syntax "(\<open>x=a y=b z \<dots>\<close>". Notable property names are "indent", "consistent", "unbreakable", "markup". The existing notation "(DIGITS" is equivalent to "(\<open>indent=DIGITS\<close>". The former notation "(00" for unbreakable blocks is superseded by "(\<open>unbreabable\<close>" --- rare INCOMPATIBILITY. * Proof method "blast" is more robust wrt. corner cases of Pure statements without object-logic judgment. * Commands 'prf' and 'full_prf' are somewhat more informative (again): proof terms are reconstructed and cleaned from administrative thm nodes. * Code generator: config option "code_timing" triggers measurements of different phases of code generation. See src/HOL/ex/Code_Timing.thy for examples. * Code generator: implicits in Scala (stemming from type class instances) are generated into companion object of corresponding type class, to resolve some situations where ambiguities may occur. * Solve direct: option "solve_direct_strict_warnings" gives explicit warnings for lemma statements with trivial proofs. *** Prover IDE -- Isabelle/Scala/jEdit *** * More aggressive flushing of machine-generated input, according to system option editor_generated_input_delay (in addition to existing editor_input_delay for regular user edits). This may affect overall PIDE reactivity and CPU usage. * Syntactic indentation according to Isabelle outer syntax. Action "indent-lines" (shortcut C+i) indents the current line according to command keywords and some command substructure. Action "isabelle.newline" (shortcut ENTER) indents the old and the new line according to command keywords only; see also option "jedit_indent_newline". * Semantic indentation for unstructured proof scripts ('apply' etc.) via number of subgoals. This requires information of ongoing document processing and may thus lag behind, when the user is editing too quickly; see also option "jedit_script_indent" and "jedit_script_indent_limit". * Refined folding mode "isabelle" based on Isar syntax: 'next' and 'qed' are treated as delimiters for fold structure; 'begin' and 'end' structure of theory specifications is treated as well. * Command 'proof' provides information about proof outline with cases, e.g. for proof methods "cases", "induct", "goal_cases". * Completion templates for commands involving "begin ... end" blocks, e.g. 'context', 'notepad'. * Sidekick parser "isabelle-context" shows nesting of context blocks according to 'begin' and 'end' structure. * Highlighting of entity def/ref positions wrt. cursor. * Action "isabelle.select-entity" (shortcut CS+ENTER) selects all occurrences of the formal entity at the caret position. This facilitates systematic renaming. * PIDE document markup works across multiple Isar commands, e.g. the results established at the end of a proof are properly identified in the theorem statement. * Cartouche abbreviations work both for " and ` to accomodate typical situations where old ASCII notation may be updated. * Dockable window "Symbols" also provides access to 'abbrevs' from the outer syntax of the current theory buffer. This provides clickable syntax templates, including entries with empty abbrevs name (which are inaccessible via keyboard completion). * IDE support for the Isabelle/Pure bootstrap process, with the following independent stages: src/Pure/ROOT0.ML src/Pure/ROOT.ML src/Pure/Pure.thy src/Pure/ML_Bootstrap.thy The ML ROOT files act like quasi-theories in the context of theory ML_Bootstrap: this allows continuous checking of all loaded ML files. The theory files are presented with a modified header to import Pure from the running Isabelle instance. Results from changed versions of each stage are *not* propagated to the next stage, and isolated from the actual Isabelle/Pure that runs the IDE itself. The sequential dependencies of the above files are only observed for batch build. * Isabelle/ML and Standard ML files are presented in Sidekick with the tree structure of section headings: this special comment format is described in "implementation" chapter 0, e.g. (*** section ***). * Additional abbreviations for syntactic completion may be specified within the theory header as 'abbrevs'. The theory syntax for 'keywords' has been simplified accordingly: optional abbrevs need to go into the new 'abbrevs' section. * Global abbreviations via $ISABELLE_HOME/etc/abbrevs and $ISABELLE_HOME_USER/etc/abbrevs are no longer supported. Minor INCOMPATIBILITY, use 'abbrevs' within theory header instead. * Action "isabelle.keymap-merge" asks the user to resolve pending Isabelle keymap changes that are in conflict with the current jEdit keymap; non-conflicting changes are always applied implicitly. This action is automatically invoked on Isabelle/jEdit startup and thus increases chances that users see new keyboard shortcuts when re-using old keymaps. * ML and document antiquotations for file-systems paths are more uniform and diverse: @{path NAME} -- no file-system check @{file NAME} -- check for plain file @{dir NAME} -- check for directory Minor INCOMPATIBILITY, former uses of @{file} and @{file_unchecked} may have to be changed. *** Document preparation *** * New symbol \<circle>, e.g. for temporal operator. * New document and ML antiquotation @{locale} for locales, similar to existing antiquotation @{class}. * Mixfix annotations support delimiters like \<^control>\<open>cartouche\<close> -- this allows special forms of document output. * Raw LaTeX output now works via \<^latex>\<open>...\<close> instead of raw control symbol \<^raw:...>. INCOMPATIBILITY, notably for LaTeXsugar.thy and its derivatives. * \<^raw:...> symbols are no longer supported. * Old 'header' command is no longer supported (legacy since Isabelle2015). *** Isar *** * Many specification elements support structured statements with 'if' / 'for' eigen-context, e.g. 'axiomatization', 'abbreviation', 'definition', 'inductive', 'function'. * Toplevel theorem statements support eigen-context notation with 'if' / 'for' (in postfix), which corresponds to 'assumes' / 'fixes' in the traditional long statement form (in prefix). Local premises are called "that" or "assms", respectively. Empty premises are *not* bound in the context: INCOMPATIBILITY. * Command 'define' introduces a local (non-polymorphic) definition, with optional abstraction over local parameters. The syntax resembles 'definition' and 'obtain'. It fits better into the Isar language than old 'def', which is now a legacy feature. * Command 'obtain' supports structured statements with 'if' / 'for' context. * Command '\<proof>' is an alias for 'sorry', with different typesetting. E.g. to produce proof holes in examples and documentation. * The defining position of a literal fact \<open>prop\<close> is maintained more carefully, and made accessible as hyperlink in the Prover IDE. * Commands 'finally' and 'ultimately' used to expose the result as literal fact: this accidental behaviour has been discontinued. Rare INCOMPATIBILITY, use more explicit means to refer to facts in Isar. * Command 'axiomatization' has become more restrictive to correspond better to internal axioms as singleton facts with mandatory name. Minor INCOMPATIBILITY. * Proof methods may refer to the main facts via the dynamic fact "method_facts". This is particularly useful for Eisbach method definitions. * Proof method "use" allows to modify the main facts of a given method expression, e.g. (use facts in simp) (use facts in \<open>simp add: ...\<close>) * The old proof method "default" has been removed (legacy since Isabelle2016). INCOMPATIBILITY, use "standard" instead. *** Pure *** * Pure provides basic versions of proof methods "simp" and "simp_all" that only know about meta-equality (==). Potential INCOMPATIBILITY in theory imports that merge Pure with e.g. Main of Isabelle/HOL: the order is relevant to avoid confusion of Pure.simp vs. HOL.simp. * The command 'unfolding' and proof method "unfold" include a second stage where given equations are passed through the attribute "abs_def" before rewriting. This ensures that definitions are fully expanded, regardless of the actual parameters that are provided. Rare INCOMPATIBILITY in some corner cases: use proof method (simp only:) instead, or declare [[unfold_abs_def = false]] in the proof context. * Type-inference improves sorts of newly introduced type variables for the object-logic, using its base sort (i.e. HOL.type for Isabelle/HOL). Thus terms like "f x" or "\<And>x. P x" without any further syntactic context produce x::'a::type in HOL instead of x::'a::{} in Pure. Rare INCOMPATIBILITY, need to provide explicit type constraints for Pure types where this is really intended. *** HOL *** * New proof method "argo" using the built-in Argo solver based on SMT technology. The method can be used to prove goals of quantifier-free propositional logic, goals based on a combination of quantifier-free propositional logic with equality, and goals based on a combination of quantifier-free propositional logic with linear real arithmetic including min/max/abs. See HOL/ex/Argo_Examples.thy for examples. * The new "nunchaku" command integrates the Nunchaku model finder. The tool is experimental. See ~~/src/HOL/Nunchaku/Nunchaku.thy for details. * Metis: The problem encoding has changed very slightly. This might break existing proofs. INCOMPATIBILITY. * Sledgehammer: - The MaSh relevance filter is now faster than before. - Produce syntactically correct Vampire 4.0 problem files. * (Co)datatype package: - New commands for defining corecursive functions and reasoning about them in "~~/src/HOL/Library/BNF_Corec.thy": 'corec', 'corecursive', 'friend_of_corec', and 'corecursion_upto'; and 'corec_unique' proof method. See 'isabelle doc corec'. - The predicator :: ('a \<Rightarrow> bool) \<Rightarrow> 'a F \<Rightarrow> bool is now a first-class citizen in bounded natural functors. - 'primrec' now allows nested calls through the predicator in addition to the map function. - 'bnf' automatically discharges reflexive proof obligations. - 'bnf' outputs a slightly modified proof obligation expressing rel in terms of map and set (not giving a specification for rel makes this one reflexive). - 'bnf' outputs a new proof obligation expressing pred in terms of set (not giving a specification for pred makes this one reflexive). INCOMPATIBILITY: manual 'bnf' declarations may need adjustment. - Renamed lemmas: rel_prod_apply ~> rel_prod_inject pred_prod_apply ~> pred_prod_inject INCOMPATIBILITY. - The "size" plugin has been made compatible again with locales. - The theorems about "rel" and "set" may have a slightly different (but equivalent) form. INCOMPATIBILITY. * The 'coinductive' command produces a proper coinduction rule for mutual coinductive predicates. This new rule replaces the old rule, which exposed details of the internal fixpoint construction and was hard to use. INCOMPATIBILITY. * New abbreviations for negated existence (but not bounded existence): \<nexists>x. P x \<equiv> \<not> (\<exists>x. P x) \<nexists>!x. P x \<equiv> \<not> (\<exists>!x. P x) * The print mode "HOL" for ASCII syntax of binders "!", "?", "?!", "@" has been removed for output. It is retained for input only, until it is eliminated altogether. * The unique existence quantifier no longer provides 'binder' syntax, but uses syntax translations (as for bounded unique existence). Thus iterated quantification \<exists>!x y. P x y with its slightly confusing sequential meaning \<exists>!x. \<exists>!y. P x y is no longer possible. Instead, pattern abstraction admits simultaneous unique existence \<exists>!(x, y). P x y (analogous to existing notation \<exists>!(x, y)\<in>A. P x y). Potential INCOMPATIBILITY in rare situations. * Conventional syntax "%(). t" for unit abstractions. Slight syntactic INCOMPATIBILITY. * Renamed constants and corresponding theorems: setsum ~> sum setprod ~> prod listsum ~> sum_list listprod ~> prod_list INCOMPATIBILITY. * Sligthly more standardized theorem names: sgn_times ~> sgn_mult sgn_mult' ~> Real_Vector_Spaces.sgn_mult divide_zero_left ~> div_0 zero_mod_left ~> mod_0 divide_zero ~> div_by_0 divide_1 ~> div_by_1 nonzero_mult_divide_cancel_left ~> nonzero_mult_div_cancel_left div_mult_self1_is_id ~> nonzero_mult_div_cancel_left nonzero_mult_divide_cancel_right ~> nonzero_mult_div_cancel_right div_mult_self2_is_id ~> nonzero_mult_div_cancel_right is_unit_divide_mult_cancel_left ~> is_unit_div_mult_cancel_left is_unit_divide_mult_cancel_right ~> is_unit_div_mult_cancel_right mod_div_equality ~> div_mult_mod_eq mod_div_equality2 ~> mult_div_mod_eq mod_div_equality3 ~> mod_div_mult_eq mod_div_equality4 ~> mod_mult_div_eq minus_div_eq_mod ~> minus_div_mult_eq_mod minus_div_eq_mod2 ~> minus_mult_div_eq_mod minus_mod_eq_div ~> minus_mod_eq_div_mult minus_mod_eq_div2 ~> minus_mod_eq_mult_div div_mod_equality' ~> minus_mod_eq_div_mult [symmetric] mod_div_equality' ~> minus_div_mult_eq_mod [symmetric] zmod_zdiv_equality ~> mult_div_mod_eq [symmetric] zmod_zdiv_equality' ~> minus_div_mult_eq_mod [symmetric] Divides.mult_div_cancel ~> minus_mod_eq_mult_div [symmetric] mult_div_cancel ~> minus_mod_eq_mult_div [symmetric] zmult_div_cancel ~> minus_mod_eq_mult_div [symmetric] div_1 ~> div_by_Suc_0 mod_1 ~> mod_by_Suc_0 INCOMPATIBILITY. * New type class "idom_abs_sgn" specifies algebraic properties of sign and absolute value functions. Type class "sgn_if" has disappeared. Slight INCOMPATIBILITY. * Dedicated syntax LENGTH('a) for length of types. * Characters (type char) are modelled as finite algebraic type corresponding to {0..255}. - Logical representation: * 0 is instantiated to the ASCII zero character. * All other characters are represented as "Char n" with n being a raw numeral expression less than 256. * Expressions of the form "Char n" with n greater than 255 are non-canonical. - Printing and parsing: * Printable characters are printed and parsed as "CHR ''\<dots>''" (as before). * The ASCII zero character is printed and parsed as "0". * All other canonical characters are printed as "CHR 0xXX" with XX being the hexadecimal character code. "CHR n" is parsable for every numeral expression n. * Non-canonical characters have no special syntax and are printed as their logical representation. - Explicit conversions from and to the natural numbers are provided as char_of_nat, nat_of_char (as before). - The auxiliary nibble type has been discontinued. INCOMPATIBILITY. * Type class "div" with operation "mod" renamed to type class "modulo" with operation "modulo", analogously to type class "divide". This eliminates the need to qualify any of those names in the presence of infix "mod" syntax. INCOMPATIBILITY. * Statements and proofs of Knaster-Tarski fixpoint combinators lfp/gfp have been clarified. The fixpoint properties are lfp_fixpoint, its symmetric lfp_unfold (as before), and the duals for gfp. Auxiliary items for the proof (lfp_lemma2 etc.) are no longer exported, but can be easily recovered by composition with eq_refl. Minor INCOMPATIBILITY. * Constant "surj" is a mere input abbreviation, to avoid hiding an equation in term output. Minor INCOMPATIBILITY. * Command 'code_reflect' accepts empty constructor lists for datatypes, which renders those abstract effectively. * Command 'export_code' checks given constants for abstraction violations: a small guarantee that given constants specify a safe interface for the generated code. * Code generation for Scala: ambiguous implicts in class diagrams are spelt out explicitly. * Static evaluators (Code_Evaluation.static_* in Isabelle/ML) rely on explicitly provided auxiliary definitions for required type class dictionaries rather than half-working magic. INCOMPATIBILITY, see the tutorial on code generation for details. * Theory Set_Interval: substantial new theorems on indexed sums and products. * Locale bijection establishes convenient default simp rules such as "inv f (f a) = a" for total bijections. * Abstract locales semigroup, abel_semigroup, semilattice, semilattice_neutr, ordering, ordering_top, semilattice_order, semilattice_neutr_order, comm_monoid_set, semilattice_set, semilattice_neutr_set, semilattice_order_set, semilattice_order_neutr_set monoid_list, comm_monoid_list, comm_monoid_list_set, comm_monoid_mset, comm_monoid_fun use boldified syntax uniformly that does not clash with corresponding global syntax. INCOMPATIBILITY. * Former locale lifting_syntax is now a bundle, which is easier to include in a local context or theorem statement, e.g. "context includes lifting_syntax begin ... end". Minor INCOMPATIBILITY. * Some old / obsolete theorems have been renamed / removed, potential INCOMPATIBILITY. nat_less_cases -- removed, use linorder_cases instead inv_image_comp -- removed, use image_inv_f_f instead image_surj_f_inv_f ~> image_f_inv_f * Some theorems about groups and orders have been generalised from groups to semi-groups that are also monoids: le_add_same_cancel1 le_add_same_cancel2 less_add_same_cancel1 less_add_same_cancel2 add_le_same_cancel1 add_le_same_cancel2 add_less_same_cancel1 add_less_same_cancel2 * Some simplifications theorems about rings have been removed, since superseeded by a more general version: less_add_cancel_left_greater_zero ~> less_add_same_cancel1 less_add_cancel_right_greater_zero ~> less_add_same_cancel2 less_eq_add_cancel_left_greater_eq_zero ~> le_add_same_cancel1 less_eq_add_cancel_right_greater_eq_zero ~> le_add_same_cancel2 less_eq_add_cancel_left_less_eq_zero ~> add_le_same_cancel1 less_eq_add_cancel_right_less_eq_zero ~> add_le_same_cancel2 less_add_cancel_left_less_zero ~> add_less_same_cancel1 less_add_cancel_right_less_zero ~> add_less_same_cancel2 INCOMPATIBILITY. * Renamed split_if -> if_split and split_if_asm -> if_split_asm to resemble the f.split naming convention, INCOMPATIBILITY. * Added class topological_monoid. * The following theorems have been renamed: setsum_left_distrib ~> sum_distrib_right setsum_right_distrib ~> sum_distrib_left INCOMPATIBILITY. * Compound constants INFIMUM and SUPREMUM are mere abbreviations now. INCOMPATIBILITY. * "Gcd (f ` A)" and "Lcm (f ` A)" are printed with optional comprehension-like syntax analogously to "Inf (f ` A)" and "Sup (f ` A)". * Class semiring_Lcd merged into semiring_Gcd. INCOMPATIBILITY. * The type class ordered_comm_monoid_add is now called ordered_cancel_comm_monoid_add. A new type class ordered_comm_monoid_add is introduced as the combination of ordered_ab_semigroup_add + comm_monoid_add. INCOMPATIBILITY. * Introduced the type classes canonically_ordered_comm_monoid_add and dioid. * Introduced the type class ordered_ab_semigroup_monoid_add_imp_le. When instantiating linordered_semiring_strict and ordered_ab_group_add, an explicit instantiation of ordered_ab_semigroup_monoid_add_imp_le might be required. INCOMPATIBILITY. * Dropped various legacy fact bindings, whose replacements are often of a more general type also: lcm_left_commute_nat ~> lcm.left_commute lcm_left_commute_int ~> lcm.left_commute gcd_left_commute_nat ~> gcd.left_commute gcd_left_commute_int ~> gcd.left_commute gcd_greatest_iff_nat ~> gcd_greatest_iff gcd_greatest_iff_int ~> gcd_greatest_iff coprime_dvd_mult_nat ~> coprime_dvd_mult coprime_dvd_mult_int ~> coprime_dvd_mult zpower_numeral_even ~> power_numeral_even gcd_mult_cancel_nat ~> gcd_mult_cancel gcd_mult_cancel_int ~> gcd_mult_cancel div_gcd_coprime_nat ~> div_gcd_coprime div_gcd_coprime_int ~> div_gcd_coprime zpower_numeral_odd ~> power_numeral_odd zero_less_int_conv ~> of_nat_0_less_iff gcd_greatest_nat ~> gcd_greatest gcd_greatest_int ~> gcd_greatest coprime_mult_nat ~> coprime_mult coprime_mult_int ~> coprime_mult lcm_commute_nat ~> lcm.commute lcm_commute_int ~> lcm.commute int_less_0_conv ~> of_nat_less_0_iff gcd_commute_nat ~> gcd.commute gcd_commute_int ~> gcd.commute Gcd_insert_nat ~> Gcd_insert Gcd_insert_int ~> Gcd_insert of_int_int_eq ~> of_int_of_nat_eq lcm_least_nat ~> lcm_least lcm_least_int ~> lcm_least lcm_assoc_nat ~> lcm.assoc lcm_assoc_int ~> lcm.assoc int_le_0_conv ~> of_nat_le_0_iff int_eq_0_conv ~> of_nat_eq_0_iff Gcd_empty_nat ~> Gcd_empty Gcd_empty_int ~> Gcd_empty gcd_assoc_nat ~> gcd.assoc gcd_assoc_int ~> gcd.assoc zero_zle_int ~> of_nat_0_le_iff lcm_dvd2_nat ~> dvd_lcm2 lcm_dvd2_int ~> dvd_lcm2 lcm_dvd1_nat ~> dvd_lcm1 lcm_dvd1_int ~> dvd_lcm1 gcd_zero_nat ~> gcd_eq_0_iff gcd_zero_int ~> gcd_eq_0_iff gcd_dvd2_nat ~> gcd_dvd2 gcd_dvd2_int ~> gcd_dvd2 gcd_dvd1_nat ~> gcd_dvd1 gcd_dvd1_int ~> gcd_dvd1 int_numeral ~> of_nat_numeral lcm_ac_nat ~> ac_simps lcm_ac_int ~> ac_simps gcd_ac_nat ~> ac_simps gcd_ac_int ~> ac_simps abs_int_eq ~> abs_of_nat zless_int ~> of_nat_less_iff zdiff_int ~> of_nat_diff zadd_int ~> of_nat_add int_mult ~> of_nat_mult int_Suc ~> of_nat_Suc inj_int ~> inj_of_nat int_1 ~> of_nat_1 int_0 ~> of_nat_0 Lcm_empty_nat ~> Lcm_empty Lcm_empty_int ~> Lcm_empty Lcm_insert_nat ~> Lcm_insert Lcm_insert_int ~> Lcm_insert comp_fun_idem_gcd_nat ~> comp_fun_idem_gcd comp_fun_idem_gcd_int ~> comp_fun_idem_gcd comp_fun_idem_lcm_nat ~> comp_fun_idem_lcm comp_fun_idem_lcm_int ~> comp_fun_idem_lcm Lcm_eq_0 ~> Lcm_eq_0_I Lcm0_iff ~> Lcm_0_iff Lcm_dvd_int ~> Lcm_least divides_mult_nat ~> divides_mult divides_mult_int ~> divides_mult lcm_0_nat ~> lcm_0_right lcm_0_int ~> lcm_0_right lcm_0_left_nat ~> lcm_0_left lcm_0_left_int ~> lcm_0_left dvd_gcd_D1_nat ~> dvd_gcdD1 dvd_gcd_D1_int ~> dvd_gcdD1 dvd_gcd_D2_nat ~> dvd_gcdD2 dvd_gcd_D2_int ~> dvd_gcdD2 coprime_dvd_mult_iff_nat ~> coprime_dvd_mult_iff coprime_dvd_mult_iff_int ~> coprime_dvd_mult_iff realpow_minus_mult ~> power_minus_mult realpow_Suc_le_self ~> power_Suc_le_self dvd_Gcd, dvd_Gcd_nat, dvd_Gcd_int removed in favour of Gcd_greatest INCOMPATIBILITY. * Renamed HOL/Quotient_Examples/FSet.thy to HOL/Quotient_Examples/Quotient_FSet.thy INCOMPATIBILITY. * Session HOL-Library: theory FinFun bundles "finfun_syntax" and "no_finfun_syntax" allow to control optional syntax in local contexts; this supersedes former theory FinFun_Syntax. INCOMPATIBILITY, e.g. use "unbundle finfun_syntax" to imitate import of "~~/src/HOL/Library/FinFun_Syntax". * Session HOL-Library: theory Multiset_Permutations (executably) defines the set of permutations of a given set or multiset, i.e. the set of all lists that contain every element of the carrier (multi-)set exactly once. * Session HOL-Library: multiset membership is now expressed using set_mset rather than count. - Expressions "count M a > 0" and similar simplify to membership by default. - Converting between "count M a = 0" and non-membership happens using equations count_eq_zero_iff and not_in_iff. - Rules count_inI and in_countE obtain facts of the form "count M a = n" from membership. - Rules count_in_diffI and in_diff_countE obtain facts of the form "count M a = n + count N a" from membership on difference sets. INCOMPATIBILITY. * Session HOL-Library: theory LaTeXsugar uses new-style "dummy_pats" for displaying equations in functional programming style --- variables present on the left-hand but not on the righ-hand side are replaced by underscores. * Session HOL-Library: theory Combinator_PER provides combinator to build partial equivalence relations from a predicate and an equivalence relation. * Session HOL-Library: theory Perm provides basic facts about almost everywhere fix bijections. * Session HOL-Library: theory Normalized_Fraction allows viewing an element of a field of fractions as a normalized fraction (i.e. a pair of numerator and denominator such that the two are coprime and the denominator is normalized wrt. unit factors). * Session HOL-NSA has been renamed to HOL-Nonstandard_Analysis. * Session HOL-Multivariate_Analysis has been renamed to HOL-Analysis. * Session HOL-Analysis: measure theory has been moved here from HOL-Probability. When importing HOL-Analysis some theorems need additional name spaces prefixes due to name clashes. INCOMPATIBILITY. * Session HOL-Analysis: more complex analysis including Cauchy's inequality, Liouville theorem, open mapping theorem, maximum modulus principle, Residue theorem, Schwarz Lemma. * Session HOL-Analysis: Theory of polyhedra: faces, extreme points, polytopes, and the Krein–Milman Minkowski theorem. * Session HOL-Analysis: Numerous results ported from the HOL Light libraries: homeomorphisms, continuous function extensions, invariance of domain. * Session HOL-Probability: the type of emeasure and nn_integral was changed from ereal to ennreal, INCOMPATIBILITY. emeasure :: 'a measure \<Rightarrow> 'a set \<Rightarrow> ennreal nn_integral :: 'a measure \<Rightarrow> ('a \<Rightarrow> ennreal) \<Rightarrow> ennreal * Session HOL-Probability: Code generation and QuickCheck for Probability Mass Functions. * Session HOL-Probability: theory Random_Permutations contains some theory about choosing a permutation of a set uniformly at random and folding over a list in random order. * Session HOL-Probability: theory SPMF formalises discrete subprobability distributions. * Session HOL-Library: the names of multiset theorems have been normalised to distinguish which ordering the theorems are about mset_less_eqI ~> mset_subset_eqI mset_less_insertD ~> mset_subset_insertD mset_less_eq_count ~> mset_subset_eq_count mset_less_diff_self ~> mset_subset_diff_self mset_le_exists_conv ~> mset_subset_eq_exists_conv mset_le_mono_add_right_cancel ~> mset_subset_eq_mono_add_right_cancel mset_le_mono_add_left_cancel ~> mset_subset_eq_mono_add_left_cancel mset_le_mono_add ~> mset_subset_eq_mono_add mset_le_add_left ~> mset_subset_eq_add_left mset_le_add_right ~> mset_subset_eq_add_right mset_le_single ~> mset_subset_eq_single mset_le_multiset_union_diff_commute ~> mset_subset_eq_multiset_union_diff_commute diff_le_self ~> diff_subset_eq_self mset_leD ~> mset_subset_eqD mset_lessD ~> mset_subsetD mset_le_insertD ~> mset_subset_eq_insertD mset_less_of_empty ~> mset_subset_of_empty mset_less_size ~> mset_subset_size wf_less_mset_rel ~> wf_subset_mset_rel count_le_replicate_mset_le ~> count_le_replicate_mset_subset_eq mset_remdups_le ~> mset_remdups_subset_eq ms_lesseq_impl ~> subset_eq_mset_impl Some functions have been renamed: ms_lesseq_impl -> subset_eq_mset_impl * HOL-Library: multisets are now ordered with the multiset ordering #\<subseteq># ~> \<le> #\<subset># ~> < le_multiset ~> less_eq_multiset less_multiset ~> le_multiset INCOMPATIBILITY. * Session HOL-Library: the prefix multiset_order has been discontinued: the theorems can be directly accessed. As a consequence, the lemmas "order_multiset" and "linorder_multiset" have been discontinued, and the interpretations "multiset_linorder" and "multiset_wellorder" have been replaced by instantiations. INCOMPATIBILITY. * Session HOL-Library: some theorems about the multiset ordering have been renamed: le_multiset_def ~> less_eq_multiset_def less_multiset_def ~> le_multiset_def less_eq_imp_le_multiset ~> subset_eq_imp_le_multiset mult_less_not_refl ~> mset_le_not_refl mult_less_trans ~> mset_le_trans mult_less_not_sym ~> mset_le_not_sym mult_less_asym ~> mset_le_asym mult_less_irrefl ~> mset_le_irrefl union_less_mono2{,1,2} ~> union_le_mono2{,1,2} le_multiset\<^sub>H\<^sub>O ~> less_eq_multiset\<^sub>H\<^sub>O le_multiset_total ~> less_eq_multiset_total less_multiset_right_total ~> subset_eq_imp_le_multiset le_multiset_empty_left ~> less_eq_multiset_empty_left le_multiset_empty_right ~> less_eq_multiset_empty_right less_multiset_empty_right ~> le_multiset_empty_left less_multiset_empty_left ~> le_multiset_empty_right union_less_diff_plus ~> union_le_diff_plus ex_gt_count_imp_less_multiset ~> ex_gt_count_imp_le_multiset less_multiset_plus_left_nonempty ~> le_multiset_plus_left_nonempty le_multiset_plus_right_nonempty ~> le_multiset_plus_right_nonempty INCOMPATIBILITY. * Session HOL-Library: the lemma mset_map has now the attribute [simp]. INCOMPATIBILITY. * Session HOL-Library: some theorems about multisets have been removed. INCOMPATIBILITY, use the following replacements: le_multiset_plus_plus_left_iff ~> add_less_cancel_right less_multiset_plus_plus_left_iff ~> add_less_cancel_right le_multiset_plus_plus_right_iff ~> add_less_cancel_left less_multiset_plus_plus_right_iff ~> add_less_cancel_left add_eq_self_empty_iff ~> add_cancel_left_right mset_subset_add_bothsides ~> subset_mset.add_less_cancel_right mset_less_add_bothsides ~> subset_mset.add_less_cancel_right mset_le_add_bothsides ~> subset_mset.add_less_cancel_right empty_inter ~> subset_mset.inf_bot_left inter_empty ~> subset_mset.inf_bot_right empty_sup ~> subset_mset.sup_bot_left sup_empty ~> subset_mset.sup_bot_right bdd_below_multiset ~> subset_mset.bdd_above_bot subset_eq_empty ~> subset_mset.le_zero_eq le_empty ~> subset_mset.le_zero_eq mset_subset_empty_nonempty ~> subset_mset.zero_less_iff_neq_zero mset_less_empty_nonempty ~> subset_mset.zero_less_iff_neq_zero * Session HOL-Library: some typeclass constraints about multisets have been reduced from ordered or linordered to preorder. Multisets have the additional typeclasses order_bot, no_top, ordered_ab_semigroup_add_imp_le, ordered_cancel_comm_monoid_add, linordered_cancel_ab_semigroup_add, and ordered_ab_semigroup_monoid_add_imp_le. INCOMPATIBILITY. * Session HOL-Library: there are some new simplification rules about multisets, the multiset ordering, and the subset ordering on multisets. INCOMPATIBILITY. * Session HOL-Library: the subset ordering on multisets has now the interpretations ordered_ab_semigroup_monoid_add_imp_le and bounded_lattice_bot. INCOMPATIBILITY. * Session HOL-Library, theory Multiset: single has been removed in favor of add_mset that roughly corresponds to Set.insert. Some theorems have removed or changed: single_not_empty ~> add_mset_not_empty or empty_not_add_mset fold_mset_insert ~> fold_mset_add_mset image_mset_insert ~> image_mset_add_mset union_single_eq_diff multi_self_add_other_not_self diff_single_eq_union INCOMPATIBILITY. * Session HOL-Library, theory Multiset: some theorems have been changed to use add_mset instead of single: mset_add multi_self_add_other_not_self diff_single_eq_union union_single_eq_diff union_single_eq_member add_eq_conv_diff insert_noteq_member add_eq_conv_ex multi_member_split multiset_add_sub_el_shuffle mset_subset_eq_insertD mset_subset_insertD insert_subset_eq_iff insert_union_subset_iff multi_psub_of_add_self inter_add_left1 inter_add_left2 inter_add_right1 inter_add_right2 sup_union_left1 sup_union_left2 sup_union_right1 sup_union_right2 size_eq_Suc_imp_eq_union multi_nonempty_split mset_insort mset_update mult1I less_add mset_zip_take_Cons_drop_twice rel_mset_Zero msed_map_invL msed_map_invR msed_rel_invL msed_rel_invR le_multiset_right_total multiset_induct multiset_induct2_size multiset_induct2 INCOMPATIBILITY. * Session HOL-Library, theory Multiset: the definitions of some constants have changed to use add_mset instead of adding a single element: image_mset mset replicate_mset mult1 pred_mset rel_mset' mset_insort INCOMPATIBILITY. * Session HOL-Library, theory Multiset: due to the above changes, the attributes of some multiset theorems have been changed: insert_DiffM [] ~> [simp] insert_DiffM2 [simp] ~> [] diff_add_mset_swap [simp] fold_mset_add_mset [simp] diff_diff_add [simp] (for multisets only) diff_cancel [simp] ~> [] count_single [simp] ~> [] set_mset_single [simp] ~> [] size_multiset_single [simp] ~> [] size_single [simp] ~> [] image_mset_single [simp] ~> [] mset_subset_eq_mono_add_right_cancel [simp] ~> [] mset_subset_eq_mono_add_left_cancel [simp] ~> [] fold_mset_single [simp] ~> [] subset_eq_empty [simp] ~> [] empty_sup [simp] ~> [] sup_empty [simp] ~> [] inter_empty [simp] ~> [] empty_inter [simp] ~> [] INCOMPATIBILITY. * Session HOL-Library, theory Multiset: the order of the variables in the second cases of multiset_induct, multiset_induct2_size, multiset_induct2 has been changed (e.g. Add A a ~> Add a A). INCOMPATIBILITY. * Session HOL-Library, theory Multiset: there is now a simplification procedure on multisets. It mimics the behavior of the procedure on natural numbers. INCOMPATIBILITY. * Session HOL-Library, theory Multiset: renamed sums and products of multisets: msetsum ~> sum_mset msetprod ~> prod_mset * Session HOL-Library, theory Multiset: the notation for intersection and union of multisets have been changed: #\<inter> ~> \<inter># #\<union> ~> \<union># INCOMPATIBILITY. * Session HOL-Library, theory Multiset: the lemma one_step_implies_mult_aux on multisets has been removed, use one_step_implies_mult instead. INCOMPATIBILITY. * Session HOL-Library: theory Complete_Partial_Order2 provides reasoning support for monotonicity and continuity in chain-complete partial orders and about admissibility conditions for fixpoint inductions. * Session HOL-Library: theory Library/Polynomial contains also derivation of polynomials (formerly in Library/Poly_Deriv) but not gcd/lcm on polynomials over fields. This has been moved to a separate theory Library/Polynomial_GCD_euclidean.thy, to pave way for a possible future different type class instantiation for polynomials over factorial rings. INCOMPATIBILITY. * Session HOL-Library: theory Sublist provides function "prefixes" with the following renaming prefixeq -> prefix prefix -> strict_prefix suffixeq -> suffix suffix -> strict_suffix Added theory of longest common prefixes. * Session HOL-Number_Theory: algebraic foundation for primes: Generalisation of predicate "prime" and introduction of predicates "prime_elem", "irreducible", a "prime_factorization" function, and the "factorial_ring" typeclass with instance proofs for nat, int, poly. Some theorems now have different names, most notably "prime_def" is now "prime_nat_iff". INCOMPATIBILITY. * Session Old_Number_Theory has been removed, after porting remaining theories. * Session HOL-Types_To_Sets provides an experimental extension of Higher-Order Logic to allow translation of types to sets. *** ML *** * Integer.gcd and Integer.lcm use efficient operations from the Poly/ML library (notably for big integers). Subtle change of semantics: Integer.gcd and Integer.lcm both normalize the sign, results are never negative. This coincides with the definitions in HOL/GCD.thy. INCOMPATIBILITY. * Structure Rat for rational numbers is now an integral part of Isabelle/ML, with special notation @int/nat or @int for numerals (an abbreviation for antiquotation @{Pure.rat argument}) and ML pretty printing. Standard operations on type Rat.rat are provided via ad-hoc overloading of + - * / < <= > >= ~ abs. INCOMPATIBILITY, need to use + instead of +/ etc. Moreover, exception Rat.DIVZERO has been superseded by General.Div. * ML antiquotation @{path} is superseded by @{file}, which ensures that the argument is a plain file. Minor INCOMPATIBILITY. * Antiquotation @{make_string} is available during Pure bootstrap -- with approximative output quality. * Low-level ML system structures (like PolyML and RunCall) are no longer exposed to Isabelle/ML user-space. Potential INCOMPATIBILITY. * The ML function "ML" provides easy access to run-time compilation. This is particularly useful for conditional compilation, without requiring separate files. * Option ML_exception_debugger controls detailed exception trace via the Poly/ML debugger. Relevant ML modules need to be compiled beforehand with ML_file_debug, or with ML_file and option ML_debugger enabled. Note debugger information requires consirable time and space: main Isabelle/HOL with full debugger support may need ML_system_64. * Local_Theory.restore has been renamed to Local_Theory.reset to emphasize its disruptive impact on the cumulative context, notably the scope of 'private' or 'qualified' names. Note that Local_Theory.reset is only appropriate when targets are managed, e.g. starting from a global theory and returning to it. Regular definitional packages should use balanced blocks of Local_Theory.open_target versus Local_Theory.close_target instead. Rare INCOMPATIBILITY. * Structure TimeLimit (originally from the SML/NJ library) has been replaced by structure Timeout, with slightly different signature. INCOMPATIBILITY. * Discontinued cd and pwd operations, which are not well-defined in a multi-threaded environment. Note that files are usually located relatively to the master directory of a theory (see also File.full_path). Potential INCOMPATIBILITY. * Binding.empty_atts supersedes Thm.empty_binding and Attrib.empty_binding. Minor INCOMPATIBILITY. *** System *** * SML/NJ and old versions of Poly/ML are no longer supported. * Poly/ML heaps now follow the hierarchy of sessions, and thus require much less disk space. * The Isabelle ML process is now managed directly by Isabelle/Scala, and shell scripts merely provide optional command-line access. In particular: . Scala module ML_Process to connect to the raw ML process, with interaction via stdin/stdout/stderr or in batch mode; . command-line tool "isabelle console" as interactive wrapper; . command-line tool "isabelle process" as batch mode wrapper. * The executable "isabelle_process" has been discontinued. Tools and prover front-ends should use ML_Process or Isabelle_Process in Isabelle/Scala. INCOMPATIBILITY. * New command-line tool "isabelle process" supports ML evaluation of literal expressions (option -e) or files (option -f) in the context of a given heap image. Errors lead to premature exit of the ML process with return code 1. * The command-line tool "isabelle build" supports option -N for cyclic shuffling of NUMA CPU nodes. This may help performance tuning on Linux servers with separate CPU/memory modules. * System option "threads" (for the size of the Isabelle/ML thread farm) is also passed to the underlying ML runtime system as --gcthreads, unless there is already a default provided via ML_OPTIONS settings. * System option "checkpoint" helps to fine-tune the global heap space management of isabelle build. This is relevant for big sessions that may exhaust the small 32-bit address space of the ML process (which is used by default). * System option "profiling" specifies the mode for global ML profiling in "isabelle build". Possible values are "time", "allocations". The command-line tool "isabelle profiling_report" helps to digest the resulting log files. * System option "ML_process_policy" specifies an optional command prefix for the underlying ML process, e.g. to control CPU affinity on multiprocessor systems. The "isabelle jedit" tool allows to override the implicit default via option -p. * Command-line tool "isabelle console" provides option -r to help to bootstrapping Isabelle/Pure interactively. * Command-line tool "isabelle yxml" has been discontinued. INCOMPATIBILITY, use operations from the modules "XML" and "YXML" in Isabelle/ML or Isabelle/Scala. * Many Isabelle tools that require a Java runtime system refer to the settings ISABELLE_TOOL_JAVA_OPTIONS32 / ISABELLE_TOOL_JAVA_OPTIONS64, depending on the underlying platform. The settings for "isabelle build" ISABELLE_BUILD_JAVA_OPTIONS32 / ISABELLE_BUILD_JAVA_OPTIONS64 have been discontinued. Potential INCOMPATIBILITY. * The Isabelle system environment always ensures that the main executables are found within the shell search $PATH: "isabelle" and "isabelle_scala_script". * Isabelle tools may consist of .scala files: the Scala compiler is invoked on the spot. The source needs to define some object that extends Isabelle_Tool.Body. * File.bash_string, File.bash_path etc. represent Isabelle/ML and Isabelle/Scala strings authentically within GNU bash. This is useful to produce robust shell scripts under program control, without worrying about spaces or special characters. Note that user output works via Path.print (ML) or Path.toString (Scala). INCOMPATIBILITY, the old (and less versatile) operations File.shell_quote, File.shell_path etc. have been discontinued. * The isabelle_java executable allows to run a Java process within the name space of Java and Scala components that are bundled with Isabelle, but without the Isabelle settings environment. * Isabelle/Scala: the SSH module supports ssh and sftp connections, for remote command-execution and file-system access. This resembles operations from module File and Isabelle_System to some extent. Note that Path specifications need to be resolved remotely via ssh.remote_path instead of File.standard_path: the implicit process environment is different, Isabelle settings are not available remotely. * Isabelle/Scala: the Mercurial module supports repositories via the regular hg command-line interface. The repositroy clone and working directory may reside on a local or remote file-system (via ssh connection). New in Isabelle2016 (February 2016) ----------------------------------- *** General *** * Eisbach is now based on Pure instead of HOL. Objects-logics may import either the theory ~~/src/HOL/Eisbach/Eisbach (for HOL etc.) or ~~/src/HOL/Eisbach/Eisbach_Old_Appl_Syntax (for FOL, ZF etc.). Note that the HOL-Eisbach session located in ~~/src/HOL/Eisbach/ contains further examples that do require HOL. * Better resource usage on all platforms (Linux, Windows, Mac OS X) for both Isabelle/ML and Isabelle/Scala. Slightly reduced heap space usage. * Former "xsymbols" syntax with Isabelle symbols is used by default, without any special print mode. Important ASCII replacement syntax remains available under print mode "ASCII", but less important syntax has been removed (see below). * Support for more arrow symbols, with rendering in LaTeX and Isabelle fonts: \<Lleftarrow> \<Rrightarrow> \<longlongleftarrow> \<longlongrightarrow> \<longlonglongleftarrow> \<longlonglongrightarrow>. * Special notation \<struct> for the first implicit 'structure' in the context has been discontinued. Rare INCOMPATIBILITY, use explicit structure name instead, notably in indexed notation with block-subscript (e.g. \<odot>\<^bsub>A\<^esub>). * The glyph for \<diamond> in the IsabelleText font now corresponds better to its counterpart \<box> as quantifier-like symbol. A small diamond is available as \<diamondop>; the old symbol \<struct> loses this rendering and any special meaning. * Syntax for formal comments "-- text" now also supports the symbolic form "\<comment> text". Command-line tool "isabelle update_cartouches -c" helps to update old sources. * Toplevel theorem statements have been simplified as follows: theorems ~> lemmas schematic_lemma ~> schematic_goal schematic_theorem ~> schematic_goal schematic_corollary ~> schematic_goal Command-line tool "isabelle update_theorems" updates theory sources accordingly. * Toplevel theorem statement 'proposition' is another alias for 'theorem'. * The old 'defs' command has been removed (legacy since Isabelle2014). INCOMPATIBILITY, use regular 'definition' instead. Overloaded and/or deferred definitions require a surrounding 'overloading' block. *** Prover IDE -- Isabelle/Scala/jEdit *** * IDE support for the source-level debugger of Poly/ML, to work with Isabelle/ML and official Standard ML. Option "ML_debugger" and commands 'ML_file_debug', 'ML_file_no_debug', 'SML_file_debug', 'SML_file_no_debug' control compilation of sources with or without debugging information. The Debugger panel allows to set breakpoints (via context menu), step through stopped threads, evaluate local ML expressions etc. At least one Debugger view needs to be active to have any effect on the running ML program. * The State panel manages explicit proof state output, with dynamic auto-update according to cursor movement. Alternatively, the jEdit action "isabelle.update-state" (shortcut S+ENTER) triggers manual update. * The Output panel no longer shows proof state output by default, to avoid GUI overcrowding. INCOMPATIBILITY, use the State panel instead or enable option "editor_output_state". * The text overview column (status of errors, warnings etc.) is updated asynchronously, leading to much better editor reactivity. Moreover, the full document node content is taken into account. The width of the column is scaled according to the main text area font, for improved visibility. * The main text area no longer changes its color hue in outdated situations. The text overview column takes over the role to indicate unfinished edits in the PIDE pipeline. This avoids flashing text display due to ad-hoc updates by auxiliary GUI components, such as the State panel. * Slightly improved scheduling for urgent print tasks (e.g. command state output, interactive queries) wrt. long-running background tasks. * Completion of symbols via prefix of \<name> or \<^name> or \name is always possible, independently of the language context. It is never implicit: a popup will show up unconditionally. * Additional abbreviations for syntactic completion may be specified in $ISABELLE_HOME/etc/abbrevs and $ISABELLE_HOME_USER/etc/abbrevs, with support for simple templates using ASCII 007 (bell) as placeholder. * Symbols \<oplus>, \<Oplus>, \<otimes>, \<Otimes>, \<odot>, \<Odot>, \<ominus>, \<oslash> no longer provide abbreviations for completion like "+o", "*o", ".o" etc. -- due to conflicts with other ASCII syntax. INCOMPATIBILITY, use plain backslash-completion or define suitable abbreviations in $ISABELLE_HOME_USER/etc/abbrevs. * Action "isabelle-emph" (with keyboard shortcut C+e LEFT) controls emphasized text style; the effect is visible in document output, not in the editor. * Action "isabelle-reset" now uses keyboard shortcut C+e BACK_SPACE, instead of former C+e LEFT. * The command-line tool "isabelle jedit" and the isabelle.Main application wrapper treat the default $USER_HOME/Scratch.thy more uniformly, and allow the dummy file argument ":" to open an empty buffer instead. * New command-line tool "isabelle jedit_client" allows to connect to an already running Isabelle/jEdit process. This achieves the effect of single-instance applications seen on common GUI desktops. * The default look-and-feel for Linux is the traditional "Metal", which works better with GUI scaling for very high-resolution displays (e.g. 4K). Moreover, it is generally more robust than "Nimbus". * Update to jedit-5.3.0, with improved GUI scaling and support of high-resolution displays (e.g. 4K). * The main Isabelle executable is managed as single-instance Desktop application uniformly on all platforms: Linux, Windows, Mac OS X. *** Document preparation *** * Commands 'paragraph' and 'subparagraph' provide additional section headings. Thus there are 6 levels of standard headings, as in HTML. * Command 'text_raw' has been clarified: input text is processed as in 'text' (with antiquotations and control symbols). The key difference is the lack of the surrounding isabelle markup environment in output. * Text is structured in paragraphs and nested lists, using notation that is similar to Markdown. The control symbols for list items are as follows: \<^item> itemize \<^enum> enumerate \<^descr> description * There is a new short form for antiquotations with a single argument that is a cartouche: \<^name>\<open>...\<close> is equivalent to @{name \<open>...\<close>} and \<open>...\<close> without control symbol is equivalent to @{cartouche \<open>...\<close>}. \<^name> without following cartouche is equivalent to @{name}. The standard Isabelle fonts provide glyphs to render important control symbols, e.g. "\<^verbatim>", "\<^emph>", "\<^bold>". * Antiquotations @{noindent}, @{smallskip}, @{medskip}, @{bigskip} with corresponding control symbols \<^noindent>, \<^smallskip>, \<^medskip>, \<^bigskip> specify spacing formally, using standard LaTeX macros of the same names. * Antiquotation @{cartouche} in Isabelle/Pure is the same as @{text}. Consequently, \<open>...\<close> without any decoration prints literal quasi-formal text. Command-line tool "isabelle update_cartouches -t" helps to update old sources, by approximative patching of the content of string and cartouche tokens seen in theory sources. * The @{text} antiquotation now ignores the antiquotation option "source". The given text content is output unconditionally, without any surrounding quotes etc. Subtle INCOMPATIBILITY, put quotes into the argument where they are really intended, e.g. @{text \<open>"foo"\<close>}. Initial or terminal spaces are ignored. * Antiquotations @{emph} and @{bold} output LaTeX source recursively, adding appropriate text style markup. These may be used in the short form \<^emph>\<open>...\<close> and \<^bold>\<open>...\<close>. * Document antiquotation @{footnote} outputs LaTeX source recursively, marked as \footnote{}. This may be used in the short form \<^footnote>\<open>...\<close>. * Antiquotation @{verbatim [display]} supports option "indent". * Antiquotation @{theory_text} prints uninterpreted theory source text (Isar outer syntax with command keywords etc.). This may be used in the short form \<^theory_text>\<open>...\<close>. @{theory_text [display]} supports option "indent". * Antiquotation @{doc ENTRY} provides a reference to the given documentation, with a hyperlink in the Prover IDE. * Antiquotations @{command}, @{method}, @{attribute} print checked entities of the Isar language. * HTML presentation uses the standard IsabelleText font and Unicode rendering of Isabelle symbols like Isabelle/Scala/jEdit. The former print mode "HTML" loses its special meaning. *** Isar *** * Local goals ('have', 'show', 'hence', 'thus') allow structured rule statements like fixes/assumes/shows in theorem specifications, but the notation is postfix with keywords 'if' (or 'when') and 'for'. For example: have result: "C x y" if "A x" and "B y" for x :: 'a and y :: 'a <proof> The local assumptions are bound to the name "that". The result is exported from context of the statement as usual. The above roughly corresponds to a raw proof block like this: { fix x :: 'a and y :: 'a assume that: "A x" "B y" have "C x y" <proof> } note result = this The keyword 'when' may be used instead of 'if', to indicate 'presume' instead of 'assume' above. * Assumptions ('assume', 'presume') allow structured rule statements using 'if' and 'for', similar to 'have' etc. above. For example: assume result: "C x y" if "A x" and "B y" for x :: 'a and y :: 'a This assumes "\<And>x y::'a. A x \<Longrightarrow> B y \<Longrightarrow> C x y" and produces a general result as usual: "A ?x \<Longrightarrow> B ?y \<Longrightarrow> C ?x ?y". Vacuous quantification in assumptions is omitted, i.e. a for-context only effects propositions according to actual use of variables. For example: assume "A x" and "B y" for x and y is equivalent to: assume "\<And>x. A x" and "\<And>y. B y" * The meaning of 'show' with Pure rule statements has changed: premises are treated in the sense of 'assume', instead of 'presume'. This means, a goal like "\<And>x. A x \<Longrightarrow> B x \<Longrightarrow> C x" can be solved completely as follows: show "\<And>x. A x \<Longrightarrow> B x \<Longrightarrow> C x" or: show "C x" if "A x" "B x" for x Rare INCOMPATIBILITY, the old behaviour may be recovered as follows: show "C x" when "A x" "B x" for x * New command 'consider' states rules for generalized elimination and case splitting. This is like a toplevel statement "theorem obtains" used within a proof body; or like a multi-branch 'obtain' without activation of the local context elements yet. * Proof method "cases" allows to specify the rule as first entry of chained facts. This is particularly useful with 'consider': consider (a) A | (b) B | (c) C <proof> then have something proof cases case a then show ?thesis <proof> next case b then show ?thesis <proof> next case c then show ?thesis <proof> qed * Command 'case' allows fact name and attribute specification like this: case a: (c xs) case a [attributes]: (c xs) Facts that are introduced by invoking the case context are uniformly qualified by "a"; the same name is used for the cumulative fact. The old form "case (c xs) [attributes]" is no longer supported. Rare INCOMPATIBILITY, need to adapt uses of case facts in exotic situations, and always put attributes in front. * The standard proof method of commands 'proof' and '..' is now called "standard" to make semantically clear what it is; the old name "default" is still available as legacy for some time. Documentation now explains '..' more accurately as "by standard" instead of "by rule". * Nesting of Isar goal structure has been clarified: the context after the initial backwards refinement is retained for the whole proof, within all its context sections (as indicated via 'next'). This is e.g. relevant for 'using', 'including', 'supply': have "A \<and> A" if a: A for A supply [simp] = a proof show A by simp next show A by simp qed * Command 'obtain' binds term abbreviations (via 'is' patterns) in the proof body as well, abstracted over relevant parameters. * Improved type-inference for theorem statement 'obtains': separate parameter scope for of each clause. * Term abbreviations via 'is' patterns also work for schematic statements: result is abstracted over unknowns. * Command 'subgoal' allows to impose some structure on backward refinements, to avoid proof scripts degenerating into long of 'apply' sequences. Further explanations and examples are given in the isar-ref manual. * Command 'supply' supports fact definitions during goal refinement ('apply' scripts). * Proof method "goal_cases" turns the current subgoals into cases within the context; the conclusion is bound to variable ?case in each case. For example: lemma "\<And>x. A x \<Longrightarrow> B x \<Longrightarrow> C x" and "\<And>y z. U y \<Longrightarrow> V z \<Longrightarrow> W y z" proof goal_cases case (1 x) then show ?case using \<open>A x\<close> \<open>B x\<close> sorry next case (2 y z) then show ?case using \<open>U y\<close> \<open>V z\<close> sorry qed lemma "\<And>x. A x \<Longrightarrow> B x \<Longrightarrow> C x" and "\<And>y z. U y \<Longrightarrow> V z \<Longrightarrow> W y z" proof goal_cases case prems: 1 then show ?case using prems sorry next case prems: 2 then show ?case using prems sorry qed * The undocumented feature of implicit cases goal1, goal2, goal3, etc. is marked as legacy, and will be removed eventually. The proof method "goals" achieves a similar effect within regular Isar; often it can be done more adequately by other means (e.g. 'consider'). * The vacuous fact "TERM x" may be established "by fact" or as `TERM x` as well, not just "by this" or "." as before. * Method "sleep" succeeds after a real-time delay (in seconds). This is occasionally useful for demonstration and testing purposes. *** Pure *** * Qualifiers in locale expressions default to mandatory ('!') regardless of the command. Previously, for 'locale' and 'sublocale' the default was optional ('?'). The old synatx '!' has been discontinued. INCOMPATIBILITY, remove '!' and add '?' as required. * Keyword 'rewrites' identifies rewrite morphisms in interpretation commands. Previously, the keyword was 'where'. INCOMPATIBILITY. * More gentle suppression of syntax along locale morphisms while printing terms. Previously 'abbreviation' and 'notation' declarations would be suppressed for morphisms except term identity. Now 'abbreviation' is also kept for morphims that only change the involved parameters, and only 'notation' is suppressed. This can be of great help when working with complex locale hierarchies, because proof states are displayed much more succinctly. It also means that only notation needs to be redeclared if desired, as illustrated by this example: locale struct = fixes composition :: "'a => 'a => 'a" (infixl "\<cdot>" 65) begin definition derived (infixl "\<odot>" 65) where ... end locale morphism = left: struct composition + right: struct composition' for composition (infix "\<cdot>" 65) and composition' (infix "\<cdot>''" 65) begin notation right.derived ("\<odot>''") end * Command 'global_interpretation' issues interpretations into global theories, with optional rewrite definitions following keyword 'defines'. * Command 'sublocale' accepts optional rewrite definitions after keyword 'defines'. * Command 'permanent_interpretation' has been discontinued. Use 'global_interpretation' or 'sublocale' instead. INCOMPATIBILITY. * Command 'print_definitions' prints dependencies of definitional specifications. This functionality used to be part of 'print_theory'. * Configuration option rule_insts_schematic has been discontinued (intermediate legacy feature in Isabelle2015). INCOMPATIBILITY. * Abbreviations in type classes now carry proper sort constraint. Rare INCOMPATIBILITY in situations where the previous misbehaviour has been exploited. * Refinement of user-space type system in type classes: pseudo-local operations behave more similar to abbreviations. Potential INCOMPATIBILITY in exotic situations. *** HOL *** * The 'typedef' command has been upgraded from a partially checked "axiomatization", to a full definitional specification that takes the global collection of overloaded constant / type definitions into account. Type definitions with open dependencies on overloaded definitions need to be specified as "typedef (overloaded)". This provides extra robustness in theory construction. Rare INCOMPATIBILITY. * Qualification of various formal entities in the libraries is done more uniformly via "context begin qualified definition ... end" instead of old-style "hide_const (open) ...". Consequently, both the defined constant and its defining fact become qualified, e.g. Option.is_none and Option.is_none_def. Occasional INCOMPATIBILITY in applications. * Some old and rarely used ASCII replacement syntax has been removed. INCOMPATIBILITY, standard syntax with symbols should be used instead. The subsequent commands help to reproduce the old forms, e.g. to simplify porting old theories: notation iff (infixr "<->" 25) notation Times (infixr "<*>" 80) type_notation Map.map (infixr "~=>" 0) notation Map.map_comp (infixl "o'_m" 55) type_notation FinFun.finfun ("(_ =>f /_)" [22, 21] 21) notation FuncSet.funcset (infixr "->" 60) notation FuncSet.extensional_funcset (infixr "->\<^sub>E" 60) notation Omega_Words_Fun.conc (infixr "conc" 65) notation Preorder.equiv ("op ~~") and Preorder.equiv ("(_/ ~~ _)" [51, 51] 50) notation (in topological_space) tendsto (infixr "--->" 55) notation (in topological_space) LIMSEQ ("((_)/ ----> (_))" [60, 60] 60) notation LIM ("((_)/ -- (_)/ --> (_))" [60, 0, 60] 60) notation NSA.approx (infixl "@=" 50) notation NSLIMSEQ ("((_)/ ----NS> (_))" [60, 60] 60) notation NSLIM ("((_)/ -- (_)/ --NS> (_))" [60, 0, 60] 60) * The alternative notation "\<Colon>" for type and sort constraints has been removed: in LaTeX document output it looks the same as "::". INCOMPATIBILITY, use plain "::" instead. * Commands 'inductive' and 'inductive_set' work better when names for intro rules are omitted: the "cases" and "induct" rules no longer declare empty case_names, but no case_names at all. This allows to use numbered cases in proofs, without requiring method "goal_cases". * Inductive definitions ('inductive', 'coinductive', etc.) expose low-level facts of the internal construction only if the option "inductive_internals" is enabled. This refers to the internal predicate definition and its monotonicity result. Rare INCOMPATIBILITY. * Recursive function definitions ('fun', 'function', 'partial_function') expose low-level facts of the internal construction only if the option "function_internals" is enabled. Its internal inductive definition is also subject to "inductive_internals". Rare INCOMPATIBILITY. * BNF datatypes ('datatype', 'codatatype', etc.) expose low-level facts of the internal construction only if the option "bnf_internals" is enabled. This supersedes the former option "bnf_note_all". Rare INCOMPATIBILITY. * Combinator to represent case distinction on products is named "case_prod", uniformly, discontinuing any input aliasses. Very popular theorem aliasses have been retained. Consolidated facts: PairE ~> prod.exhaust Pair_eq ~> prod.inject pair_collapse ~> prod.collapse Pair_fst_snd_eq ~> prod_eq_iff split_twice ~> prod.case_distrib split_weak_cong ~> prod.case_cong_weak split_split ~> prod.split split_split_asm ~> prod.split_asm splitI ~> case_prodI splitD ~> case_prodD splitI2 ~> case_prodI2 splitI2' ~> case_prodI2' splitE ~> case_prodE splitE' ~> case_prodE' split_pair ~> case_prod_Pair split_eta ~> case_prod_eta split_comp ~> case_prod_comp mem_splitI ~> mem_case_prodI mem_splitI2 ~> mem_case_prodI2 mem_splitE ~> mem_case_prodE The_split ~> The_case_prod cond_split_eta ~> cond_case_prod_eta Collect_split_in_rel_leE ~> Collect_case_prod_in_rel_leE Collect_split_in_rel_leI ~> Collect_case_prod_in_rel_leI in_rel_Collect_split_eq ~> in_rel_Collect_case_prod_eq Collect_split_Grp_eqD ~> Collect_case_prod_Grp_eqD Collect_split_Grp_inD ~> Collect_case_prod_Grp_in Domain_Collect_split ~> Domain_Collect_case_prod Image_Collect_split ~> Image_Collect_case_prod Range_Collect_split ~> Range_Collect_case_prod Eps_split ~> Eps_case_prod Eps_split_eq ~> Eps_case_prod_eq split_rsp ~> case_prod_rsp curry_split ~> curry_case_prod split_curry ~> case_prod_curry Changes in structure HOLogic: split_const ~> case_prod_const mk_split ~> mk_case_prod mk_psplits ~> mk_ptupleabs strip_psplits ~> strip_ptupleabs INCOMPATIBILITY. * The coercions to type 'real' have been reorganised. The function 'real' is no longer overloaded, but has type 'nat => real' and abbreviates of_nat for that type. Also 'real_of_int :: int => real' abbreviates of_int for that type. Other overloaded instances of 'real' have been replaced by 'real_of_ereal' and 'real_of_float'. Consolidated facts (among others): real_of_nat_le_iff -> of_nat_le_iff real_of_nat_numeral of_nat_numeral real_of_int_zero of_int_0 real_of_nat_zero of_nat_0 real_of_one of_int_1 real_of_int_add of_int_add real_of_nat_add of_nat_add real_of_int_diff of_int_diff real_of_nat_diff of_nat_diff floor_subtract floor_diff_of_int real_of_int_inject of_int_eq_iff real_of_int_gt_zero_cancel_iff of_int_0_less_iff real_of_int_ge_zero_cancel_iff of_int_0_le_iff real_of_nat_ge_zero of_nat_0_le_iff real_of_int_ceiling_ge le_of_int_ceiling ceiling_less_eq ceiling_less_iff ceiling_le_eq ceiling_le_iff less_floor_eq less_floor_iff floor_less_eq floor_less_iff floor_divide_eq_div floor_divide_of_int_eq real_of_int_zero_cancel of_nat_eq_0_iff ceiling_real_of_int ceiling_of_int INCOMPATIBILITY. * Theory Map: lemma map_of_is_SomeD was a clone of map_of_SomeD and has been removed. INCOMPATIBILITY. * Quickcheck setup for finite sets. * Discontinued simp_legacy_precond. Potential INCOMPATIBILITY. * Sledgehammer: - The MaSh relevance filter has been sped up. - Proof reconstruction has been improved, to minimize the incidence of cases where Sledgehammer gives a proof that does not work. - Auto Sledgehammer now minimizes and preplays the results. - Handle Vampire 4.0 proof output without raising exception. - Eliminated "MASH" environment variable. Use the "MaSh" option in Isabelle/jEdit instead. INCOMPATIBILITY. - Eliminated obsolete "blocking" option and related subcommands. * Nitpick: - Fixed soundness bug in translation of "finite" predicate. - Fixed soundness bug in "destroy_constrs" optimization. - Fixed soundness bug in translation of "rat" type. - Removed "check_potential" and "check_genuine" options. - Eliminated obsolete "blocking" option. * (Co)datatype package: - New commands "lift_bnf" and "copy_bnf" for lifting (copying) a BNF structure on the raw type to an abstract type defined using typedef. - Always generate "case_transfer" theorem. - For mutual types, generate slightly stronger "rel_induct", "rel_coinduct", and "coinduct" theorems. INCOMPATIBILITY. - Allow discriminators and selectors with the same name as the type being defined. - Avoid various internal name clashes (e.g., 'datatype f = f'). * Transfer: new methods for interactive debugging of 'transfer' and 'transfer_prover': 'transfer_start', 'transfer_step', 'transfer_end', 'transfer_prover_start' and 'transfer_prover_end'. * New diagnostic command print_record for displaying record definitions. * Division on integers is bootstrapped directly from division on naturals and uses generic numeral algorithm for computations. Slight INCOMPATIBILITY, simproc numeral_divmod replaces and generalizes former simprocs binary_int_div and binary_int_mod * Tightened specification of class semiring_no_zero_divisors. Minor INCOMPATIBILITY. * Class algebraic_semidom introduces common algebraic notions of integral (semi)domains, particularly units. Although logically subsumed by fields, is is not a super class of these in order not to burden fields with notions that are trivial there. * Class normalization_semidom specifies canonical representants for equivalence classes of associated elements in an integral (semi)domain. This formalizes associated elements as well. * Abstract specification of gcd/lcm operations in classes semiring_gcd, semiring_Gcd, semiring_Lcd. Minor INCOMPATIBILITY: facts gcd_nat.commute and gcd_int.commute are subsumed by gcd.commute, as well as gcd_nat.assoc and gcd_int.assoc by gcd.assoc. * Former constants Fields.divide (_ / _) and Divides.div (_ div _) are logically unified to Rings.divide in syntactic type class Rings.divide, with infix syntax (_ div _). Infix syntax (_ / _) for field division is added later as abbreviation in class Fields.inverse. INCOMPATIBILITY, instantiations must refer to Rings.divide rather than the former separate constants, hence infix syntax (_ / _) is usually not available during instantiation. * New cancellation simprocs for boolean algebras to cancel complementary terms for sup and inf. For example, "sup x (sup y (- x))" simplifies to "top". INCOMPATIBILITY. * Class uniform_space introduces uniform spaces btw topological spaces and metric spaces. Minor INCOMPATIBILITY: open_<type>_def needs to be introduced in the form of an uniformity. Some constants are more general now, it may be necessary to add type class constraints. open_real_def \<leadsto> open_dist open_complex_def \<leadsto> open_dist * Library/Monad_Syntax: notation uses symbols \<bind> and \<then>. INCOMPATIBILITY. * Library/Multiset: - Renamed multiset inclusion operators: < ~> <# > ~> ># <= ~> <=# >= ~> >=# \<le> ~> \<le># \<ge> ~> \<ge># INCOMPATIBILITY. - Added multiset inclusion operator syntax: \<subset># \<subseteq># \<supset># \<supseteq># - "'a multiset" is no longer an instance of the "order", "ordered_ab_semigroup_add_imp_le", "ordered_cancel_comm_monoid_diff", "semilattice_inf", and "semilattice_sup" type classes. The theorems previously provided by these type classes (directly or indirectly) are now available through the "subset_mset" interpretation (e.g. add_mono ~> subset_mset.add_mono). INCOMPATIBILITY. - Renamed conversions: multiset_of ~> mset multiset_of_set ~> mset_set set_of ~> set_mset INCOMPATIBILITY - Renamed lemmas: mset_le_def ~> subseteq_mset_def mset_less_def ~> subset_mset_def less_eq_multiset.rep_eq ~> subseteq_mset_def INCOMPATIBILITY - Removed lemmas generated by lift_definition: less_eq_multiset.abs_eq, less_eq_multiset.rsp, less_eq_multiset.transfer, less_eq_multiset_def INCOMPATIBILITY * Library/Omega_Words_Fun: Infinite words modeled as functions nat \<Rightarrow> 'a. * Library/Bourbaki_Witt_Fixpoint: Added formalisation of the Bourbaki-Witt fixpoint theorem for increasing functions in chain-complete partial orders. * Library/Old_Recdef: discontinued obsolete 'defer_recdef' command. Minor INCOMPATIBILITY, use 'function' instead. * Library/Periodic_Fun: a locale that provides convenient lemmas for periodic functions. * Library/Formal_Power_Series: proper definition of division (with remainder) for formal power series; instances for Euclidean Ring and GCD. * HOL-Imperative_HOL: obsolete theory Legacy_Mrec has been removed. * HOL-Statespace: command 'statespace' uses mandatory qualifier for import of parent, as for general 'locale' expressions. INCOMPATIBILITY, remove '!' and add '?' as required. * HOL-Decision_Procs: The "approximation" method works with "powr" (exponentiation on real numbers) again. * HOL-Multivariate_Analysis: theory Cauchy_Integral_Thm with Contour integrals (= complex path integrals), Cauchy's integral theorem, winding numbers and Cauchy's integral formula, Liouville theorem, Fundamental Theorem of Algebra. Ported from HOL Light. * HOL-Multivariate_Analysis: topological concepts such as connected components, homotopic paths and the inside or outside of a set. * HOL-Multivariate_Analysis: radius of convergence of power series and various summability tests; Harmonic numbers and the Euler–Mascheroni constant; the Generalised Binomial Theorem; the complex and real Gamma/log-Gamma/Digamma/ Polygamma functions and their most important properties. * HOL-Probability: The central limit theorem based on Levy's uniqueness and continuity theorems, weak convergence, and characterisitc functions. * HOL-Data_Structures: new and growing session of standard data structures. *** ML *** * The following combinators for low-level profiling of the ML runtime system are available: profile_time (*CPU time*) profile_time_thread (*CPU time on this thread*) profile_allocations (*overall heap allocations*) * Antiquotation @{undefined} or \<^undefined> inlines (raise Match). * Antiquotation @{method NAME} inlines the (checked) name of the given Isar proof method. * Pretty printing of Poly/ML compiler output in Isabelle has been improved: proper treatment of break offsets and blocks with consistent breaks. * The auxiliary module Pure/display.ML has been eliminated. Its elementary thm print operations are now in Pure/more_thm.ML and thus called Thm.pretty_thm, Thm.string_of_thm etc. INCOMPATIBILITY. * Simproc programming interfaces have been simplified: Simplifier.make_simproc and Simplifier.define_simproc supersede various forms of Simplifier.mk_simproc, Simplifier.simproc_global etc. Note that term patterns for the left-hand sides are specified with implicitly fixed variables, like top-level theorem statements. INCOMPATIBILITY. * Instantiation rules have been re-organized as follows: Thm.instantiate (*low-level instantiation with named arguments*) Thm.instantiate' (*version with positional arguments*) Drule.infer_instantiate (*instantiation with type inference*) Drule.infer_instantiate' (*version with positional arguments*) The LHS only requires variable specifications, instead of full terms. Old cterm_instantiate is superseded by infer_instantiate. INCOMPATIBILITY, need to re-adjust some ML names and types accordingly. * Old tactic shorthands atac, rtac, etac, dtac, ftac have been discontinued. INCOMPATIBILITY, use regular assume_tac, resolve_tac etc. instead (with proper context). * Thm.instantiate (and derivatives) no longer require the LHS of the instantiation to be certified: plain variables are given directly. * Subgoal.SUBPROOF and Subgoal.FOCUS combinators use anonymous quasi-bound variables (like the Simplifier), instead of accidentally named local fixes. This has the potential to improve stability of proof tools, but can also cause INCOMPATIBILITY for tools that don't observe the proof context discipline. * Isar proof methods are based on a slightly more general type context_tactic, which allows to change the proof context dynamically (e.g. to update cases) and indicate explicit Seq.Error results. Former METHOD_CASES is superseded by CONTEXT_METHOD; further combinators are provided in src/Pure/Isar/method.ML for convenience. INCOMPATIBILITY. *** System *** * Command-line tool "isabelle console" enables print mode "ASCII". * Command-line tool "isabelle update_then" expands old Isar command conflations: hence ~> then have thus ~> then show This syntax is more orthogonal and improves readability and maintainability of proofs. * Global session timeout is multiplied by timeout_scale factor. This allows to adjust large-scale tests (e.g. AFP) to overall hardware performance. * Property values in etc/symbols may contain spaces, if written with the replacement character "␣" (Unicode point 0x2324). For example: \<star> code: 0x0022c6 group: operator font: Deja␣Vu␣Sans␣Mono * Java runtime environment for x86_64-windows allows to use larger heap space. * Java runtime options are determined separately for 32bit vs. 64bit platforms as follows. - Isabelle desktop application: platform-specific files that are associated with the main app bundle - isabelle jedit: settings JEDIT_JAVA_SYSTEM_OPTIONS JEDIT_JAVA_OPTIONS32 vs. JEDIT_JAVA_OPTIONS64 - isabelle build: settings ISABELLE_BUILD_JAVA_OPTIONS32 vs. ISABELLE_BUILD_JAVA_OPTIONS64 * Bash shell function "jvmpath" has been renamed to "platform_path": it is relevant both for Poly/ML and JVM processes. * Poly/ML default platform architecture may be changed from 32bit to 64bit via system option ML_system_64. A system restart (and rebuild) is required after change. * Poly/ML 5.6 runs natively on x86-windows and x86_64-windows, which both allow larger heap space than former x86-cygwin. * Heap images are 10-15% smaller due to less wasteful persistent theory content (using ML type theory_id instead of theory); New in Isabelle2015 (May 2015) ------------------------------ *** General *** * Local theory specification commands may have a 'private' or 'qualified' modifier to restrict name space accesses to the local scope, as provided by some "context begin ... end" block. For example: context begin private definition ... private lemma ... qualified definition ... qualified lemma ... lemma ... theorem ... end * Command 'experiment' opens an anonymous locale context with private naming policy. * Command 'notepad' requires proper nesting of begin/end and its proof structure in the body: 'oops' is no longer supported here. Minor INCOMPATIBILITY, use 'sorry' instead. * Command 'named_theorems' declares a dynamic fact within the context, together with an attribute to maintain the content incrementally. This supersedes functor Named_Thms in Isabelle/ML, but with a subtle change of semantics due to external visual order vs. internal reverse order. * 'find_theorems': search patterns which are abstractions are schematically expanded before search. Search results match the naive expectation more closely, particularly wrt. abbreviations. INCOMPATIBILITY. * Commands 'method_setup' and 'attribute_setup' now work within a local theory context. * Outer syntax commands are managed authentically within the theory context, without implicit global state. Potential for accidental INCOMPATIBILITY, make sure that required theories are really imported. * Historical command-line terminator ";" is no longer accepted (and already used differently in Isar). Minor INCOMPATIBILITY, use "isabelle update_semicolons" to remove obsolete semicolons from old theory sources. * Structural composition of proof methods (meth1; meth2) in Isar corresponds to (tac1 THEN_ALL_NEW tac2) in ML. * The Eisbach proof method language allows to define new proof methods by combining existing ones with their usual syntax. The "match" proof method provides basic fact/term matching in addition to premise/conclusion matching through Subgoal.focus, and binds fact names from matches as well as term patterns within matches. The Isabelle documentation provides an entry "eisbach" for the Eisbach User Manual. Sources and various examples are in ~~/src/HOL/Eisbach/. *** Prover IDE -- Isabelle/Scala/jEdit *** * Improved folding mode "isabelle" based on Isar syntax. Alternatively, the "sidekick" mode may be used for document structure. * Extended bracket matching based on Isar language structure. System option jedit_structure_limit determines maximum number of lines to scan in the buffer. * Support for BibTeX files: context menu, context-sensitive token marker, SideKick parser. * Document antiquotation @{cite} provides formal markup, which is interpreted semi-formally based on .bib files that happen to be open in the editor (hyperlinks, completion etc.). * Less waste of vertical space via negative line spacing (see Global Options / Text Area). * Improved graphview panel with optional output of PNG or PDF, for display of 'thy_deps', 'class_deps' etc. * The commands 'thy_deps' and 'class_deps' allow optional bounds to restrict the visualized hierarchy. * Improved scheduling for asynchronous print commands (e.g. provers managed by the Sledgehammer panel) wrt. ongoing document processing. *** Document preparation *** * Document markup commands 'chapter', 'section', 'subsection', 'subsubsection', 'text', 'txt', 'text_raw' work uniformly in any context, even before the initial 'theory' command. Obsolete proof commands 'sect', 'subsect', 'subsubsect', 'txt_raw' have been discontinued, use 'section', 'subsection', 'subsubsection', 'text_raw' instead. The old 'header' command is still retained for some time, but should be replaced by 'chapter', 'section' etc. (using "isabelle update_header"). Minor INCOMPATIBILITY. * Official support for "tt" style variants, via \isatt{...} or \begin{isabellett}...\end{isabellett}. The somewhat fragile \verb or verbatim environment of LaTeX is no longer used. This allows @{ML} etc. as argument to other macros (such as footnotes). * Document antiquotation @{verbatim} prints ASCII text literally in "tt" style. * Discontinued obsolete option "document_graph": session_graph.pdf is produced unconditionally for HTML browser_info and PDF-LaTeX document. * Diagnostic commands and document markup commands within a proof do not affect the command tag for output. Thus commands like 'thm' are subject to proof document structure, and no longer "stick out" accidentally. Commands 'text' and 'txt' merely differ in the LaTeX style, not their tags. Potential INCOMPATIBILITY in exotic situations. * System option "pretty_margin" is superseded by "thy_output_margin", which is also accessible via document antiquotation option "margin". Only the margin for document output may be changed, but not the global pretty printing: that is 76 for plain console output, and adapted dynamically in GUI front-ends. Implementations of document antiquotations need to observe the margin explicitly according to Thy_Output.string_of_margin. Minor INCOMPATIBILITY. * Specification of 'document_files' in the session ROOT file is mandatory for document preparation. The legacy mode with implicit copying of the document/ directory is no longer supported. Minor INCOMPATIBILITY. *** Pure *** * Proof methods with explicit instantiation ("rule_tac", "subgoal_tac" etc.) allow an optional context of local variables ('for' declaration): these variables become schematic in the instantiated theorem; this behaviour is analogous to 'for' in attributes "where" and "of". Configuration option rule_insts_schematic (default false) controls use of schematic variables outside the context. Minor INCOMPATIBILITY, declare rule_insts_schematic = true temporarily and update to use local variable declarations or dummy patterns instead. * Explicit instantiation via attributes "where", "of", and proof methods "rule_tac" with derivatives like "subgoal_tac" etc. admit dummy patterns ("_") that stand for anonymous local variables. * Generated schematic variables in standard format of exported facts are incremented to avoid material in the proof context. Rare INCOMPATIBILITY, explicit instantiation sometimes needs to refer to different index. * Lexical separation of signed and unsigned numerals: categories "num" and "float" are unsigned. INCOMPATIBILITY: subtle change in precedence of numeral signs, particularly in expressions involving infix syntax like "(- 1) ^ n". * Old inner token category "xnum" has been discontinued. Potential INCOMPATIBILITY for exotic syntax: may use mixfix grammar with "num" token category instead. *** HOL *** * New (co)datatype package: - The 'datatype_new' command has been renamed 'datatype'. The old command of that name is now called 'old_datatype' and is provided by "~~/src/HOL/Library/Old_Datatype.thy". See 'isabelle doc datatypes' for information on porting. INCOMPATIBILITY. - Renamed theorems: disc_corec ~> corec_disc disc_corec_iff ~> corec_disc_iff disc_exclude ~> distinct_disc disc_exhaust ~> exhaust_disc disc_map_iff ~> map_disc_iff sel_corec ~> corec_sel sel_exhaust ~> exhaust_sel sel_map ~> map_sel sel_set ~> set_sel sel_split ~> split_sel sel_split_asm ~> split_sel_asm strong_coinduct ~> coinduct_strong weak_case_cong ~> case_cong_weak INCOMPATIBILITY. - The "no_code" option to "free_constructors", "datatype_new", and "codatatype" has been renamed "plugins del: code". INCOMPATIBILITY. - The rules "set_empty" have been removed. They are easy consequences of other set rules "by auto". INCOMPATIBILITY. - The rule "set_cases" is now registered with the "[cases set]" attribute. This can influence the behavior of the "cases" proof method when more than one case rule is applicable (e.g., an assumption is of the form "w : set ws" and the method "cases w" is invoked). The solution is to specify the case rule explicitly (e.g. "cases w rule: widget.exhaust"). INCOMPATIBILITY. - Renamed theories: BNF_Comp ~> BNF_Composition BNF_FP_Base ~> BNF_Fixpoint_Base BNF_GFP ~> BNF_Greatest_Fixpoint BNF_LFP ~> BNF_Least_Fixpoint BNF_Constructions_on_Wellorders ~> BNF_Wellorder_Constructions Cardinals/Constructions_on_Wellorders ~> Cardinals/Wellorder_Constructions INCOMPATIBILITY. - Lifting and Transfer setup for basic HOL types sum and prod (also option) is now performed by the BNF package. Theories Lifting_Sum, Lifting_Product and Lifting_Option from Main became obsolete and were removed. Changed definitions of the relators rel_prod and rel_sum (using inductive). INCOMPATIBILITY: use rel_prod.simps and rel_sum.simps instead of rel_prod_def and rel_sum_def. Minor INCOMPATIBILITY: (rarely used by name) transfer theorem names changed (e.g. map_prod_transfer ~> prod.map_transfer). - Parametricity theorems for map functions, relators, set functions, constructors, case combinators, discriminators, selectors and (co)recursors are automatically proved and registered as transfer rules. * Old datatype package: - The old 'datatype' command has been renamed 'old_datatype', and 'rep_datatype' has been renamed 'old_rep_datatype'. They are provided by "~~/src/HOL/Library/Old_Datatype.thy". See 'isabelle doc datatypes' for information on porting. INCOMPATIBILITY. - Renamed theorems: weak_case_cong ~> case_cong_weak INCOMPATIBILITY. - Renamed theory: ~~/src/HOL/Datatype.thy ~> ~~/src/HOL/Library/Old_Datatype.thy INCOMPATIBILITY. * Nitpick: - Fixed soundness bug related to the strict and non-strict subset operations. * Sledgehammer: - CVC4 is now included with Isabelle instead of CVC3 and run by default. - Z3 is now always enabled by default, now that it is fully open source. The "z3_non_commercial" option is discontinued. - Minimization is now always enabled by default. Removed sub-command: min - Proof reconstruction, both one-liners and Isar, has been dramatically improved. - Improved support for CVC4 and veriT. * Old and new SMT modules: - The old 'smt' method has been renamed 'old_smt' and moved to 'src/HOL/Library/Old_SMT.thy'. It is provided for compatibility, until applications have been ported to use the new 'smt' method. For the method to work, an older version of Z3 (e.g. Z3 3.2 or 4.0) must be installed, and the environment variable "OLD_Z3_SOLVER" must point to it. INCOMPATIBILITY. - The 'smt2' method has been renamed 'smt'. INCOMPATIBILITY. - New option 'smt_reconstruction_step_timeout' to limit the reconstruction time of Z3 proof steps in the new 'smt' method. - New option 'smt_statistics' to display statistics of the new 'smt' method, especially runtime statistics of Z3 proof reconstruction. * Lifting: command 'lift_definition' allows to execute lifted constants that have as a return type a datatype containing a subtype. This overcomes long-time limitations in the area of code generation and lifting, and avoids tedious workarounds. * Command and antiquotation "value" provide different evaluation slots (again), where the previous strategy (NBE after ML) serves as default. Minor INCOMPATIBILITY. * Add NO_MATCH-simproc, allows to check for syntactic non-equality. * field_simps: Use NO_MATCH-simproc for distribution rules, to avoid non-termination in case of distributing a division. With this change field_simps is in some cases slightly less powerful, if it fails try to add algebra_simps, or use divide_simps. Minor INCOMPATIBILITY. * Separate class no_zero_divisors has been given up in favour of fully algebraic semiring_no_zero_divisors. INCOMPATIBILITY. * Class linordered_semidom really requires no zero divisors. INCOMPATIBILITY. * Classes division_ring, field and linordered_field always demand "inverse 0 = 0". Given up separate classes division_ring_inverse_zero, field_inverse_zero and linordered_field_inverse_zero. INCOMPATIBILITY. * Classes cancel_ab_semigroup_add / cancel_monoid_add specify explicit additive inverse operation. INCOMPATIBILITY. * Complex powers and square roots. The functions "ln" and "powr" are now overloaded for types real and complex, and 0 powr y = 0 by definition. INCOMPATIBILITY: type constraints may be necessary. * The functions "sin" and "cos" are now defined for any type of sort "{real_normed_algebra_1,banach}" type, so in particular on "real" and "complex" uniformly. Minor INCOMPATIBILITY: type constraints may be needed. * New library of properties of the complex transcendental functions sin, cos, tan, exp, Ln, Arctan, Arcsin, Arccos. Ported from HOL Light. * The factorial function, "fact", now has type "nat => 'a" (of a sort that admits numeric types including nat, int, real and complex. INCOMPATIBILITY: an expression such as "fact 3 = 6" may require a type constraint, and the combination "real (fact k)" is likely to be unsatisfactory. If a type conversion is still necessary, then use "of_nat (fact k)" or "real_of_nat (fact k)". * Removed functions "natfloor" and "natceiling", use "nat o floor" and "nat o ceiling" instead. A few of the lemmas have been retained and adapted: in their names "natfloor"/"natceiling" has been replaced by "nat_floor"/"nat_ceiling". * Qualified some duplicated fact names required for boostrapping the type class hierarchy: ab_add_uminus_conv_diff ~> diff_conv_add_uminus field_inverse_zero ~> inverse_zero field_divide_inverse ~> divide_inverse field_inverse ~> left_inverse Minor INCOMPATIBILITY. * Eliminated fact duplicates: mult_less_imp_less_right ~> mult_right_less_imp_less mult_less_imp_less_left ~> mult_left_less_imp_less Minor INCOMPATIBILITY. * Fact consolidation: even_less_0_iff is subsumed by double_add_less_zero_iff_single_add_less_zero (simp by default anyway). * Generalized and consolidated some theorems concerning divsibility: dvd_reduce ~> dvd_add_triv_right_iff dvd_plus_eq_right ~> dvd_add_right_iff dvd_plus_eq_left ~> dvd_add_left_iff Minor INCOMPATIBILITY. * "even" and "odd" are mere abbreviations for "2 dvd _" and "~ 2 dvd _" and part of theory Main. even_def ~> even_iff_mod_2_eq_zero INCOMPATIBILITY. * Lemma name consolidation: divide_Numeral1 ~> divide_numeral_1. Minor INCOMPATIBILITY. * Bootstrap of listsum as special case of abstract product over lists. Fact rename: listsum_def ~> listsum.eq_foldr INCOMPATIBILITY. * Product over lists via constant "listprod". * Theory List: renamed drop_Suc_conv_tl and nth_drop' to Cons_nth_drop_Suc. * New infrastructure for compiling, running, evaluating and testing generated code in target languages in HOL/Library/Code_Test. See HOL/Codegenerator_Test/Code_Test* for examples. * Library/Multiset: - Introduced "replicate_mset" operation. - Introduced alternative characterizations of the multiset ordering in "Library/Multiset_Order". - Renamed multiset ordering: <# ~> #<# <=# ~> #<=# \<subset># ~> #\<subset># \<subseteq># ~> #\<subseteq># INCOMPATIBILITY. - Introduced abbreviations for ill-named multiset operations: <#, \<subset># abbreviate < (strict subset) <=#, \<le>#, \<subseteq># abbreviate <= (subset or equal) INCOMPATIBILITY. - Renamed in_multiset_of ~> in_multiset_in_set Multiset.fold ~> fold_mset Multiset.filter ~> filter_mset INCOMPATIBILITY. - Removed mcard, is equal to size. - Added attributes: image_mset.id [simp] image_mset_id [simp] elem_multiset_of_set [simp, intro] comp_fun_commute_plus_mset [simp] comp_fun_commute.fold_mset_insert [OF comp_fun_commute_plus_mset, simp] in_mset_fold_plus_iff [iff] set_of_Union_mset [simp] in_Union_mset_iff [iff] INCOMPATIBILITY. * Library/Sum_of_Squares: simplified and improved "sos" method. Always use local CSDP executable, which is much faster than the NEOS server. The "sos_cert" functionality is invoked as "sos" with additional argument. Minor INCOMPATIBILITY. * HOL-Decision_Procs: New counterexample generator quickcheck [approximation] for inequalities of transcendental functions. Uses hardware floating point arithmetic to randomly discover potential counterexamples. Counterexamples are certified with the "approximation" method. See HOL/Decision_Procs/ex/Approximation_Quickcheck_Ex.thy for examples. * HOL-Probability: Reworked measurability prover - applies destructor rules repeatedly - removed application splitting (replaced by destructor rule) - added congruence rules to rewrite measure spaces under the sets projection * New proof method "rewrite" (in theory ~~/src/HOL/Library/Rewrite) for single-step rewriting with subterm selection based on patterns. *** ML *** * Subtle change of name space policy: undeclared entries are now considered inaccessible, instead of accessible via the fully-qualified internal name. This mainly affects Name_Space.intern (and derivatives), which may produce an unexpected Long_Name.hidden prefix. Note that contemporary applications use the strict Name_Space.check (and derivatives) instead, which is not affected by the change. Potential INCOMPATIBILITY in rare applications of Name_Space.intern. * Subtle change of error semantics of Toplevel.proof_of: regular user ERROR instead of internal Toplevel.UNDEF. * Basic combinators map, fold, fold_map, split_list, apply are available as parameterized antiquotations, e.g. @{map 4} for lists of quadruples. * Renamed "pairself" to "apply2", in accordance to @{apply 2}. INCOMPATIBILITY. * Former combinators NAMED_CRITICAL and CRITICAL for central critical sections have been discontinued, in favour of the more elementary Multithreading.synchronized and its high-level derivative Synchronized.var (which is usually sufficient in applications). Subtle INCOMPATIBILITY: synchronized access needs to be atomic and cannot be nested. * Synchronized.value (ML) is actually synchronized (as in Scala): subtle change of semantics with minimal potential for INCOMPATIBILITY. * The main operations to certify logical entities are Thm.ctyp_of and Thm.cterm_of with a local context; old-style global theory variants are available as Thm.global_ctyp_of and Thm.global_cterm_of. INCOMPATIBILITY. * Elementary operations in module Thm are no longer pervasive. INCOMPATIBILITY, need to use qualified Thm.prop_of, Thm.cterm_of, Thm.term_of etc. * Proper context for various elementary tactics: assume_tac, resolve_tac, eresolve_tac, dresolve_tac, forward_tac, match_tac, compose_tac, Splitter.split_tac etc. INCOMPATIBILITY. * Tactical PARALLEL_ALLGOALS is the most common way to refer to PARALLEL_GOALS. * Goal.prove_multi is superseded by the fully general Goal.prove_common, which also allows to specify a fork priority. * Antiquotation @{command_spec "COMMAND"} is superseded by @{command_keyword COMMAND} (usually without quotes and with PIDE markup). Minor INCOMPATIBILITY. * Cartouches within ML sources are turned into values of type Input.source (with formal position information). *** System *** * The Isabelle tool "update_cartouches" changes theory files to use cartouches instead of old-style {* verbatim *} or `alt_string` tokens. * The Isabelle tool "build" provides new options -X, -k, -x. * Discontinued old-fashioned "codegen" tool. Code generation can always be externally triggered using an appropriate ROOT file plus a corresponding theory. Parametrization is possible using environment variables, or ML snippets in the most extreme cases. Minor INCOMPATIBILITY. * JVM system property "isabelle.threads" determines size of Scala thread pool, like Isabelle system option "threads" for ML. * JVM system property "isabelle.laf" determines the default Swing look-and-feel, via internal class name or symbolic name as in the jEdit menu Global Options / Appearance. * Support for Proof General and Isar TTY loop has been discontinued. Minor INCOMPATIBILITY, use standard PIDE infrastructure instead. New in Isabelle2014 (August 2014) --------------------------------- *** General *** * Support for official Standard ML within the Isabelle context. Command 'SML_file' reads and evaluates the given Standard ML file. Toplevel bindings are stored within the theory context; the initial environment is restricted to the Standard ML implementation of Poly/ML, without the add-ons of Isabelle/ML. Commands 'SML_import' and 'SML_export' allow to exchange toplevel bindings between the two separate environments. See also ~~/src/Tools/SML/Examples.thy for some examples. * Standard tactics and proof methods such as "clarsimp", "auto" and "safe" now preserve equality hypotheses "x = expr" where x is a free variable. Locale assumptions and chained facts containing "x" continue to be useful. The new method "hypsubst_thin" and the configuration option "hypsubst_thin" (within the attribute name space) restore the previous behavior. INCOMPATIBILITY, especially where induction is done after these methods or when the names of free and bound variables clash. As first approximation, old proofs may be repaired by "using [[hypsubst_thin = true]]" in the critical spot. * More static checking of proof methods, which allows the system to form a closure over the concrete syntax. Method arguments should be processed in the original proof context as far as possible, before operating on the goal state. In any case, the standard discipline for subgoal-addressing needs to be observed: no subgoals or a subgoal number that is out of range produces an empty result sequence, not an exception. Potential INCOMPATIBILITY for non-conformant tactical proof tools. * Lexical syntax (inner and outer) supports text cartouches with arbitrary nesting, and without escapes of quotes etc. The Prover IDE supports input via ` (backquote). * The outer syntax categories "text" (for formal comments and document markup commands) and "altstring" (for literal fact references) allow cartouches as well, in addition to the traditional mix of quotations. * Syntax of document antiquotation @{rail} now uses \<newline> instead of "\\", to avoid the optical illusion of escaped backslash within string token. General renovation of its syntax using text cartouches. Minor INCOMPATIBILITY. * Discontinued legacy_isub_isup, which was a temporary workaround for Isabelle/ML in Isabelle2013-1. The prover process no longer accepts old identifier syntax with \<^isub> or \<^isup>. Potential INCOMPATIBILITY. * Document antiquotation @{url} produces markup for the given URL, which results in an active hyperlink within the text. * Document antiquotation @{file_unchecked} is like @{file}, but does not check existence within the file-system. * Updated and extended manuals: codegen, datatypes, implementation, isar-ref, jedit, system. *** Prover IDE -- Isabelle/Scala/jEdit *** * Improved Document panel: simplified interaction where every single mouse click (re)opens document via desktop environment or as jEdit buffer. * Support for Navigator plugin (with toolbar buttons), with connection to PIDE hyperlinks. * Auxiliary files ('ML_file' etc.) are managed by the Prover IDE. Open text buffers take precedence over copies within the file-system. * Improved support for Isabelle/ML, with jEdit mode "isabelle-ml" for auxiliary ML files. * Improved syntactic and semantic completion mechanism, with simple templates, completion language context, name-space completion, file-name completion, spell-checker completion. * Refined GUI popup for completion: more robust key/mouse event handling and propagation to enclosing text area -- avoid loosing keystrokes with slow / remote graphics displays. * Completion popup supports both ENTER and TAB (default) to select an item, depending on Isabelle options. * Refined insertion of completion items wrt. jEdit text: multiple selections, rectangular selections, rectangular selection as "tall caret". * Integrated spell-checker for document text, comments etc. with completion popup and context-menu. * More general "Query" panel supersedes "Find" panel, with GUI access to commands 'find_theorems' and 'find_consts', as well as print operations for the context. Minor incompatibility in keyboard shortcuts etc.: replace action isabelle-find by isabelle-query. * Search field for all output panels ("Output", "Query", "Info" etc.) to highlight text via regular expression. * Option "jedit_print_mode" (see also "Plugin Options / Isabelle / General") allows to specify additional print modes for the prover process, without requiring old-fashioned command-line invocation of "isabelle jedit -m MODE". * More support for remote files (e.g. http) using standard Java networking operations instead of jEdit virtual file-systems. * Empty editors buffers that are no longer required (e.g.\ via theory imports) are automatically removed from the document model. * Improved monitor panel. * Improved Console/Scala plugin: more uniform scala.Console output, more robust treatment of threads and interrupts. * Improved management of dockable windows: clarified keyboard focus and window placement wrt. main editor view; optional menu item to "Detach" a copy where this makes sense. * New Simplifier Trace panel provides an interactive view of the simplification process, enabled by the "simp_trace_new" attribute within the context. *** Pure *** * Low-level type-class commands 'classes', 'classrel', 'arities' have been discontinued to avoid the danger of non-trivial axiomatization that is not immediately visible. INCOMPATIBILITY, use regular 'instance' command with proof. The required OFCLASS(...) theorem might be postulated via 'axiomatization' beforehand, or the proof finished trivially if the underlying class definition is made vacuous (without any assumptions). See also Isabelle/ML operations Axclass.class_axiomatization, Axclass.classrel_axiomatization, Axclass.arity_axiomatization. * Basic constants of Pure use more conventional names and are always qualified. Rare INCOMPATIBILITY, but with potentially serious consequences, notably for tools in Isabelle/ML. The following renaming needs to be applied: == ~> Pure.eq ==> ~> Pure.imp all ~> Pure.all TYPE ~> Pure.type dummy_pattern ~> Pure.dummy_pattern Systematic porting works by using the following theory setup on a *previous* Isabelle version to introduce the new name accesses for the old constants: setup {* fn thy => thy |> Sign.root_path |> Sign.const_alias (Binding.qualify true "Pure" @{binding eq}) "==" |> Sign.const_alias (Binding.qualify true "Pure" @{binding imp}) "==>" |> Sign.const_alias (Binding.qualify true "Pure" @{binding all}) "all" |> Sign.restore_naming thy *} Thus ML antiquotations like @{const_name Pure.eq} may be used already. Later the application is moved to the current Isabelle version, and the auxiliary aliases are deleted. * Attributes "where" and "of" allow an optional context of local variables ('for' declaration): these variables become schematic in the instantiated theorem. * Obsolete attribute "standard" has been discontinued (legacy since Isabelle2012). Potential INCOMPATIBILITY, use explicit 'for' context where instantiations with schematic variables are intended (for declaration commands like 'lemmas' or attributes like "of"). The following temporary definition may help to port old applications: attribute_setup standard = "Scan.succeed (Thm.rule_attribute (K Drule.export_without_context))" * More thorough check of proof context for goal statements and attributed fact expressions (concerning background theory, declared hyps). Potential INCOMPATIBILITY, tools need to observe standard context discipline. See also Assumption.add_assumes and the more primitive Thm.assume_hyps. * Inner syntax token language allows regular quoted strings "..." (only makes sense in practice, if outer syntax is delimited differently, e.g. via cartouches). * Command 'print_term_bindings' supersedes 'print_binds' for clarity, but the latter is retained some time as Proof General legacy. * Code generator preprocessor: explicit control of simp tracing on a per-constant basis. See attribute "code_preproc". *** HOL *** * Code generator: enforce case of identifiers only for strict target language requirements. INCOMPATIBILITY. * Code generator: explicit proof contexts in many ML interfaces. INCOMPATIBILITY. * Code generator: minimize exported identifiers by default. Minor INCOMPATIBILITY. * Code generation for SML and OCaml: dropped arcane "no_signatures" option. Minor INCOMPATIBILITY. * "declare [[code abort: ...]]" replaces "code_abort ...". INCOMPATIBILITY. * "declare [[code drop: ...]]" drops all code equations associated with the given constants. * Code generations are provided for make, fields, extend and truncate operations on records. * Command and antiquotation "value" are now hardcoded against nbe and ML. Minor INCOMPATIBILITY. * Renamed command 'enriched_type' to 'functor'. INCOMPATIBILITY. * The symbol "\<newline>" may be used within char or string literals to represent (Char Nibble0 NibbleA), i.e. ASCII newline. * Qualified String.implode and String.explode. INCOMPATIBILITY. * Simplifier: Enhanced solver of preconditions of rewrite rules can now deal with conjunctions. For help with converting proofs, the old behaviour of the simplifier can be restored like this: declare/using [[simp_legacy_precond]]. This configuration option will disappear again in the future. INCOMPATIBILITY. * Simproc "finite_Collect" is no longer enabled by default, due to spurious crashes and other surprises. Potential INCOMPATIBILITY. * Moved new (co)datatype package and its dependencies from session "HOL-BNF" to "HOL". The commands 'bnf', 'wrap_free_constructors', 'datatype_new', 'codatatype', 'primcorec', 'primcorecursive' are now part of theory "Main". Theory renamings: FunDef.thy ~> Fun_Def.thy (and Fun_Def_Base.thy) Library/Wfrec.thy ~> Wfrec.thy Library/Zorn.thy ~> Zorn.thy Cardinals/Order_Relation.thy ~> Order_Relation.thy Library/Order_Union.thy ~> Cardinals/Order_Union.thy Cardinals/Cardinal_Arithmetic_Base.thy ~> BNF_Cardinal_Arithmetic.thy Cardinals/Cardinal_Order_Relation_Base.thy ~> BNF_Cardinal_Order_Relation.thy Cardinals/Constructions_on_Wellorders_Base.thy ~> BNF_Constructions_on_Wellorders.thy Cardinals/Wellorder_Embedding_Base.thy ~> BNF_Wellorder_Embedding.thy Cardinals/Wellorder_Relation_Base.thy ~> BNF_Wellorder_Relation.thy BNF/Ctr_Sugar.thy ~> Ctr_Sugar.thy BNF/Basic_BNFs.thy ~> Basic_BNFs.thy BNF/BNF_Comp.thy ~> BNF_Comp.thy BNF/BNF_Def.thy ~> BNF_Def.thy BNF/BNF_FP_Base.thy ~> BNF_FP_Base.thy BNF/BNF_GFP.thy ~> BNF_GFP.thy BNF/BNF_LFP.thy ~> BNF_LFP.thy BNF/BNF_Util.thy ~> BNF_Util.thy BNF/Coinduction.thy ~> Coinduction.thy BNF/More_BNFs.thy ~> Library/More_BNFs.thy BNF/Countable_Type.thy ~> Library/Countable_Set_Type.thy BNF/Examples/* ~> BNF_Examples/* New theories: Wellorder_Extension.thy (split from Zorn.thy) Library/Cardinal_Notations.thy Library/BNF_Axomatization.thy BNF_Examples/Misc_Primcorec.thy BNF_Examples/Stream_Processor.thy Discontinued theories: BNF/BNF.thy BNF/Equiv_Relations_More.thy INCOMPATIBILITY. * New (co)datatype package: - Command 'primcorec' is fully implemented. - Command 'datatype_new' generates size functions ("size_xxx" and "size") as required by 'fun'. - BNFs are integrated with the Lifting tool and new-style (co)datatypes with Transfer. - Renamed commands: datatype_new_compat ~> datatype_compat primrec_new ~> primrec wrap_free_constructors ~> free_constructors INCOMPATIBILITY. - The generated constants "xxx_case" and "xxx_rec" have been renamed "case_xxx" and "rec_xxx" (e.g., "prod_case" ~> "case_prod"). INCOMPATIBILITY. - The constant "xxx_(un)fold" and related theorems are no longer generated. Use "xxx_(co)rec" or define "xxx_(un)fold" manually using "prim(co)rec". INCOMPATIBILITY. - No discriminators are generated for nullary constructors by default, eliminating the need for the odd "=:" syntax. INCOMPATIBILITY. - No discriminators or selectors are generated by default by "datatype_new", unless custom names are specified or the new "discs_sels" option is passed. INCOMPATIBILITY. * Old datatype package: - The generated theorems "xxx.cases" and "xxx.recs" have been renamed "xxx.case" and "xxx.rec" (e.g., "sum.cases" -> "sum.case"). INCOMPATIBILITY. - The generated constants "xxx_case", "xxx_rec", and "xxx_size" have been renamed "case_xxx", "rec_xxx", and "size_xxx" (e.g., "prod_case" ~> "case_prod"). INCOMPATIBILITY. * The types "'a list" and "'a option", their set and map functions, their relators, and their selectors are now produced using the new BNF-based datatype package. Renamed constants: Option.set ~> set_option Option.map ~> map_option option_rel ~> rel_option Renamed theorems: set_def ~> set_rec[abs_def] map_def ~> map_rec[abs_def] Option.map_def ~> map_option_case[abs_def] (with "case_option" instead of "rec_option") option.recs ~> option.rec list_all2_def ~> list_all2_iff set.simps ~> set_simps (or the slightly different "list.set") map.simps ~> list.map hd.simps ~> list.sel(1) tl.simps ~> list.sel(2-3) the.simps ~> option.sel INCOMPATIBILITY. * The following map functions and relators have been renamed: sum_map ~> map_sum map_pair ~> map_prod prod_rel ~> rel_prod sum_rel ~> rel_sum fun_rel ~> rel_fun set_rel ~> rel_set filter_rel ~> rel_filter fset_rel ~> rel_fset (in "src/HOL/Library/FSet.thy") cset_rel ~> rel_cset (in "src/HOL/Library/Countable_Set_Type.thy") vset ~> rel_vset (in "src/HOL/Library/Quotient_Set.thy") INCOMPATIBILITY. * Lifting and Transfer: - a type variable as a raw type is supported - stronger reflexivity prover - rep_eq is always generated by lift_definition - setup for Lifting/Transfer is now automated for BNFs + holds for BNFs that do not contain a dead variable + relator_eq, relator_mono, relator_distr, relator_domain, relator_eq_onp, quot_map, transfer rules for bi_unique, bi_total, right_unique, right_total, left_unique, left_total are proved automatically + definition of a predicator is generated automatically + simplification rules for a predicator definition are proved automatically for datatypes - consolidation of the setup of Lifting/Transfer + property that a relator preservers reflexivity is not needed any more Minor INCOMPATIBILITY. + left_total and left_unique rules are now transfer rules (reflexivity_rule attribute not needed anymore) INCOMPATIBILITY. + Domainp does not have to be a separate assumption in relator_domain theorems (=> more natural statement) INCOMPATIBILITY. - registration of code equations is more robust Potential INCOMPATIBILITY. - respectfulness proof obligation is preprocessed to a more readable form Potential INCOMPATIBILITY. - eq_onp is always unfolded in respectfulness proof obligation Potential INCOMPATIBILITY. - unregister lifting setup for Code_Numeral.integer and Code_Numeral.natural Potential INCOMPATIBILITY. - Lifting.invariant -> eq_onp INCOMPATIBILITY. * New internal SAT solver "cdclite" that produces models and proof traces. This solver replaces the internal SAT solvers "enumerate" and "dpll". Applications that explicitly used one of these two SAT solvers should use "cdclite" instead. In addition, "cdclite" is now the default SAT solver for the "sat" and "satx" proof methods and corresponding tactics; the old default can be restored using "declare [[sat_solver = zchaff_with_proofs]]". Minor INCOMPATIBILITY. * SMT module: A new version of the SMT module, temporarily called "SMT2", uses SMT-LIB 2 and supports recent versions of Z3 (e.g., 4.3). The new proof method is called "smt2". CVC3 and CVC4 are also supported as oracles. Yices is no longer supported, because no version of the solver can handle both SMT-LIB 2 and quantifiers. * Activation of Z3 now works via "z3_non_commercial" system option (without requiring restart), instead of former settings variable "Z3_NON_COMMERCIAL". The option can be edited in Isabelle/jEdit menu Plugin Options / Isabelle / General. * Sledgehammer: - Z3 can now produce Isar proofs. - MaSh overhaul: . New SML-based learning algorithms eliminate the dependency on Python and increase performance and reliability. . MaSh and MeSh are now used by default together with the traditional MePo (Meng-Paulson) relevance filter. To disable MaSh, set the "MaSh" system option in Isabelle/jEdit Plugin Options / Isabelle / General to "none". - New option: smt_proofs - Renamed options: isar_compress ~> compress isar_try0 ~> try0 INCOMPATIBILITY. * Removed solvers remote_cvc3 and remote_z3. Use cvc3 and z3 instead. * Nitpick: - Fixed soundness bug whereby mutually recursive datatypes could take infinite values. - Fixed soundness bug with low-level number functions such as "Abs_Integ" and "Rep_Integ". - Removed "std" option. - Renamed "show_datatypes" to "show_types" and "hide_datatypes" to "hide_types". * Metis: Removed legacy proof method 'metisFT'. Use 'metis (full_types)' instead. INCOMPATIBILITY. * Try0: Added 'algebra' and 'meson' to the set of proof methods. * Adjustion of INF and SUP operations: - Elongated constants INFI and SUPR to INFIMUM and SUPREMUM. - Consolidated theorem names containing INFI and SUPR: have INF and SUP instead uniformly. - More aggressive normalization of expressions involving INF and Inf or SUP and Sup. - INF_image and SUP_image do not unfold composition. - Dropped facts INF_comp, SUP_comp. - Default congruence rules strong_INF_cong and strong_SUP_cong, with simplifier implication in premises. Generalize and replace former INT_cong, SUP_cong INCOMPATIBILITY. * SUP and INF generalized to conditionally_complete_lattice. * Swapped orientation of facts image_comp and vimage_comp: image_compose ~> image_comp [symmetric] image_comp ~> image_comp [symmetric] vimage_compose ~> vimage_comp [symmetric] vimage_comp ~> vimage_comp [symmetric] INCOMPATIBILITY. * Theory reorganization: split of Big_Operators.thy into Groups_Big.thy and Lattices_Big.thy. * Consolidated some facts about big group operators: setsum_0' ~> setsum.neutral setsum_0 ~> setsum.neutral_const setsum_addf ~> setsum.distrib setsum_cartesian_product ~> setsum.cartesian_product setsum_cases ~> setsum.If_cases setsum_commute ~> setsum.commute setsum_cong ~> setsum.cong setsum_delta ~> setsum.delta setsum_delta' ~> setsum.delta' setsum_diff1' ~> setsum.remove setsum_empty ~> setsum.empty setsum_infinite ~> setsum.infinite setsum_insert ~> setsum.insert setsum_inter_restrict'' ~> setsum.inter_filter setsum_mono_zero_cong_left ~> setsum.mono_neutral_cong_left setsum_mono_zero_cong_right ~> setsum.mono_neutral_cong_right setsum_mono_zero_left ~> setsum.mono_neutral_left setsum_mono_zero_right ~> setsum.mono_neutral_right setsum_reindex ~> setsum.reindex setsum_reindex_cong ~> setsum.reindex_cong setsum_reindex_nonzero ~> setsum.reindex_nontrivial setsum_restrict_set ~> setsum.inter_restrict setsum_Plus ~> setsum.Plus setsum_setsum_restrict ~> setsum.commute_restrict setsum_Sigma ~> setsum.Sigma setsum_subset_diff ~> setsum.subset_diff setsum_Un_disjoint ~> setsum.union_disjoint setsum_UN_disjoint ~> setsum.UNION_disjoint setsum_Un_Int ~> setsum.union_inter setsum_Union_disjoint ~> setsum.Union_disjoint setsum_UNION_zero ~> setsum.Union_comp setsum_Un_zero ~> setsum.union_inter_neutral strong_setprod_cong ~> setprod.strong_cong strong_setsum_cong ~> setsum.strong_cong setprod_1' ~> setprod.neutral setprod_1 ~> setprod.neutral_const setprod_cartesian_product ~> setprod.cartesian_product setprod_cong ~> setprod.cong setprod_delta ~> setprod.delta setprod_delta' ~> setprod.delta' setprod_empty ~> setprod.empty setprod_infinite ~> setprod.infinite setprod_insert ~> setprod.insert setprod_mono_one_cong_left ~> setprod.mono_neutral_cong_left setprod_mono_one_cong_right ~> setprod.mono_neutral_cong_right setprod_mono_one_left ~> setprod.mono_neutral_left setprod_mono_one_right ~> setprod.mono_neutral_right setprod_reindex ~> setprod.reindex setprod_reindex_cong ~> setprod.reindex_cong setprod_reindex_nonzero ~> setprod.reindex_nontrivial setprod_Sigma ~> setprod.Sigma setprod_subset_diff ~> setprod.subset_diff setprod_timesf ~> setprod.distrib setprod_Un2 ~> setprod.union_diff2 setprod_Un_disjoint ~> setprod.union_disjoint setprod_UN_disjoint ~> setprod.UNION_disjoint setprod_Un_Int ~> setprod.union_inter setprod_Union_disjoint ~> setprod.Union_disjoint setprod_Un_one ~> setprod.union_inter_neutral Dropped setsum_cong2 (simple variant of setsum.cong). Dropped setsum_inter_restrict' (simple variant of setsum.inter_restrict) Dropped setsum_reindex_id, setprod_reindex_id (simple variants of setsum.reindex [symmetric], setprod.reindex [symmetric]). INCOMPATIBILITY. * Abolished slightly odd global lattice interpretation for min/max. Fact consolidations: min_max.inf_assoc ~> min.assoc min_max.inf_commute ~> min.commute min_max.inf_left_commute ~> min.left_commute min_max.inf_idem ~> min.idem min_max.inf_left_idem ~> min.left_idem min_max.inf_right_idem ~> min.right_idem min_max.sup_assoc ~> max.assoc min_max.sup_commute ~> max.commute min_max.sup_left_commute ~> max.left_commute min_max.sup_idem ~> max.idem min_max.sup_left_idem ~> max.left_idem min_max.sup_inf_distrib1 ~> max_min_distrib2 min_max.sup_inf_distrib2 ~> max_min_distrib1 min_max.inf_sup_distrib1 ~> min_max_distrib2 min_max.inf_sup_distrib2 ~> min_max_distrib1 min_max.distrib ~> min_max_distribs min_max.inf_absorb1 ~> min.absorb1 min_max.inf_absorb2 ~> min.absorb2 min_max.sup_absorb1 ~> max.absorb1 min_max.sup_absorb2 ~> max.absorb2 min_max.le_iff_inf ~> min.absorb_iff1 min_max.le_iff_sup ~> max.absorb_iff2 min_max.inf_le1 ~> min.cobounded1 min_max.inf_le2 ~> min.cobounded2 le_maxI1, min_max.sup_ge1 ~> max.cobounded1 le_maxI2, min_max.sup_ge2 ~> max.cobounded2 min_max.le_infI1 ~> min.coboundedI1 min_max.le_infI2 ~> min.coboundedI2 min_max.le_supI1 ~> max.coboundedI1 min_max.le_supI2 ~> max.coboundedI2 min_max.less_infI1 ~> min.strict_coboundedI1 min_max.less_infI2 ~> min.strict_coboundedI2 min_max.less_supI1 ~> max.strict_coboundedI1 min_max.less_supI2 ~> max.strict_coboundedI2 min_max.inf_mono ~> min.mono min_max.sup_mono ~> max.mono min_max.le_infI, min_max.inf_greatest ~> min.boundedI min_max.le_supI, min_max.sup_least ~> max.boundedI min_max.le_inf_iff ~> min.bounded_iff min_max.le_sup_iff ~> max.bounded_iff For min_max.inf_sup_aci, prefer (one of) min.commute, min.assoc, min.left_commute, min.left_idem, max.commute, max.assoc, max.left_commute, max.left_idem directly. For min_max.inf_sup_ord, prefer (one of) min.cobounded1, min.cobounded2, max.cobounded1m max.cobounded2 directly. For min_ac or max_ac, prefer more general collection ac_simps. INCOMPATIBILITY. * Theorem disambiguation Inf_le_Sup (on finite sets) ~> Inf_fin_le_Sup_fin. INCOMPATIBILITY. * Qualified constant names Wellfounded.acc, Wellfounded.accp. INCOMPATIBILITY. * Fact generalization and consolidation: neq_one_mod_two, mod_2_not_eq_zero_eq_one_int ~> not_mod_2_eq_0_eq_1 INCOMPATIBILITY. * Purely algebraic definition of even. Fact generalization and consolidation: nat_even_iff_2_dvd, int_even_iff_2_dvd ~> even_iff_2_dvd even_zero_(nat|int) ~> even_zero INCOMPATIBILITY. * Abolished neg_numeral. - Canonical representation for minus one is "- 1". - Canonical representation for other negative numbers is "- (numeral _)". - When devising rule sets for number calculation, consider the following canonical cases: 0, 1, numeral _, - 1, - numeral _. - HOLogic.dest_number also recognizes numerals in non-canonical forms like "numeral One", "- numeral One", "- 0" and even "- ... - _". - Syntax for negative numerals is mere input syntax. INCOMPATIBILITY. * Reduced name variants for rules on associativity and commutativity: add_assoc ~> add.assoc add_commute ~> add.commute add_left_commute ~> add.left_commute mult_assoc ~> mult.assoc mult_commute ~> mult.commute mult_left_commute ~> mult.left_commute nat_add_assoc ~> add.assoc nat_add_commute ~> add.commute nat_add_left_commute ~> add.left_commute nat_mult_assoc ~> mult.assoc nat_mult_commute ~> mult.commute eq_assoc ~> iff_assoc eq_left_commute ~> iff_left_commute INCOMPATIBILITY. * Fact collections add_ac and mult_ac are considered old-fashioned. Prefer ac_simps instead, or specify rules (add|mult).(assoc|commute|left_commute) individually. * Elimination of fact duplicates: equals_zero_I ~> minus_unique diff_eq_0_iff_eq ~> right_minus_eq nat_infinite ~> infinite_UNIV_nat int_infinite ~> infinite_UNIV_int INCOMPATIBILITY. * Fact name consolidation: diff_def, diff_minus, ab_diff_minus ~> diff_conv_add_uminus minus_le_self_iff ~> neg_less_eq_nonneg le_minus_self_iff ~> less_eq_neg_nonpos neg_less_nonneg ~> neg_less_pos less_minus_self_iff ~> less_neg_neg [simp] INCOMPATIBILITY. * More simplification rules on unary and binary minus: add_diff_cancel, add_diff_cancel_left, add_le_same_cancel1, add_le_same_cancel2, add_less_same_cancel1, add_less_same_cancel2, add_minus_cancel, diff_add_cancel, le_add_same_cancel1, le_add_same_cancel2, less_add_same_cancel1, less_add_same_cancel2, minus_add_cancel, uminus_add_conv_diff. These correspondingly have been taken away from fact collections algebra_simps and field_simps. INCOMPATIBILITY. To restore proofs, the following patterns are helpful: a) Arbitrary failing proof not involving "diff_def": Consider simplification with algebra_simps or field_simps. b) Lifting rules from addition to subtraction: Try with "using <rule for addition> of [... "- _" ...]" by simp". c) Simplification with "diff_def": just drop "diff_def". Consider simplification with algebra_simps or field_simps; or the brute way with "simp add: diff_conv_add_uminus del: add_uminus_conv_diff". * Introduce bdd_above and bdd_below in theory Conditionally_Complete_Lattices, use them instead of explicitly stating boundedness of sets. * ccpo.admissible quantifies only over non-empty chains to allow more syntax-directed proof rules; the case of the empty chain shows up as additional case in fixpoint induction proofs. INCOMPATIBILITY. * Removed and renamed theorems in Series: summable_le ~> suminf_le suminf_le ~> suminf_le_const series_pos_le ~> setsum_le_suminf series_pos_less ~> setsum_less_suminf suminf_ge_zero ~> suminf_nonneg suminf_gt_zero ~> suminf_pos suminf_gt_zero_iff ~> suminf_pos_iff summable_sumr_LIMSEQ_suminf ~> summable_LIMSEQ suminf_0_le ~> suminf_nonneg [rotate] pos_summable ~> summableI_nonneg_bounded ratio_test ~> summable_ratio_test removed series_zero, replaced by sums_finite removed auxiliary lemmas: sumr_offset, sumr_offset2, sumr_offset3, sumr_offset4, sumr_group, half, le_Suc_ex_iff, lemma_realpow_diff_sumr, real_setsum_nat_ivl_bounded, summable_le2, ratio_test_lemma2, sumr_minus_one_realpow_zerom, sumr_one_lb_realpow_zero, summable_convergent_sumr_iff, sumr_diff_mult_const INCOMPATIBILITY. * Replace (F)DERIV syntax by has_derivative: - "(f has_derivative f') (at x within s)" replaces "FDERIV f x : s : f'" - "(f has_field_derivative f') (at x within s)" replaces "DERIV f x : s : f'" - "f differentiable at x within s" replaces "_ differentiable _ in _" syntax - removed constant isDiff - "DERIV f x : f'" and "FDERIV f x : f'" syntax is only available as input syntax. - "DERIV f x : s : f'" and "FDERIV f x : s : f'" syntax removed. - Renamed FDERIV_... lemmas to has_derivative_... - renamed deriv (the syntax constant used for "DERIV _ _ :> _") to DERIV - removed DERIV_intros, has_derivative_eq_intros - introduced derivative_intros and deriative_eq_intros which includes now rules for DERIV, has_derivative and has_vector_derivative. - Other renamings: differentiable_def ~> real_differentiable_def differentiableE ~> real_differentiableE fderiv_def ~> has_derivative_at field_fderiv_def ~> field_has_derivative_at isDiff_der ~> differentiable_def deriv_fderiv ~> has_field_derivative_def deriv_def ~> DERIV_def INCOMPATIBILITY. * Include more theorems in continuous_intros. Remove the continuous_on_intros, isCont_intros collections, these facts are now in continuous_intros. * Theorems about complex numbers are now stated only using Re and Im, the Complex constructor is not used anymore. It is possible to use primcorec to defined the behaviour of a complex-valued function. Removed theorems about the Complex constructor from the simpset, they are available as the lemma collection legacy_Complex_simps. This especially removes i_complex_of_real: "ii * complex_of_real r = Complex 0 r". Instead the reverse direction is supported with Complex_eq: "Complex a b = a + \<i> * b" Moved csqrt from Fundamental_Algebra_Theorem to Complex. Renamings: Re/Im ~> complex.sel complex_Re/Im_zero ~> zero_complex.sel complex_Re/Im_add ~> plus_complex.sel complex_Re/Im_minus ~> uminus_complex.sel complex_Re/Im_diff ~> minus_complex.sel complex_Re/Im_one ~> one_complex.sel complex_Re/Im_mult ~> times_complex.sel complex_Re/Im_inverse ~> inverse_complex.sel complex_Re/Im_scaleR ~> scaleR_complex.sel complex_Re/Im_i ~> ii.sel complex_Re/Im_cnj ~> cnj.sel Re/Im_cis ~> cis.sel complex_divide_def ~> divide_complex_def complex_norm_def ~> norm_complex_def cmod_def ~> norm_complex_de Removed theorems: complex_zero_def complex_add_def complex_minus_def complex_diff_def complex_one_def complex_mult_def complex_inverse_def complex_scaleR_def INCOMPATIBILITY. * Theory Lubs moved HOL image to HOL-Library. It is replaced by Conditionally_Complete_Lattices. INCOMPATIBILITY. * HOL-Library: new theory src/HOL/Library/Tree.thy. * HOL-Library: removed theory src/HOL/Library/Kleene_Algebra.thy; it is subsumed by session Kleene_Algebra in AFP. * HOL-Library / theory RBT: various constants and facts are hidden; lifting setup is unregistered. INCOMPATIBILITY. * HOL-Cardinals: new theory src/HOL/Cardinals/Ordinal_Arithmetic.thy. * HOL-Word: bit representations prefer type bool over type bit. INCOMPATIBILITY. * HOL-Word: - Abandoned fact collection "word_arith_alts", which is a duplicate of "word_arith_wis". - Dropped first (duplicated) element in fact collections "sint_word_ariths", "word_arith_alts", "uint_word_ariths", "uint_word_arith_bintrs". * HOL-Number_Theory: - consolidated the proofs of the binomial theorem - the function fib is again of type nat => nat and not overloaded - no more references to Old_Number_Theory in the HOL libraries (except the AFP) INCOMPATIBILITY. * HOL-Multivariate_Analysis: - Type class ordered_real_vector for ordered vector spaces. - New theory Complex_Basic_Analysis defining complex derivatives, holomorphic functions, etc., ported from HOL Light's canal.ml. - Changed order of ordered_euclidean_space to be compatible with pointwise ordering on products. Therefore instance of conditionally_complete_lattice and ordered_real_vector. INCOMPATIBILITY: use box instead of greaterThanLessThan or explicit set-comprehensions with eucl_less for other (half-)open intervals. - removed dependencies on type class ordered_euclidean_space with introduction of "cbox" on euclidean_space - renamed theorems: interval ~> box mem_interval ~> mem_box interval_eq_empty ~> box_eq_empty interval_ne_empty ~> box_ne_empty interval_sing(1) ~> cbox_sing interval_sing(2) ~> box_sing subset_interval_imp ~> subset_box_imp subset_interval ~> subset_box open_interval ~> open_box closed_interval ~> closed_cbox interior_closed_interval ~> interior_cbox bounded_closed_interval ~> bounded_cbox compact_interval ~> compact_cbox bounded_subset_closed_interval_symmetric ~> bounded_subset_cbox_symmetric bounded_subset_closed_interval ~> bounded_subset_cbox mem_interval_componentwiseI ~> mem_box_componentwiseI convex_box ~> convex_prod rel_interior_real_interval ~> rel_interior_real_box convex_interval ~> convex_box convex_hull_eq_real_interval ~> convex_hull_eq_real_cbox frechet_derivative_within_closed_interval ~> frechet_derivative_within_cbox content_closed_interval' ~> content_cbox' elementary_subset_interval ~> elementary_subset_box diameter_closed_interval ~> diameter_cbox frontier_closed_interval ~> frontier_cbox frontier_open_interval ~> frontier_box bounded_subset_open_interval_symmetric ~> bounded_subset_box_symmetric closure_open_interval ~> closure_box open_closed_interval_convex ~> open_cbox_convex open_interval_midpoint ~> box_midpoint content_image_affinity_interval ~> content_image_affinity_cbox is_interval_interval ~> is_interval_cbox + is_interval_box + is_interval_closed_interval bounded_interval ~> bounded_closed_interval + bounded_boxes - respective theorems for intervals over the reals: content_closed_interval + content_cbox has_integral + has_integral_real fine_division_exists + fine_division_exists_real has_integral_null + has_integral_null_real tagged_division_union_interval + tagged_division_union_interval_real has_integral_const + has_integral_const_real integral_const + integral_const_real has_integral_bound + has_integral_bound_real integrable_continuous + integrable_continuous_real integrable_subinterval + integrable_subinterval_real has_integral_reflect_lemma + has_integral_reflect_lemma_real integrable_reflect + integrable_reflect_real integral_reflect + integral_reflect_real image_affinity_interval + image_affinity_cbox image_smult_interval + image_smult_cbox integrable_const + integrable_const_ivl integrable_on_subinterval + integrable_on_subcbox - renamed theorems: derivative_linear ~> has_derivative_bounded_linear derivative_is_linear ~> has_derivative_linear bounded_linear_imp_linear ~> bounded_linear.linear * HOL-Probability: - Renamed positive_integral to nn_integral: . Renamed all lemmas "*positive_integral*" to *nn_integral*" positive_integral_positive ~> nn_integral_nonneg . Renamed abbreviation integral\<^sup>P to integral\<^sup>N. - replaced the Lebesgue integral on real numbers by the more general Bochner integral for functions into a real-normed vector space. integral_zero ~> integral_zero / integrable_zero integral_minus ~> integral_minus / integrable_minus integral_add ~> integral_add / integrable_add integral_diff ~> integral_diff / integrable_diff integral_setsum ~> integral_setsum / integrable_setsum integral_multc ~> integral_mult_left / integrable_mult_left integral_cmult ~> integral_mult_right / integrable_mult_right integral_triangle_inequality~> integral_norm_bound integrable_nonneg ~> integrableI_nonneg integral_positive ~> integral_nonneg_AE integrable_abs_iff ~> integrable_abs_cancel positive_integral_lim_INF ~> nn_integral_liminf lebesgue_real_affine ~> lborel_real_affine borel_integral_has_integral ~> has_integral_lebesgue_integral integral_indicator ~> integral_real_indicator / integrable_real_indicator positive_integral_fst ~> nn_integral_fst' positive_integral_fst_measurable ~> nn_integral_fst positive_integral_snd_measurable ~> nn_integral_snd integrable_fst_measurable ~> integral_fst / integrable_fst / AE_integrable_fst integrable_snd_measurable ~> integral_snd / integrable_snd / AE_integrable_snd integral_monotone_convergence ~> integral_monotone_convergence / integrable_monotone_convergence integral_monotone_convergence_at_top ~> integral_monotone_convergence_at_top / integrable_monotone_convergence_at_top has_integral_iff_positive_integral_lebesgue ~> has_integral_iff_has_bochner_integral_lebesgue_nonneg lebesgue_integral_has_integral ~> has_integral_integrable_lebesgue_nonneg positive_integral_lebesgue_has_integral ~> integral_has_integral_lebesgue_nonneg / integrable_has_integral_lebesgue_nonneg lebesgue_integral_real_affine ~> nn_integral_real_affine has_integral_iff_positive_integral_lborel ~> integral_has_integral_nonneg / integrable_has_integral_nonneg The following theorems where removed: lebesgue_integral_nonneg lebesgue_integral_uminus lebesgue_integral_cmult lebesgue_integral_multc lebesgue_integral_cmult_nonneg integral_cmul_indicator integral_real - Formalized properties about exponentially, Erlang, and normal distributed random variables. * HOL-Decision_Procs: Separate command 'approximate' for approximative computation in src/HOL/Decision_Procs/Approximation. Minor INCOMPATIBILITY. *** Scala *** * The signature and semantics of Document.Snapshot.cumulate_markup / select_markup have been clarified. Markup is now traversed in the order of reports given by the prover: later markup is usually more specific and may override results accumulated so far. The elements guard is mandatory and checked precisely. Subtle INCOMPATIBILITY. * Substantial reworking of internal PIDE protocol communication channels. INCOMPATIBILITY. *** ML *** * Subtle change of semantics of Thm.eq_thm: theory stamps are not compared (according to Thm.thm_ord), but assumed to be covered by the current background theory. Thus equivalent data produced in different branches of the theory graph usually coincides (e.g. relevant for theory merge). Note that the softer Thm.eq_thm_prop is often more appropriate than Thm.eq_thm. * Proper context for basic Simplifier operations: rewrite_rule, rewrite_goals_rule, rewrite_goals_tac etc. INCOMPATIBILITY, need to pass runtime Proof.context (and ensure that the simplified entity actually belongs to it). * Proper context discipline for read_instantiate and instantiate_tac: variables that are meant to become schematic need to be given as fixed, and are generalized by the explicit context of local variables. This corresponds to Isar attributes "where" and "of" with 'for' declaration. INCOMPATIBILITY, also due to potential change of indices of schematic variables. * Moved ML_Compiler.exn_trace and other operations on exceptions to structure Runtime. Minor INCOMPATIBILITY. * Discontinued old Toplevel.debug in favour of system option "ML_exception_trace", which may be also declared within the context via "declare [[ML_exception_trace = true]]". Minor INCOMPATIBILITY. * Renamed configuration option "ML_trace" to "ML_source_trace". Minor INCOMPATIBILITY. * Configuration option "ML_print_depth" controls the pretty-printing depth of the ML compiler within the context. The old print_depth in ML is still available as default_print_depth, but rarely used. Minor INCOMPATIBILITY. * Toplevel function "use" refers to raw ML bootstrap environment, without Isar context nor antiquotations. Potential INCOMPATIBILITY. Note that 'ML_file' is the canonical command to load ML files into the formal context. * Simplified programming interface to define ML antiquotations, see structure ML_Antiquotation. Minor INCOMPATIBILITY. * ML antiquotation @{here} refers to its source position, which is occasionally useful for experimentation and diagnostic purposes. * ML antiquotation @{path} produces a Path.T value, similarly to Path.explode, but with compile-time check against the file-system and some PIDE markup. Note that unlike theory source, ML does not have a well-defined master directory, so an absolute symbolic path specification is usually required, e.g. "~~/src/HOL". * ML antiquotation @{print} inlines a function to print an arbitrary ML value, which is occasionally useful for diagnostic or demonstration purposes. *** System *** * Proof General with its traditional helper scripts is now an optional Isabelle component, e.g. see ProofGeneral-4.2-2 from the Isabelle component repository http://isabelle.in.tum.de/components/. Note that the "system" manual provides general explanations about add-on components, especially those that are not bundled with the release. * The raw Isabelle process executable has been renamed from "isabelle-process" to "isabelle_process", which conforms to common shell naming conventions, and allows to define a shell function within the Isabelle environment to avoid dynamic path lookup. Rare incompatibility for old tools that do not use the ISABELLE_PROCESS settings variable. * Former "isabelle tty" has been superseded by "isabelle console", with implicit build like "isabelle jedit", and without the mostly obsolete Isar TTY loop. * Simplified "isabelle display" tool. Settings variables DVI_VIEWER and PDF_VIEWER now refer to the actual programs, not shell command-lines. Discontinued option -c: invocation may be asynchronous via desktop environment, without any special precautions. Potential INCOMPATIBILITY with ambitious private settings. * Removed obsolete "isabelle unsymbolize". Note that the usual format for email communication is the Unicode rendering of Isabelle symbols, as produced by Isabelle/jEdit, for example. * Removed obsolete tool "wwwfind". Similar functionality may be integrated into Isabelle/jEdit eventually. * Improved 'display_drafts' concerning desktop integration and repeated invocation in PIDE front-end: re-use single file $ISABELLE_HOME_USER/tmp/drafts.pdf and corresponding views. * Session ROOT specifications require explicit 'document_files' for robust dependencies on LaTeX sources. Only these explicitly given files are copied to the document output directory, before document processing is started. * Windows: support for regular TeX installation (e.g. MiKTeX) instead of TeX Live from Cygwin. New in Isabelle2013-2 (December 2013) ------------------------------------- *** Prover IDE -- Isabelle/Scala/jEdit *** * More robust editing of running commands with internal forks, e.g. non-terminating 'by' steps. * More relaxed Sledgehammer panel: avoid repeated application of query after edits surrounding the command location. * More status information about commands that are interrupted accidentally (via physical event or Poly/ML runtime system signal, e.g. out-of-memory). *** System *** * More robust termination of external processes managed by Isabelle/ML: support cancellation of tasks within the range of milliseconds, as required for PIDE document editing with automatically tried tools (e.g. Sledgehammer). * Reactivated Isabelle/Scala kill command for external processes on Mac OS X, which was accidentally broken in Isabelle2013-1 due to a workaround for some Debian/Ubuntu Linux versions from 2013. New in Isabelle2013-1 (November 2013) ------------------------------------- *** General *** * Discontinued obsolete 'uses' within theory header. Note that commands like 'ML_file' work without separate declaration of file dependencies. Minor INCOMPATIBILITY. * Discontinued redundant 'use' command, which was superseded by 'ML_file' in Isabelle2013. Minor INCOMPATIBILITY. * Simplified subscripts within identifiers, using plain \<^sub> instead of the second copy \<^isub> and \<^isup>. Superscripts are only for literal tokens within notation; explicit mixfix annotations for consts or fixed variables may be used as fall-back for unusual names. Obsolete \<twosuperior> has been expanded to \<^sup>2 in Isabelle/HOL. INCOMPATIBILITY, use "isabelle update_sub_sup" to standardize symbols as a starting point for further manual cleanup. The ML reference variable "legacy_isub_isup" may be set as temporary workaround, to make the prover accept a subset of the old identifier syntax. * Document antiquotations: term style "isub" has been renamed to "sub". Minor INCOMPATIBILITY. * Uniform management of "quick_and_dirty" as system option (see also "isabelle options"), configuration option within the context (see also Config.get in Isabelle/ML), and attribute in Isabelle/Isar. Minor INCOMPATIBILITY, need to use more official Isabelle means to access quick_and_dirty, instead of historical poking into mutable reference. * Renamed command 'print_configs' to 'print_options'. Minor INCOMPATIBILITY. * Proper diagnostic command 'print_state'. Old 'pr' (with its implicit change of some global references) is retained for now as control command, e.g. for ProofGeneral 3.7.x. * Discontinued 'print_drafts' command with its old-fashioned PS output and Unix command-line print spooling. Minor INCOMPATIBILITY: use 'display_drafts' instead and print via the regular document viewer. * Updated and extended "isar-ref" and "implementation" manual, eliminated old "ref" manual. *** Prover IDE -- Isabelle/Scala/jEdit *** * New manual "jedit" for Isabelle/jEdit, see isabelle doc or Documentation panel. * Dockable window "Documentation" provides access to Isabelle documentation. * Dockable window "Find" provides query operations for formal entities (GUI front-end to 'find_theorems' command). * Dockable window "Sledgehammer" manages asynchronous / parallel sledgehammer runs over existing document sources, independently of normal editing and checking process. * Dockable window "Timing" provides an overview of relevant command timing information, depending on option jedit_timing_threshold. The same timing information is shown in the extended tooltip of the command keyword, when hovering the mouse over it while the CONTROL or COMMAND modifier is pressed. * Improved dockable window "Theories": Continuous checking of proof document (visible and required parts) may be controlled explicitly, using check box or shortcut "C+e ENTER". Individual theory nodes may be marked explicitly as required and checked in full, using check box or shortcut "C+e SPACE". * Improved completion mechanism, which is now managed by the Isabelle/jEdit plugin instead of SideKick. Refined table of Isabelle symbol abbreviations (see $ISABELLE_HOME/etc/symbols). * Standard jEdit keyboard shortcut C+b complete-word is remapped to isabelle.complete for explicit completion in Isabelle sources. INCOMPATIBILITY wrt. jEdit defaults, may have to invent new shortcuts to resolve conflict. * Improved support of various "minor modes" for Isabelle NEWS, options, session ROOT etc., with completion and SideKick tree view. * Strictly monotonic document update, without premature cancellation of running transactions that are still needed: avoid reset/restart of such command executions while editing. * Support for asynchronous print functions, as overlay to existing document content. * Support for automatic tools in HOL, which try to prove or disprove toplevel theorem statements. * Action isabelle.reset-font-size resets main text area font size according to Isabelle/Scala plugin option "jedit_font_reset_size" (see also "Plugin Options / Isabelle / General"). It can be bound to some keyboard shortcut by the user (e.g. C+0 and/or C+NUMPAD0). * File specifications in jEdit (e.g. file browser) may refer to $ISABELLE_HOME and $ISABELLE_HOME_USER on all platforms. Discontinued obsolete $ISABELLE_HOME_WINDOWS variable. * Improved support for Linux look-and-feel "GTK+", see also "Utilities / Global Options / Appearance". * Improved support of native Mac OS X functionality via "MacOSX" plugin, which is now enabled by default. *** Pure *** * Commands 'interpretation' and 'sublocale' are now target-sensitive. In particular, 'interpretation' allows for non-persistent interpretation within "context ... begin ... end" blocks offering a light-weight alternative to 'sublocale'. See "isar-ref" manual for details. * Improved locales diagnostic command 'print_dependencies'. * Discontinued obsolete 'axioms' command, which has been marked as legacy since Isabelle2009-2. INCOMPATIBILITY, use 'axiomatization' instead, while observing its uniform scope for polymorphism. * Discontinued empty name bindings in 'axiomatization'. INCOMPATIBILITY. * System option "proofs" has been discontinued. Instead the global state of Proofterm.proofs is persistently compiled into logic images as required, notably HOL-Proofs. Users no longer need to change Proofterm.proofs dynamically. Minor INCOMPATIBILITY. * Syntax translation functions (print_translation etc.) always depend on Proof.context. Discontinued former "(advanced)" option -- this is now the default. Minor INCOMPATIBILITY. * Former global reference trace_unify_fail is now available as configuration option "unify_trace_failure" (global context only). * SELECT_GOAL now retains the syntactic context of the overall goal state (schematic variables etc.). Potential INCOMPATIBILITY in rare situations. *** HOL *** * Stronger precedence of syntax for big intersection and union on sets, in accordance with corresponding lattice operations. INCOMPATIBILITY. * Notation "{p:A. P}" now allows tuple patterns as well. * Nested case expressions are now translated in a separate check phase rather than during parsing. The data for case combinators is separated from the datatype package. The declaration attribute "case_translation" can be used to register new case combinators: declare [[case_translation case_combinator constructor1 ... constructorN]] * Code generator: - 'code_printing' unifies 'code_const' / 'code_type' / 'code_class' / 'code_instance'. - 'code_identifier' declares name hints for arbitrary identifiers in generated code, subsuming 'code_modulename'. See the isar-ref manual for syntax diagrams, and the HOL theories for examples. * Attibute 'code': 'code' now declares concrete and abstract code equations uniformly. Use explicit 'code equation' and 'code abstract' to distinguish both when desired. * Discontinued theories Code_Integer and Efficient_Nat by a more fine-grain stack of theories Code_Target_Int, Code_Binary_Nat, Code_Target_Nat and Code_Target_Numeral. See the tutorial on code generation for details. INCOMPATIBILITY. * Numeric types are mapped by default to target language numerals: natural (replaces former code_numeral) and integer (replaces former code_int). Conversions are available as integer_of_natural / natural_of_integer / integer_of_nat / nat_of_integer (in HOL) and Code_Numeral.integer_of_natural / Code_Numeral.natural_of_integer (in ML). INCOMPATIBILITY. * Function package: For mutually recursive functions f and g, separate cases rules f.cases and g.cases are generated instead of unusable f_g.cases which exposed internal sum types. Potential INCOMPATIBILITY, in the case that the unusable rule was used nevertheless. * Function package: For each function f, new rules f.elims are generated, which eliminate equalities of the form "f x = t". * New command 'fun_cases' derives ad-hoc elimination rules for function equations as simplified instances of f.elims, analogous to inductive_cases. See ~~/src/HOL/ex/Fundefs.thy for some examples. * Lifting: - parametrized correspondence relations are now supported: + parametricity theorems for the raw term can be specified in the command lift_definition, which allow us to generate stronger transfer rules + setup_lifting generates stronger transfer rules if parametric correspondence relation can be generated + various new properties of the relator must be specified to support parametricity + parametricity theorem for the Quotient relation can be specified - setup_lifting generates domain rules for the Transfer package - stronger reflexivity prover of respectfulness theorems for type copies - ===> and --> are now local. The symbols can be introduced by interpreting the locale lifting_syntax (typically in an anonymous context) - Lifting/Transfer relevant parts of Library/Quotient_* are now in Main. Potential INCOMPATIBILITY - new commands for restoring and deleting Lifting/Transfer context: lifting_forget, lifting_update - the command print_quotmaps was renamed to print_quot_maps. INCOMPATIBILITY * Transfer: - better support for domains in Transfer: replace Domainp T by the actual invariant in a transferred goal - transfer rules can have as assumptions other transfer rules - Experimental support for transferring from the raw level to the abstract level: Transfer.transferred attribute - Attribute version of the transfer method: untransferred attribute * Reification and reflection: - Reification is now directly available in HOL-Main in structure "Reification". - Reflection now handles multiple lists with variables also. - The whole reflection stack has been decomposed into conversions. INCOMPATIBILITY. * Revised devices for recursive definitions over finite sets: - Only one fundamental fold combinator on finite set remains: Finite_Set.fold :: ('a => 'b => 'b) => 'b => 'a set => 'b This is now identity on infinite sets. - Locales ("mini packages") for fundamental definitions with Finite_Set.fold: folding, folding_idem. - Locales comm_monoid_set, semilattice_order_set and semilattice_neutr_order_set for big operators on sets. See theory Big_Operators for canonical examples. Note that foundational constants comm_monoid_set.F and semilattice_set.F correspond to former combinators fold_image and fold1 respectively. These are now gone. You may use those foundational constants as substitutes, but it is preferable to interpret the above locales accordingly. - Dropped class ab_semigroup_idem_mult (special case of lattice, no longer needed in connection with Finite_Set.fold etc.) - Fact renames: card.union_inter ~> card_Un_Int [symmetric] card.union_disjoint ~> card_Un_disjoint INCOMPATIBILITY. * Locale hierarchy for abstract orderings and (semi)lattices. * Complete_Partial_Order.admissible is defined outside the type class ccpo, but with mandatory prefix ccpo. Admissibility theorems lose the class predicate assumption or sort constraint when possible. INCOMPATIBILITY. * Introduce type class "conditionally_complete_lattice": Like a complete lattice but does not assume the existence of the top and bottom elements. Allows to generalize some lemmas about reals and extended reals. Removed SupInf and replaced it by the instantiation of conditionally_complete_lattice for real. Renamed lemmas about conditionally-complete lattice from Sup_... to cSup_... and from Inf_... to cInf_... to avoid hidding of similar complete lattice lemmas. * Introduce type class linear_continuum as combination of conditionally-complete lattices and inner dense linorders which have more than one element. INCOMPATIBILITY. * Introduced type classes order_top and order_bot. The old classes top and bot only contain the syntax without assumptions. INCOMPATIBILITY: Rename bot -> order_bot, top -> order_top * Introduce type classes "no_top" and "no_bot" for orderings without top and bottom elements. * Split dense_linorder into inner_dense_order and no_top, no_bot. * Complex_Main: Unify and move various concepts from HOL-Multivariate_Analysis to HOL-Complex_Main. - Introduce type class (lin)order_topology and linear_continuum_topology. Allows to generalize theorems about limits and order. Instances are reals and extended reals. - continuous and continuos_on from Multivariate_Analysis: "continuous" is the continuity of a function at a filter. "isCont" is now an abbrevitation: "isCont x f == continuous (at _) f". Generalized continuity lemmas from isCont to continuous on an arbitrary filter. - compact from Multivariate_Analysis. Use Bolzano's lemma to prove compactness of closed intervals on reals. Continuous functions attain infimum and supremum on compact sets. The inverse of a continuous function is continuous, when the function is continuous on a compact set. - connected from Multivariate_Analysis. Use it to prove the intermediate value theorem. Show connectedness of intervals on linear_continuum_topology). - first_countable_topology from Multivariate_Analysis. Is used to show equivalence of properties on the neighbourhood filter of x and on all sequences converging to x. - FDERIV: Definition of has_derivative moved to Deriv.thy. Moved theorems from Library/FDERIV.thy to Deriv.thy and base the definition of DERIV on FDERIV. Add variants of DERIV and FDERIV which are restricted to sets, i.e. to represent derivatives from left or right. - Removed the within-filter. It is replaced by the principal filter: F within X = inf F (principal X) - Introduce "at x within U" as a single constant, "at x" is now an abbreviation for "at x within UNIV" - Introduce named theorem collections tendsto_intros, continuous_intros, continuous_on_intros and FDERIV_intros. Theorems in tendsto_intros (or FDERIV_intros) are also available as tendsto_eq_intros (or FDERIV_eq_intros) where the right-hand side is replaced by a congruence rule. This allows to apply them as intro rules and then proving equivalence by the simplifier. - Restructured theories in HOL-Complex_Main: + Moved RealDef and RComplete into Real + Introduced Topological_Spaces and moved theorems about topological spaces, filters, limits and continuity to it + Renamed RealVector to Real_Vector_Spaces + Split Lim, SEQ, Series into Topological_Spaces, Real_Vector_Spaces, and Limits + Moved Ln and Log to Transcendental + Moved theorems about continuity from Deriv to Topological_Spaces - Remove various auxiliary lemmas. INCOMPATIBILITY. * Nitpick: - Added option "spy". - Reduce incidence of "too high arity" errors. * Sledgehammer: - Renamed option: isar_shrink ~> isar_compress INCOMPATIBILITY. - Added options "isar_try0", "spy". - Better support for "isar_proofs". - MaSh has been fined-tuned and now runs as a local server. * Improved support for ad hoc overloading of constants (see also isar-ref manual and ~~/src/HOL/ex/Adhoc_Overloading_Examples.thy). * Library/Polynomial.thy: - Use lifting for primitive definitions. - Explicit conversions from and to lists of coefficients, used for generated code. - Replaced recursion operator poly_rec by fold_coeffs. - Prefer pre-existing gcd operation for gcd. - Fact renames: poly_eq_iff ~> poly_eq_poly_eq_iff poly_ext ~> poly_eqI expand_poly_eq ~> poly_eq_iff IMCOMPATIBILITY. * New Library/Simps_Case_Conv.thy: Provides commands simps_of_case and case_of_simps to convert function definitions between a list of equations with patterns on the lhs and a single equation with case expressions on the rhs. See also Ex/Simps_Case_Conv_Examples.thy. * New Library/FSet.thy: type of finite sets defined as a subtype of sets defined by Lifting/Transfer. * Discontinued theory src/HOL/Library/Eval_Witness. INCOMPATIBILITY. * Consolidation of library theories on product orders: Product_Lattice ~> Product_Order -- pointwise order on products Product_ord ~> Product_Lexorder -- lexicographic order on products INCOMPATIBILITY. * Imperative-HOL: The MREC combinator is considered legacy and no longer included by default. INCOMPATIBILITY, use partial_function instead, or import theory Legacy_Mrec as a fallback. * HOL-Algebra: Discontinued theories ~~/src/HOL/Algebra/abstract and ~~/src/HOL/Algebra/poly. Existing theories should be based on ~~/src/HOL/Library/Polynomial instead. The latter provides integration with HOL's type classes for rings. INCOMPATIBILITY. * HOL-BNF: - Various improvements to BNF-based (co)datatype package, including new commands "primrec_new", "primcorec", and "datatype_new_compat", as well as documentation. See "datatypes.pdf" for details. - New "coinduction" method to avoid some boilerplate (compared to coinduct). - Renamed keywords: data ~> datatype_new codata ~> codatatype bnf_def ~> bnf - Renamed many generated theorems, including discs ~> disc map_comp' ~> map_comp map_id' ~> map_id sels ~> sel set_map' ~> set_map sets ~> set IMCOMPATIBILITY. *** ML *** * Spec_Check is a Quickcheck tool for Isabelle/ML. The ML function "check_property" allows to check specifications of the form "ALL x y z. prop x y z". See also ~~/src/Tools/Spec_Check/ with its Examples.thy in particular. * Improved printing of exception trace in Poly/ML 5.5.1, with regular tracing output in the command transaction context instead of physical stdout. See also Toplevel.debug, Toplevel.debugging and ML_Compiler.exn_trace. * ML type "theory" is now immutable, without any special treatment of drafts or linear updates (which could lead to "stale theory" errors in the past). Discontinued obsolete operations like Theory.copy, Theory.checkpoint, and the auxiliary type theory_ref. Minor INCOMPATIBILITY. * More uniform naming of goal functions for skipped proofs: Skip_Proof.prove ~> Goal.prove_sorry Skip_Proof.prove_global ~> Goal.prove_sorry_global Minor INCOMPATIBILITY. * Simplifier tactics and tools use proper Proof.context instead of historic type simpset. Old-style declarations like addsimps, addsimprocs etc. operate directly on Proof.context. Raw type simpset retains its use as snapshot of the main Simplifier context, using simpset_of and put_simpset on Proof.context. INCOMPATIBILITY -- port old tools by making them depend on (ctxt : Proof.context) instead of (ss : simpset), then turn (simpset_of ctxt) into ctxt. * Modifiers for classical wrappers (e.g. addWrapper, delWrapper) operate on Proof.context instead of claset, for uniformity with addIs, addEs, addDs etc. Note that claset_of and put_claset allow to manage clasets separately from the context. * Discontinued obsolete ML antiquotations @{claset} and @{simpset}. INCOMPATIBILITY, use @{context} instead. * Antiquotation @{theory_context A} is similar to @{theory A}, but presents the result as initial Proof.context. *** System *** * Discontinued obsolete isabelle usedir, mkdir, make -- superseded by "isabelle build" in Isabelle2013. INCOMPATIBILITY. * Discontinued obsolete isabelle-process options -f and -u (former administrative aliases of option -e). Minor INCOMPATIBILITY. * Discontinued obsolete isabelle print tool, and PRINT_COMMAND settings variable. * Discontinued ISABELLE_DOC_FORMAT settings variable and historic document formats: dvi.gz, ps, ps.gz -- the default document format is always pdf. * Isabelle settings variable ISABELLE_BUILD_JAVA_OPTIONS allows to specify global resources of the JVM process run by isabelle build. * Toplevel executable $ISABELLE_HOME/bin/isabelle_scala_script allows to run Isabelle/Scala source files as standalone programs. * Improved "isabelle keywords" tool (for old-style ProofGeneral keyword tables): use Isabelle/Scala operations, which inspect outer syntax without requiring to build sessions first. * Sessions may be organized via 'chapter' specifications in the ROOT file, which determines a two-level hierarchy of browser info. The old tree-like organization via implicit sub-session relation (with its tendency towards erratic fluctuation of URLs) has been discontinued. The default chapter is called "Unsorted". Potential INCOMPATIBILITY for HTML presentation of theories. New in Isabelle2013 (February 2013) ----------------------------------- *** General *** * Theorem status about oracles and unfinished/failed future proofs is no longer printed by default, since it is incompatible with incremental / parallel checking of the persistent document model. ML function Thm.peek_status may be used to inspect a snapshot of the ongoing evaluation process. Note that in batch mode --- notably isabelle build --- the system ensures that future proofs of all accessible theorems in the theory context are finished (as before). * Configuration option show_markup controls direct inlining of markup into the printed representation of formal entities --- notably type and sort constraints. This enables Prover IDE users to retrieve that information via tooltips in the output window, for example. * Command 'ML_file' evaluates ML text from a file directly within the theory, without any predeclaration via 'uses' in the theory header. * Old command 'use' command and corresponding keyword 'uses' in the theory header are legacy features and will be discontinued soon. Tools that load their additional source files may imitate the 'ML_file' implementation, such that the system can take care of dependencies properly. * Discontinued obsolete method fastsimp / tactic fast_simp_tac, which is called fastforce / fast_force_tac already since Isabelle2011-1. * Updated and extended "isar-ref" and "implementation" manual, reduced remaining material in old "ref" manual. * Improved support for auxiliary contexts that indicate block structure for specifications. Nesting of "context fixes ... context assumes ..." and "class ... context ...". * Attribute "consumes" allows a negative value as well, which is interpreted relatively to the total number of premises of the rule in the target context. This form of declaration is stable when exported from a nested 'context' with additional assumptions. It is the preferred form for definitional packages, notably cases/rules produced in HOL/inductive and HOL/function. * More informative error messages for Isar proof commands involving lazy enumerations (method applications etc.). * Refined 'help' command to retrieve outer syntax commands according to name patterns (with clickable results). *** Prover IDE -- Isabelle/Scala/jEdit *** * Parallel terminal proofs ('by') are enabled by default, likewise proofs that are built into packages like 'datatype', 'function'. This allows to "run ahead" checking the theory specifications on the surface, while the prover is still crunching on internal justifications. Unfinished / cancelled proofs are restarted as required to complete full proof checking eventually. * Improved output panel with tooltips, hyperlinks etc. based on the same Rich_Text_Area as regular Isabelle/jEdit buffers. Activation of tooltips leads to some window that supports the same recursively, which can lead to stacks of tooltips as the semantic document content is explored. ESCAPE closes the whole stack, individual windows may be closed separately, or detached to become independent jEdit dockables. * Improved support for commands that produce graph output: the text message contains a clickable area to open a new instance of the graph browser on demand. * More robust incremental parsing of outer syntax (partial comments, malformed symbols). Changing the balance of open/close quotes and comment delimiters works more conveniently with unfinished situations that frequently occur in user interaction. * More efficient painting and improved reactivity when editing large files. More scalable management of formal document content. * Smarter handling of tracing messages: prover process pauses after certain number of messages per command transaction, with some user dialog to stop or continue. This avoids swamping the front-end with potentially infinite message streams. * More plugin options and preferences, based on Isabelle/Scala. The jEdit plugin option panel provides access to some Isabelle/Scala options, including tuning parameters for editor reactivity and color schemes. * Dockable window "Symbols" provides some editing support for Isabelle symbols. * Dockable window "Monitor" shows ML runtime statistics. Note that continuous display of the chart slows down the system. * Improved editing support for control styles: subscript, superscript, bold, reset of style -- operating on single symbols or text selections. Cf. keyboard shortcuts C+e DOWN/UP/RIGHT/LEFT. * Actions isabelle.increase-font-size and isabelle.decrease-font-size adjust the main text area font size, and its derivatives for output, tooltips etc. Cf. keyboard shortcuts C-PLUS and C-MINUS, which often need to be adapted to local keyboard layouts. * More reactive completion popup by default: use \t (TAB) instead of \n (NEWLINE) to minimize intrusion into regular flow of editing. See also "Plugin Options / SideKick / General / Code Completion Options". * Implicit check and build dialog of the specified logic session image. For example, HOL, HOLCF, HOL-Nominal can be produced on demand, without bundling big platform-dependent heap images in the Isabelle distribution. * Uniform Java 7 platform on Linux, Mac OS X, Windows: recent updates from Oracle provide better multi-platform experience. This version is now bundled exclusively with Isabelle. *** Pure *** * Code generation for Haskell: restrict unqualified imports from Haskell Prelude to a small set of fundamental operations. * Command 'export_code': relative file names are interpreted relatively to master directory of current theory rather than the rather arbitrary current working directory. INCOMPATIBILITY. * Discontinued obsolete attribute "COMP". Potential INCOMPATIBILITY, use regular rule composition via "OF" / "THEN", or explicit proof structure instead. Note that Isabelle/ML provides a variety of operators like COMP, INCR_COMP, COMP_INCR, which need to be applied with some care where this is really required. * Command 'typ' supports an additional variant with explicit sort constraint, to infer and check the most general type conforming to a given sort. Example (in HOL): typ "_ * _ * bool * unit" :: finite * Command 'locale_deps' visualizes all locales and their relations as a Hasse diagram. *** HOL *** * Sledgehammer: - Added MaSh relevance filter based on machine-learning; see the Sledgehammer manual for details. - Polished Isar proofs generated with "isar_proofs" option. - Rationalized type encodings ("type_enc" option). - Renamed "kill_provers" subcommand to "kill_all". - Renamed options: isar_proof ~> isar_proofs isar_shrink_factor ~> isar_shrink max_relevant ~> max_facts relevance_thresholds ~> fact_thresholds * Quickcheck: added an optimisation for equality premises. It is switched on by default, and can be switched off by setting the configuration quickcheck_optimise_equality to false. * Quotient: only one quotient can be defined by quotient_type INCOMPATIBILITY. * Lifting: - generation of an abstraction function equation in lift_definition - quot_del attribute - renamed no_abs_code -> no_code (INCOMPATIBILITY.) * Simproc "finite_Collect" rewrites set comprehensions into pointfree expressions. * Preprocessing of the code generator rewrites set comprehensions into pointfree expressions. * The SMT solver Z3 has now by default a restricted set of directly supported features. For the full set of features (div/mod, nonlinear arithmetic, datatypes/records) with potential proof reconstruction failures, enable the configuration option "z3_with_extensions". Minor INCOMPATIBILITY. * Simplified 'typedef' specifications: historical options for implicit set definition and alternative name have been discontinued. The former behavior of "typedef (open) t = A" is now the default, but written just "typedef t = A". INCOMPATIBILITY, need to adapt theories accordingly. * Removed constant "chars"; prefer "Enum.enum" on type "char" directly. INCOMPATIBILITY. * Moved operation product, sublists and n_lists from theory Enum to List. INCOMPATIBILITY. * Theorem UN_o generalized to SUP_comp. INCOMPATIBILITY. * Class "comm_monoid_diff" formalises properties of bounded subtraction, with natural numbers and multisets as typical instances. * Added combinator "Option.these" with type "'a option set => 'a set". * Theory "Transitive_Closure": renamed lemmas reflcl_tranclp -> reflclp_tranclp rtranclp_reflcl -> rtranclp_reflclp INCOMPATIBILITY. * Theory "Rings": renamed lemmas (in class semiring) left_distrib ~> distrib_right right_distrib ~> distrib_left INCOMPATIBILITY. * Generalized the definition of limits: - Introduced the predicate filterlim (LIM x F. f x :> G) which expresses that when the input values x converge to F then the output f x converges to G. - Added filters for convergence to positive (at_top) and negative infinity (at_bot). - Moved infinity in the norm (at_infinity) from Multivariate_Analysis to Complex_Main. - Removed real_tendsto_inf, it is superseded by "LIM x F. f x :> at_top". INCOMPATIBILITY. * Theory "Library/Option_ord" provides instantiation of option type to lattice type classes. * Theory "Library/Multiset": renamed constant fold_mset ~> Multiset.fold fact fold_mset_commute ~> fold_mset_comm INCOMPATIBILITY. * Renamed theory Library/List_Prefix to Library/Sublist, with related changes as follows. - Renamed constants (and related lemmas) prefix ~> prefixeq strict_prefix ~> prefix - Replaced constant "postfix" by "suffixeq" with swapped argument order (i.e., "postfix xs ys" is now "suffixeq ys xs") and dropped old infix syntax "xs >>= ys"; use "suffixeq ys xs" instead. Renamed lemmas accordingly. - Added constant "list_hembeq" for homeomorphic embedding on lists. Added abbreviation "sublisteq" for special case "list_hembeq (op =)". - Theory Library/Sublist no longer provides "order" and "bot" type class instances for the prefix order (merely corresponding locale interpretations). The type class instances are now in theory Library/Prefix_Order. - The sublist relation of theory Library/Sublist_Order is now based on "Sublist.sublisteq". Renamed lemmas accordingly: le_list_append_le_same_iff ~> Sublist.sublisteq_append_le_same_iff le_list_append_mono ~> Sublist.list_hembeq_append_mono le_list_below_empty ~> Sublist.list_hembeq_Nil, Sublist.list_hembeq_Nil2 le_list_Cons_EX ~> Sublist.list_hembeq_ConsD le_list_drop_Cons2 ~> Sublist.sublisteq_Cons2' le_list_drop_Cons_neq ~> Sublist.sublisteq_Cons2_neq le_list_drop_Cons ~> Sublist.sublisteq_Cons' le_list_drop_many ~> Sublist.sublisteq_drop_many le_list_filter_left ~> Sublist.sublisteq_filter_left le_list_rev_drop_many ~> Sublist.sublisteq_rev_drop_many le_list_rev_take_iff ~> Sublist.sublisteq_append le_list_same_length ~> Sublist.sublisteq_same_length le_list_take_many_iff ~> Sublist.sublisteq_append' less_eq_list.drop ~> less_eq_list_drop less_eq_list.induct ~> less_eq_list_induct not_le_list_length ~> Sublist.not_sublisteq_length INCOMPATIBILITY. * New theory Library/Countable_Set. * Theory Library/Debug and Library/Parallel provide debugging and parallel execution for code generated towards Isabelle/ML. * Theory Library/FuncSet: Extended support for Pi and extensional and introduce the extensional dependent function space "PiE". Replaced extensional_funcset by an abbreviation, and renamed lemmas from extensional_funcset to PiE as follows: extensional_empty ~> PiE_empty extensional_funcset_empty_domain ~> PiE_empty_domain extensional_funcset_empty_range ~> PiE_empty_range extensional_funcset_arb ~> PiE_arb extensional_funcset_mem ~> PiE_mem extensional_funcset_extend_domainI ~> PiE_fun_upd extensional_funcset_restrict_domain ~> fun_upd_in_PiE extensional_funcset_extend_domain_eq ~> PiE_insert_eq card_extensional_funcset ~> card_PiE finite_extensional_funcset ~> finite_PiE INCOMPATIBILITY. * Theory Library/FinFun: theory of almost everywhere constant functions (supersedes the AFP entry "Code Generation for Functions as Data"). * Theory Library/Phantom: generic phantom type to make a type parameter appear in a constant's type. This alternative to adding TYPE('a) as another parameter avoids unnecessary closures in generated code. * Theory Library/RBT_Impl: efficient construction of red-black trees from sorted associative lists. Merging two trees with rbt_union may return a structurally different tree than before. Potential INCOMPATIBILITY. * Theory Library/IArray: immutable arrays with code generation. * Theory Library/Finite_Lattice: theory of finite lattices. * HOL/Multivariate_Analysis: replaced "basis :: 'a::euclidean_space => nat => real" "\<Chi>\<Chi> :: (nat => real) => 'a::euclidean_space" on euclidean spaces by using the inner product "_ \<bullet> _" with vectors from the Basis set: "\<Chi>\<Chi> i. f i" is superseded by "SUM i : Basis. f i * r i". With this change the following constants are also changed or removed: DIM('a) :: nat ~> card (Basis :: 'a set) (is an abbreviation) a $$ i ~> inner a i (where i : Basis) cart_base i removed \<pi>, \<pi>' removed Theorems about these constants where removed. Renamed lemmas: component_le_norm ~> Basis_le_norm euclidean_eq ~> euclidean_eq_iff differential_zero_maxmin_component ~> differential_zero_maxmin_cart euclidean_simps ~> inner_simps independent_basis ~> independent_Basis span_basis ~> span_Basis in_span_basis ~> in_span_Basis norm_bound_component_le ~> norm_boound_Basis_le norm_bound_component_lt ~> norm_boound_Basis_lt component_le_infnorm ~> Basis_le_infnorm INCOMPATIBILITY. * HOL/Probability: - Added simproc "measurable" to automatically prove measurability. - Added induction rules for sigma sets with disjoint union (sigma_sets_induct_disjoint) and for Borel-measurable functions (borel_measurable_induct). - Added the Daniell-Kolmogorov theorem (the existence the limit of a projective family). * HOL/Cardinals: Theories of ordinals and cardinals (supersedes the AFP entry "Ordinals_and_Cardinals"). * HOL/BNF: New (co)datatype package based on bounded natural functors with support for mixed, nested recursion and interesting non-free datatypes. * HOL/Finite_Set and Relation: added new set and relation operations expressed by Finite_Set.fold. * New theory HOL/Library/RBT_Set: implementation of sets by red-black trees for the code generator. * HOL/Library/RBT and HOL/Library/Mapping have been converted to Lifting/Transfer. possible INCOMPATIBILITY. * HOL/Set: renamed Set.project -> Set.filter INCOMPATIBILITY. *** Document preparation *** * Dropped legacy antiquotations "term_style" and "thm_style", since styles may be given as arguments to "term" and "thm" already. Discontinued legacy styles "prem1" .. "prem19". * Default LaTeX rendering for \<euro> is now based on eurosym package, instead of slightly exotic babel/greek. * Document variant NAME may use different LaTeX entry point document/root_NAME.tex if that file exists, instead of the common document/root.tex. * Simplified custom document/build script, instead of old-style document/IsaMakefile. Minor INCOMPATIBILITY. *** ML *** * The default limit for maximum number of worker threads is now 8, instead of 4, in correspondence to capabilities of contemporary hardware and Poly/ML runtime system. * Type Seq.results and related operations support embedded error messages within lazy enumerations, and thus allow to provide informative errors in the absence of any usable results. * Renamed Position.str_of to Position.here to emphasize that this is a formal device to inline positions into message text, but not necessarily printing visible text. *** System *** * Advanced support for Isabelle sessions and build management, see "system" manual for the chapter of that name, especially the "isabelle build" tool and its examples. The "isabelle mkroot" tool prepares session root directories for use with "isabelle build", similar to former "isabelle mkdir" for "isabelle usedir". Note that this affects document preparation as well. INCOMPATIBILITY, isabelle usedir / mkdir / make are rendered obsolete. * Discontinued obsolete Isabelle/build script, it is superseded by the regular isabelle build tool. For example: isabelle build -s -b HOL * Discontinued obsolete "isabelle makeall". * Discontinued obsolete IsaMakefile and ROOT.ML files from the Isabelle distribution, except for rudimentary src/HOL/IsaMakefile that provides some traditional targets that invoke "isabelle build". Note that this is inefficient! Applications of Isabelle/HOL involving "isabelle make" should be upgraded to use "isabelle build" directly. * The "isabelle options" tool prints Isabelle system options, as required for "isabelle build", for example. * The "isabelle logo" tool produces EPS and PDF format simultaneously. Minor INCOMPATIBILITY in command-line options. * The "isabelle install" tool has now a simpler command-line. Minor INCOMPATIBILITY. * The "isabelle components" tool helps to resolve add-on components that are not bundled, or referenced from a bare-bones repository version of Isabelle. * Settings variable ISABELLE_PLATFORM_FAMILY refers to the general platform family: "linux", "macos", "windows". * The ML system is configured as regular component, and no longer picked up from some surrounding directory. Potential INCOMPATIBILITY for home-made settings. * Improved ML runtime statistics (heap, threads, future tasks etc.). * Discontinued support for Poly/ML 5.2.1, which was the last version without exception positions and advanced ML compiler/toplevel configuration. * Discontinued special treatment of Proof General -- no longer guess PROOFGENERAL_HOME based on accidental file-system layout. Minor INCOMPATIBILITY: provide PROOFGENERAL_HOME and PROOFGENERAL_OPTIONS settings manually, or use a Proof General version that has been bundled as Isabelle component. New in Isabelle2012 (May 2012) ------------------------------ *** General *** * Prover IDE (PIDE) improvements: - more robust Sledgehammer integration (as before the sledgehammer command-line needs to be typed into the source buffer) - markup for bound variables - markup for types of term variables (displayed as tooltips) - support for user-defined Isar commands within the running session - improved support for Unicode outside original 16bit range e.g. glyph for \<A> (thanks to jEdit 4.5.1) * Forward declaration of outer syntax keywords within the theory header -- minor INCOMPATIBILITY for user-defined commands. Allow new commands to be used in the same theory where defined. * Auxiliary contexts indicate block structure for specifications with additional parameters and assumptions. Such unnamed contexts may be nested within other targets, like 'theory', 'locale', 'class', 'instantiation' etc. Results from the local context are generalized accordingly and applied to the enclosing target context. Example: context fixes x y z :: 'a assumes xy: "x = y" and yz: "y = z" begin lemma my_trans: "x = z" using xy yz by simp end thm my_trans The most basic application is to factor-out context elements of several fixes/assumes/shows theorem statements, e.g. see ~~/src/HOL/Isar_Examples/Group_Context.thy Any other local theory specification element works within the "context ... begin ... end" block as well. * Bundled declarations associate attributed fact expressions with a given name in the context. These may be later included in other contexts. This allows to manage context extensions casually, without the logical dependencies of locales and locale interpretation. See commands 'bundle', 'include', 'including' etc. in the isar-ref manual. * Commands 'lemmas' and 'theorems' allow local variables using 'for' declaration, and results are standardized before being stored. Thus old-style "standard" after instantiation or composition of facts becomes obsolete. Minor INCOMPATIBILITY, due to potential change of indices of schematic variables. * Rule attributes in local theory declarations (e.g. locale or class) are now statically evaluated: the resulting theorem is stored instead of the original expression. INCOMPATIBILITY in rare situations, where the historic accident of dynamic re-evaluation in interpretations etc. was exploited. * New tutorial "Programming and Proving in Isabelle/HOL" ("prog-prove"). It completely supersedes "A Tutorial Introduction to Structured Isar Proofs" ("isar-overview"), which has been removed. It also supersedes "Isabelle/HOL, A Proof Assistant for Higher-Order Logic" as the recommended beginners tutorial, but does not cover all of the material of that old tutorial. * Updated and extended reference manuals: "isar-ref", "implementation", "system"; reduced remaining material in old "ref" manual. *** Pure *** * Command 'definition' no longer exports the foundational "raw_def" into the user context. Minor INCOMPATIBILITY, may use the regular "def" result with attribute "abs_def" to imitate the old version. * Attribute "abs_def" turns an equation of the form "f x y == t" into "f == %x y. t", which ensures that "simp" or "unfold" steps always expand it. This also works for object-logic equality. (Formerly undocumented feature.) * Sort constraints are now propagated in simultaneous statements, just like type constraints. INCOMPATIBILITY in rare situations, where distinct sorts used to be assigned accidentally. For example: lemma "P (x::'a::foo)" and "Q (y::'a::bar)" -- "now illegal" lemma "P (x::'a)" and "Q (y::'a::bar)" -- "now uniform 'a::bar instead of default sort for first occurrence (!)" * Rule composition via attribute "OF" (or ML functions OF/MRS) is more tolerant against multiple unifiers, as long as the final result is unique. (As before, rules are composed in canonical right-to-left order to accommodate newly introduced premises.) * Renamed some inner syntax categories: num ~> num_token xnum ~> xnum_token xstr ~> str_token Minor INCOMPATIBILITY. Note that in practice "num_const" or "num_position" etc. are mainly used instead (which also include position information via constraints). * Simplified configuration options for syntax ambiguity: see "syntax_ambiguity_warning" and "syntax_ambiguity_limit" in isar-ref manual. Minor INCOMPATIBILITY. * Discontinued configuration option "syntax_positions": atomic terms in parse trees are always annotated by position constraints. * Old code generator for SML and its commands 'code_module', 'code_library', 'consts_code', 'types_code' have been discontinued. Use commands of the generic code generator instead. INCOMPATIBILITY. * Redundant attribute "code_inline" has been discontinued. Use "code_unfold" instead. INCOMPATIBILITY. * Dropped attribute "code_unfold_post" in favor of the its dual "code_abbrev", which yields a common pattern in definitions like definition [code_abbrev]: "f = t" INCOMPATIBILITY. * Obsolete 'types' command has been discontinued. Use 'type_synonym' instead. INCOMPATIBILITY. * Discontinued old "prems" fact, which used to refer to the accidental collection of foundational premises in the context (already marked as legacy since Isabelle2011). *** HOL *** * Type 'a set is now a proper type constructor (just as before Isabelle2008). Definitions mem_def and Collect_def have disappeared. Non-trivial INCOMPATIBILITY. For developments keeping predicates and sets separate, it is often sufficient to rephrase some set S that has been accidentally used as predicates by "%x. x : S", and some predicate P that has been accidentally used as set by "{x. P x}". Corresponding proofs in a first step should be pruned from any tinkering with former theorems mem_def and Collect_def as far as possible. For developments which deliberately mix predicates and sets, a planning step is necessary to determine what should become a predicate and what a set. It can be helpful to carry out that step in Isabelle2011-1 before jumping right into the current release. * Code generation by default implements sets as container type rather than predicates. INCOMPATIBILITY. * New type synonym 'a rel = ('a * 'a) set * The representation of numerals has changed. Datatype "num" represents strictly positive binary numerals, along with functions "numeral :: num => 'a" and "neg_numeral :: num => 'a" to represent positive and negated numeric literals, respectively. See also definitions in ~~/src/HOL/Num.thy. Potential INCOMPATIBILITY, some user theories may require adaptations as follows: - Theorems with number_ring or number_semiring constraints: These classes are gone; use comm_ring_1 or comm_semiring_1 instead. - Theories defining numeric types: Remove number, number_semiring, and number_ring instances. Defer all theorems about numerals until after classes one and semigroup_add have been instantiated. - Numeral-only simp rules: Replace each rule having a "number_of v" pattern with two copies, one for numeral and one for neg_numeral. - Theorems about subclasses of semiring_1 or ring_1: These classes automatically support numerals now, so more simp rules and simprocs may now apply within the proof. - Definitions and theorems using old constructors Pls/Min/Bit0/Bit1: Redefine using other integer operations. * Transfer: New package intended to generalize the existing "descending" method and related theorem attributes from the Quotient package. (Not all functionality is implemented yet, but future development will focus on Transfer as an eventual replacement for the corresponding parts of the Quotient package.) - transfer_rule attribute: Maintains a collection of transfer rules, which relate constants at two different types. Transfer rules may relate different type instances of the same polymorphic constant, or they may relate an operation on a raw type to a corresponding operation on an abstract type (quotient or subtype). For example: ((A ===> B) ===> list_all2 A ===> list_all2 B) map map (cr_int ===> cr_int ===> cr_int) (%(x,y) (u,v). (x+u, y+v)) plus_int - transfer method: Replaces a subgoal on abstract types with an equivalent subgoal on the corresponding raw types. Constants are replaced with corresponding ones according to the transfer rules. Goals are generalized over all free variables by default; this is necessary for variables whose types change, but can be overridden for specific variables with e.g. "transfer fixing: x y z". The variant transfer' method allows replacing a subgoal with one that is logically stronger (rather than equivalent). - relator_eq attribute: Collects identity laws for relators of various type constructors, e.g. "list_all2 (op =) = (op =)". The transfer method uses these lemmas to infer transfer rules for non-polymorphic constants on the fly. - transfer_prover method: Assists with proving a transfer rule for a new constant, provided the constant is defined in terms of other constants that already have transfer rules. It should be applied after unfolding the constant definitions. - HOL/ex/Transfer_Int_Nat.thy: Example theory demonstrating transfer from type nat to type int. * Lifting: New package intended to generalize the quotient_definition facility of the Quotient package; designed to work with Transfer. - lift_definition command: Defines operations on an abstract type in terms of a corresponding operation on a representation type. Example syntax: lift_definition dlist_insert :: "'a => 'a dlist => 'a dlist" is List.insert Users must discharge a respectfulness proof obligation when each constant is defined. (For a type copy, i.e. a typedef with UNIV, the proof is discharged automatically.) The obligation is presented in a user-friendly, readable form; a respectfulness theorem in the standard format and a transfer rule are generated by the package. - Integration with code_abstype: For typedefs (e.g. subtypes corresponding to a datatype invariant, such as dlist), lift_definition generates a code certificate theorem and sets up code generation for each constant. - setup_lifting command: Sets up the Lifting package to work with a user-defined type. The user must provide either a quotient theorem or a type_definition theorem. The package configures transfer rules for equality and quantifiers on the type, and sets up the lift_definition command to work with the type. - Usage examples: See Quotient_Examples/Lift_DList.thy, Quotient_Examples/Lift_RBT.thy, Quotient_Examples/Lift_FSet.thy, Word/Word.thy and Library/Float.thy. * Quotient package: - The 'quotient_type' command now supports a 'morphisms' option with rep and abs functions, similar to typedef. - 'quotient_type' sets up new types to work with the Lifting and Transfer packages, as with 'setup_lifting'. - The 'quotient_definition' command now requires the user to prove a respectfulness property at the point where the constant is defined, similar to lift_definition; INCOMPATIBILITY. - Renamed predicate 'Quotient' to 'Quotient3', and renamed theorems accordingly, INCOMPATIBILITY. * New diagnostic command 'find_unused_assms' to find potentially superfluous assumptions in theorems using Quickcheck. * Quickcheck: - Quickcheck returns variable assignments as counterexamples, which allows to reveal the underspecification of functions under test. For example, refuting "hd xs = x", it presents the variable assignment xs = [] and x = a1 as a counterexample, assuming that any property is false whenever "hd []" occurs in it. These counterexample are marked as potentially spurious, as Quickcheck also returns "xs = []" as a counterexample to the obvious theorem "hd xs = hd xs". After finding a potentially spurious counterexample, Quickcheck continues searching for genuine ones. By default, Quickcheck shows potentially spurious and genuine counterexamples. The option "genuine_only" sets quickcheck to only show genuine counterexamples. - The command 'quickcheck_generator' creates random and exhaustive value generators for a given type and operations. It generates values by using the operations as if they were constructors of that type. - Support for multisets. - Added "use_subtype" options. - Added "quickcheck_locale" configuration to specify how to process conjectures in a locale context. * Nitpick: Fixed infinite loop caused by the 'peephole_optim' option and affecting 'rat' and 'real'. * Sledgehammer: - Integrated more tightly with SPASS, as described in the ITP 2012 paper "More SPASS with Isabelle". - Made it try "smt" as a fallback if "metis" fails or times out. - Added support for the following provers: Alt-Ergo (via Why3 and TFF1), iProver, iProver-Eq. - Sped up the minimizer. - Added "lam_trans", "uncurry_aliases", and "minimize" options. - Renamed "slicing" ("no_slicing") option to "slice" ("dont_slice"). - Renamed "sound" option to "strict". * Metis: Added possibility to specify lambda translations scheme as a parenthesized argument (e.g., "by (metis (lifting) ...)"). * SMT: Renamed "smt_fixed" option to "smt_read_only_certificates". * Command 'try0': Renamed from 'try_methods'. INCOMPATIBILITY. * New "case_product" attribute to generate a case rule doing multiple case distinctions at the same time. E.g. list.exhaust [case_product nat.exhaust] produces a rule which can be used to perform case distinction on both a list and a nat. * New "eventually_elim" method as a generalized variant of the eventually_elim* rules. Supports structured proofs. * Typedef with implicit set definition is considered legacy. Use "typedef (open)" form instead, which will eventually become the default. * Record: code generation can be switched off manually with declare [[record_coden = false]] -- "default true" * Datatype: type parameters allow explicit sort constraints. * Concrete syntax for case expressions includes constraints for source positions, and thus produces Prover IDE markup for its bindings. INCOMPATIBILITY for old-style syntax translations that augment the pattern notation; e.g. see src/HOL/HOLCF/One.thy for translations of one_case. * Clarified attribute "mono_set": pure declaration without modifying the result of the fact expression. * More default pred/set conversions on a couple of relation operations and predicates. Added powers of predicate relations. Consolidation of some relation theorems: converse_def ~> converse_unfold rel_comp_def ~> relcomp_unfold symp_def ~> (modified, use symp_def and sym_def instead) transp_def ~> transp_trans Domain_def ~> Domain_unfold Range_def ~> Domain_converse [symmetric] Generalized theorems INF_INT_eq, INF_INT_eq2, SUP_UN_eq, SUP_UN_eq2. See theory "Relation" for examples for making use of pred/set conversions by means of attributes "to_set" and "to_pred". INCOMPATIBILITY. * Renamed facts about the power operation on relations, i.e., relpow to match the constant's name: rel_pow_1 ~> relpow_1 rel_pow_0_I ~> relpow_0_I rel_pow_Suc_I ~> relpow_Suc_I rel_pow_Suc_I2 ~> relpow_Suc_I2 rel_pow_0_E ~> relpow_0_E rel_pow_Suc_E ~> relpow_Suc_E rel_pow_E ~> relpow_E rel_pow_Suc_D2 ~> relpow_Suc_D2 rel_pow_Suc_E2 ~> relpow_Suc_E2 rel_pow_Suc_D2' ~> relpow_Suc_D2' rel_pow_E2 ~> relpow_E2 rel_pow_add ~> relpow_add rel_pow_commute ~> relpow rel_pow_empty ~> relpow_empty: rtrancl_imp_UN_rel_pow ~> rtrancl_imp_UN_relpow rel_pow_imp_rtrancl ~> relpow_imp_rtrancl rtrancl_is_UN_rel_pow ~> rtrancl_is_UN_relpow rtrancl_imp_rel_pow ~> rtrancl_imp_relpow rel_pow_fun_conv ~> relpow_fun_conv rel_pow_finite_bounded1 ~> relpow_finite_bounded1 rel_pow_finite_bounded ~> relpow_finite_bounded rtrancl_finite_eq_rel_pow ~> rtrancl_finite_eq_relpow trancl_finite_eq_rel_pow ~> trancl_finite_eq_relpow single_valued_rel_pow ~> single_valued_relpow INCOMPATIBILITY. * Theory Relation: Consolidated constant name for relation composition and corresponding theorem names: - Renamed constant rel_comp to relcomp. - Dropped abbreviation pred_comp. Use relcompp instead. - Renamed theorems: rel_compI ~> relcompI rel_compEpair ~> relcompEpair rel_compE ~> relcompE pred_comp_rel_comp_eq ~> relcompp_relcomp_eq rel_comp_empty1 ~> relcomp_empty1 rel_comp_mono ~> relcomp_mono rel_comp_subset_Sigma ~> relcomp_subset_Sigma rel_comp_distrib ~> relcomp_distrib rel_comp_distrib2 ~> relcomp_distrib2 rel_comp_UNION_distrib ~> relcomp_UNION_distrib rel_comp_UNION_distrib2 ~> relcomp_UNION_distrib2 single_valued_rel_comp ~> single_valued_relcomp rel_comp_def ~> relcomp_unfold converse_rel_comp ~> converse_relcomp pred_compI ~> relcomppI pred_compE ~> relcomppE pred_comp_bot1 ~> relcompp_bot1 pred_comp_bot2 ~> relcompp_bot2 transp_pred_comp_less_eq ~> transp_relcompp_less_eq pred_comp_mono ~> relcompp_mono pred_comp_distrib ~> relcompp_distrib pred_comp_distrib2 ~> relcompp_distrib2 converse_pred_comp ~> converse_relcompp finite_rel_comp ~> finite_relcomp set_rel_comp ~> set_relcomp INCOMPATIBILITY. * Theory Divides: Discontinued redundant theorems about div and mod. INCOMPATIBILITY, use the corresponding generic theorems instead. DIVISION_BY_ZERO ~> div_by_0, mod_by_0 zdiv_self ~> div_self zmod_self ~> mod_self zdiv_zero ~> div_0 zmod_zero ~> mod_0 zdiv_zmod_equality ~> div_mod_equality2 zdiv_zmod_equality2 ~> div_mod_equality zmod_zdiv_trivial ~> mod_div_trivial zdiv_zminus_zminus ~> div_minus_minus zmod_zminus_zminus ~> mod_minus_minus zdiv_zminus2 ~> div_minus_right zmod_zminus2 ~> mod_minus_right zdiv_minus1_right ~> div_minus1_right zmod_minus1_right ~> mod_minus1_right zdvd_mult_div_cancel ~> dvd_mult_div_cancel zmod_zmult1_eq ~> mod_mult_right_eq zpower_zmod ~> power_mod zdvd_zmod ~> dvd_mod zdvd_zmod_imp_zdvd ~> dvd_mod_imp_dvd mod_mult_distrib ~> mult_mod_left mod_mult_distrib2 ~> mult_mod_right * Removed redundant theorems nat_mult_2 and nat_mult_2_right; use generic mult_2 and mult_2_right instead. INCOMPATIBILITY. * Finite_Set.fold now qualified. INCOMPATIBILITY. * Consolidated theorem names concerning fold combinators: inf_INFI_fold_inf ~> inf_INF_fold_inf sup_SUPR_fold_sup ~> sup_SUP_fold_sup INFI_fold_inf ~> INF_fold_inf SUPR_fold_sup ~> SUP_fold_sup union_set ~> union_set_fold minus_set ~> minus_set_fold INFI_set_fold ~> INF_set_fold SUPR_set_fold ~> SUP_set_fold INF_code ~> INF_set_foldr SUP_code ~> SUP_set_foldr foldr.simps ~> foldr.simps (in point-free formulation) foldr_fold_rev ~> foldr_conv_fold foldl_fold ~> foldl_conv_fold foldr_foldr ~> foldr_conv_foldl foldl_foldr ~> foldl_conv_foldr fold_set_remdups ~> fold_set_fold_remdups fold_set ~> fold_set_fold fold1_set ~> fold1_set_fold INCOMPATIBILITY. * Dropped rarely useful theorems concerning fold combinators: foldl_apply, foldl_fun_comm, foldl_rev, fold_weak_invariant, rev_foldl_cons, fold_set_remdups, fold_set, fold_set1, concat_conv_foldl, foldl_weak_invariant, foldl_invariant, foldr_invariant, foldl_absorb0, foldl_foldr1_lemma, foldl_foldr1, listsum_conv_fold, listsum_foldl, sort_foldl_insort, foldl_assoc, foldr_conv_foldl, start_le_sum, elem_le_sum, sum_eq_0_conv. INCOMPATIBILITY. For the common phrases "%xs. List.foldr plus xs 0" and "List.foldl plus 0", prefer "List.listsum". Otherwise it can be useful to boil down "List.foldr" and "List.foldl" to "List.fold" by unfolding "foldr_conv_fold" and "foldl_conv_fold". * Dropped lemmas minus_set_foldr, union_set_foldr, union_coset_foldr, inter_coset_foldr, Inf_fin_set_foldr, Sup_fin_set_foldr, Min_fin_set_foldr, Max_fin_set_foldr, Inf_set_foldr, Sup_set_foldr, INF_set_foldr, SUP_set_foldr. INCOMPATIBILITY. Prefer corresponding lemmas over fold rather than foldr, or make use of lemmas fold_conv_foldr and fold_rev. * Congruence rules Option.map_cong and Option.bind_cong for recursion through option types. * "Transitive_Closure.ntrancl": bounded transitive closure on relations. * Constant "Set.not_member" now qualified. INCOMPATIBILITY. * Theory Int: Discontinued many legacy theorems specific to type int. INCOMPATIBILITY, use the corresponding generic theorems instead. zminus_zminus ~> minus_minus zminus_0 ~> minus_zero zminus_zadd_distrib ~> minus_add_distrib zadd_commute ~> add_commute zadd_assoc ~> add_assoc zadd_left_commute ~> add_left_commute zadd_ac ~> add_ac zmult_ac ~> mult_ac zadd_0 ~> add_0_left zadd_0_right ~> add_0_right zadd_zminus_inverse2 ~> left_minus zmult_zminus ~> mult_minus_left zmult_commute ~> mult_commute zmult_assoc ~> mult_assoc zadd_zmult_distrib ~> left_distrib zadd_zmult_distrib2 ~> right_distrib zdiff_zmult_distrib ~> left_diff_distrib zdiff_zmult_distrib2 ~> right_diff_distrib zmult_1 ~> mult_1_left zmult_1_right ~> mult_1_right zle_refl ~> order_refl zle_trans ~> order_trans zle_antisym ~> order_antisym zle_linear ~> linorder_linear zless_linear ~> linorder_less_linear zadd_left_mono ~> add_left_mono zadd_strict_right_mono ~> add_strict_right_mono zadd_zless_mono ~> add_less_le_mono int_0_less_1 ~> zero_less_one int_0_neq_1 ~> zero_neq_one zless_le ~> less_le zpower_zadd_distrib ~> power_add zero_less_zpower_abs_iff ~> zero_less_power_abs_iff zero_le_zpower_abs ~> zero_le_power_abs * Theory Deriv: Renamed DERIV_nonneg_imp_nonincreasing ~> DERIV_nonneg_imp_nondecreasing * Theory Library/Multiset: Improved code generation of multisets. * Theory HOL/Library/Set_Algebras: Addition and multiplication on sets are expressed via type classes again. The special syntax \<oplus>/\<otimes> has been replaced by plain +/*. Removed constant setsum_set, which is now subsumed by Big_Operators.setsum. INCOMPATIBILITY. * Theory HOL/Library/Diagonalize has been removed. INCOMPATIBILITY, use theory HOL/Library/Nat_Bijection instead. * Theory HOL/Library/RBT_Impl: Backing implementation of red-black trees is now inside a type class context. Names of affected operations and lemmas have been prefixed by rbt_. INCOMPATIBILITY for theories working directly with raw red-black trees, adapt the names as follows: Operations: bulkload -> rbt_bulkload del_from_left -> rbt_del_from_left del_from_right -> rbt_del_from_right del -> rbt_del delete -> rbt_delete ins -> rbt_ins insert -> rbt_insert insertw -> rbt_insert_with insert_with_key -> rbt_insert_with_key map_entry -> rbt_map_entry lookup -> rbt_lookup sorted -> rbt_sorted tree_greater -> rbt_greater tree_less -> rbt_less tree_less_symbol -> rbt_less_symbol union -> rbt_union union_with -> rbt_union_with union_with_key -> rbt_union_with_key Lemmas: balance_left_sorted -> balance_left_rbt_sorted balance_left_tree_greater -> balance_left_rbt_greater balance_left_tree_less -> balance_left_rbt_less balance_right_sorted -> balance_right_rbt_sorted balance_right_tree_greater -> balance_right_rbt_greater balance_right_tree_less -> balance_right_rbt_less balance_sorted -> balance_rbt_sorted balance_tree_greater -> balance_rbt_greater balance_tree_less -> balance_rbt_less bulkload_is_rbt -> rbt_bulkload_is_rbt combine_sorted -> combine_rbt_sorted combine_tree_greater -> combine_rbt_greater combine_tree_less -> combine_rbt_less delete_in_tree -> rbt_delete_in_tree delete_is_rbt -> rbt_delete_is_rbt del_from_left_tree_greater -> rbt_del_from_left_rbt_greater del_from_left_tree_less -> rbt_del_from_left_rbt_less del_from_right_tree_greater -> rbt_del_from_right_rbt_greater del_from_right_tree_less -> rbt_del_from_right_rbt_less del_in_tree -> rbt_del_in_tree del_inv1_inv2 -> rbt_del_inv1_inv2 del_sorted -> rbt_del_rbt_sorted del_tree_greater -> rbt_del_rbt_greater del_tree_less -> rbt_del_rbt_less dom_lookup_Branch -> dom_rbt_lookup_Branch entries_lookup -> entries_rbt_lookup finite_dom_lookup -> finite_dom_rbt_lookup insert_sorted -> rbt_insert_rbt_sorted insertw_is_rbt -> rbt_insertw_is_rbt insertwk_is_rbt -> rbt_insertwk_is_rbt insertwk_sorted -> rbt_insertwk_rbt_sorted insertw_sorted -> rbt_insertw_rbt_sorted ins_sorted -> ins_rbt_sorted ins_tree_greater -> ins_rbt_greater ins_tree_less -> ins_rbt_less is_rbt_sorted -> is_rbt_rbt_sorted lookup_balance -> rbt_lookup_balance lookup_bulkload -> rbt_lookup_rbt_bulkload lookup_delete -> rbt_lookup_rbt_delete lookup_Empty -> rbt_lookup_Empty lookup_from_in_tree -> rbt_lookup_from_in_tree lookup_in_tree -> rbt_lookup_in_tree lookup_ins -> rbt_lookup_ins lookup_insert -> rbt_lookup_rbt_insert lookup_insertw -> rbt_lookup_rbt_insertw lookup_insertwk -> rbt_lookup_rbt_insertwk lookup_keys -> rbt_lookup_keys lookup_map -> rbt_lookup_map lookup_map_entry -> rbt_lookup_rbt_map_entry lookup_tree_greater -> rbt_lookup_rbt_greater lookup_tree_less -> rbt_lookup_rbt_less lookup_union -> rbt_lookup_rbt_union map_entry_color_of -> rbt_map_entry_color_of map_entry_inv1 -> rbt_map_entry_inv1 map_entry_inv2 -> rbt_map_entry_inv2 map_entry_is_rbt -> rbt_map_entry_is_rbt map_entry_sorted -> rbt_map_entry_rbt_sorted map_entry_tree_greater -> rbt_map_entry_rbt_greater map_entry_tree_less -> rbt_map_entry_rbt_less map_tree_greater -> map_rbt_greater map_tree_less -> map_rbt_less map_sorted -> map_rbt_sorted paint_sorted -> paint_rbt_sorted paint_lookup -> paint_rbt_lookup paint_tree_greater -> paint_rbt_greater paint_tree_less -> paint_rbt_less sorted_entries -> rbt_sorted_entries tree_greater_eq_trans -> rbt_greater_eq_trans tree_greater_nit -> rbt_greater_nit tree_greater_prop -> rbt_greater_prop tree_greater_simps -> rbt_greater_simps tree_greater_trans -> rbt_greater_trans tree_less_eq_trans -> rbt_less_eq_trans tree_less_nit -> rbt_less_nit tree_less_prop -> rbt_less_prop tree_less_simps -> rbt_less_simps tree_less_trans -> rbt_less_trans tree_ord_props -> rbt_ord_props union_Branch -> rbt_union_Branch union_is_rbt -> rbt_union_is_rbt unionw_is_rbt -> rbt_unionw_is_rbt unionwk_is_rbt -> rbt_unionwk_is_rbt unionwk_sorted -> rbt_unionwk_rbt_sorted * Theory HOL/Library/Float: Floating point numbers are now defined as a subset of the real numbers. All operations are defined using the lifing-framework and proofs use the transfer method. INCOMPATIBILITY. Changed Operations: float_abs -> abs float_nprt -> nprt float_pprt -> pprt pow2 -> use powr round_down -> float_round_down round_up -> float_round_up scale -> exponent Removed Operations: ceiling_fl, lb_mult, lb_mod, ub_mult, ub_mod Renamed Lemmas: abs_float_def -> Float.compute_float_abs bitlen_ge0 -> bitlen_nonneg bitlen.simps -> Float.compute_bitlen float_components -> Float_mantissa_exponent float_divl.simps -> Float.compute_float_divl float_divr.simps -> Float.compute_float_divr float_eq_odd -> mult_powr_eq_mult_powr_iff float_power -> real_of_float_power lapprox_posrat_def -> Float.compute_lapprox_posrat lapprox_rat.simps -> Float.compute_lapprox_rat le_float_def' -> Float.compute_float_le le_float_def -> less_eq_float.rep_eq less_float_def' -> Float.compute_float_less less_float_def -> less_float.rep_eq normfloat_def -> Float.compute_normfloat normfloat_imp_odd_or_zero -> mantissa_not_dvd and mantissa_noteq_0 normfloat -> normfloat_def normfloat_unique -> use normfloat_def number_of_float_Float -> Float.compute_float_numeral, Float.compute_float_neg_numeral one_float_def -> Float.compute_float_one plus_float_def -> Float.compute_float_plus rapprox_posrat_def -> Float.compute_rapprox_posrat rapprox_rat.simps -> Float.compute_rapprox_rat real_of_float_0 -> zero_float.rep_eq real_of_float_1 -> one_float.rep_eq real_of_float_abs -> abs_float.rep_eq real_of_float_add -> plus_float.rep_eq real_of_float_minus -> uminus_float.rep_eq real_of_float_mult -> times_float.rep_eq real_of_float_simp -> Float.rep_eq real_of_float_sub -> minus_float.rep_eq round_down.simps -> Float.compute_float_round_down round_up.simps -> Float.compute_float_round_up times_float_def -> Float.compute_float_times uminus_float_def -> Float.compute_float_uminus zero_float_def -> Float.compute_float_zero Lemmas not necessary anymore, use the transfer method: bitlen_B0, bitlen_B1, bitlen_ge1, bitlen_Min, bitlen_Pls, float_divl, float_divr, float_le_simp, float_less1_mantissa_bound, float_less_simp, float_less_zero, float_le_zero, float_pos_less1_e_neg, float_pos_m_pos, float_split, float_split2, floor_pos_exp, lapprox_posrat, lapprox_posrat_bottom, lapprox_rat, lapprox_rat_bottom, normalized_float, rapprox_posrat, rapprox_posrat_le1, rapprox_rat, real_of_float_ge0_exp, real_of_float_neg_exp, real_of_float_nge0_exp, round_down floor_fl, round_up, zero_le_float, zero_less_float * New theory HOL/Library/DAList provides an abstract type for association lists with distinct keys. * Session HOL/IMP: Added new theory of abstract interpretation of annotated commands. * Session HOL-Import: Re-implementation from scratch is faster, simpler, and more scalable. Requires a proof bundle, which is available as an external component. Discontinued old (and mostly dead) Importer for HOL4 and HOL Light. INCOMPATIBILITY. * Session HOL-Word: Discontinued many redundant theorems specific to type 'a word. INCOMPATIBILITY, use the corresponding generic theorems instead. word_sub_alt ~> word_sub_wi word_add_alt ~> word_add_def word_mult_alt ~> word_mult_def word_minus_alt ~> word_minus_def word_0_alt ~> word_0_wi word_1_alt ~> word_1_wi word_add_0 ~> add_0_left word_add_0_right ~> add_0_right word_mult_1 ~> mult_1_left word_mult_1_right ~> mult_1_right word_add_commute ~> add_commute word_add_assoc ~> add_assoc word_add_left_commute ~> add_left_commute word_mult_commute ~> mult_commute word_mult_assoc ~> mult_assoc word_mult_left_commute ~> mult_left_commute word_left_distrib ~> left_distrib word_right_distrib ~> right_distrib word_left_minus ~> left_minus word_diff_0_right ~> diff_0_right word_diff_self ~> diff_self word_sub_def ~> diff_minus word_diff_minus ~> diff_minus word_add_ac ~> add_ac word_mult_ac ~> mult_ac word_plus_ac0 ~> add_0_left add_0_right add_ac word_times_ac1 ~> mult_1_left mult_1_right mult_ac word_order_trans ~> order_trans word_order_refl ~> order_refl word_order_antisym ~> order_antisym word_order_linear ~> linorder_linear lenw1_zero_neq_one ~> zero_neq_one word_number_of_eq ~> number_of_eq word_of_int_add_hom ~> wi_hom_add word_of_int_sub_hom ~> wi_hom_sub word_of_int_mult_hom ~> wi_hom_mult word_of_int_minus_hom ~> wi_hom_neg word_of_int_succ_hom ~> wi_hom_succ word_of_int_pred_hom ~> wi_hom_pred word_of_int_0_hom ~> word_0_wi word_of_int_1_hom ~> word_1_wi * Session HOL-Word: New proof method "word_bitwise" for splitting machine word equalities and inequalities into logical circuits, defined in HOL/Word/WordBitwise.thy. Supports addition, subtraction, multiplication, shifting by constants, bitwise operators and numeric constants. Requires fixed-length word types, not 'a word. Solves many standard word identities outright and converts more into first order problems amenable to blast or similar. See also examples in HOL/Word/Examples/WordExamples.thy. * Session HOL-Probability: Introduced the type "'a measure" to represent measures, this replaces the records 'a algebra and 'a measure_space. The locales based on subset_class now have two locale-parameters the space \<Omega> and the set of measurable sets M. The product of probability spaces uses now the same constant as the finite product of sigma-finite measure spaces "PiM :: ('i => 'a) measure". Most constants are defined now outside of locales and gain an additional parameter, like null_sets, almost_eventually or \<mu>'. Measure space constructions for distributions and densities now got their own constants distr and density. Instead of using locales to describe measure spaces with a finite space, the measure count_space and point_measure is introduced. INCOMPATIBILITY. Renamed constants: measure -> emeasure finite_measure.\<mu>' -> measure product_algebra_generator -> prod_algebra product_prob_space.emb -> prod_emb product_prob_space.infprod_algebra -> PiM Removed locales: completeable_measure_space finite_measure_space finite_prob_space finite_product_finite_prob_space finite_product_sigma_algebra finite_sigma_algebra measure_space pair_finite_prob_space pair_finite_sigma_algebra pair_finite_space pair_sigma_algebra product_sigma_algebra Removed constants: conditional_space distribution -> use distr measure, or distributed predicate image_space joint_distribution -> use distr measure, or distributed predicate pair_measure_generator product_prob_space.infprod_algebra -> use PiM subvimage Replacement theorems: finite_additivity_sufficient -> ring_of_sets.countably_additiveI_finite finite_measure.empty_measure -> measure_empty finite_measure.finite_continuity_from_above -> finite_measure.finite_Lim_measure_decseq finite_measure.finite_continuity_from_below -> finite_measure.finite_Lim_measure_incseq finite_measure.finite_measure_countably_subadditive -> finite_measure.finite_measure_subadditive_countably finite_measure.finite_measure_eq -> finite_measure.emeasure_eq_measure finite_measure.finite_measure -> finite_measure.emeasure_finite finite_measure.finite_measure_finite_singleton -> finite_measure.finite_measure_eq_setsum_singleton finite_measure.positive_measure' -> measure_nonneg finite_measure.real_measure -> finite_measure.emeasure_real finite_product_prob_space.finite_measure_times -> finite_product_prob_space.finite_measure_PiM_emb finite_product_sigma_algebra.in_P -> sets_PiM_I_finite finite_product_sigma_algebra.P_empty -> space_PiM_empty, sets_PiM_empty information_space.conditional_entropy_eq -> information_space.conditional_entropy_simple_distributed information_space.conditional_entropy_positive -> information_space.conditional_entropy_nonneg_simple information_space.conditional_mutual_information_eq_mutual_information -> information_space.conditional_mutual_information_eq_mutual_information_simple information_space.conditional_mutual_information_generic_positive -> information_space.conditional_mutual_information_nonneg_simple information_space.conditional_mutual_information_positive -> information_space.conditional_mutual_information_nonneg_simple information_space.entropy_commute -> information_space.entropy_commute_simple information_space.entropy_eq -> information_space.entropy_simple_distributed information_space.entropy_generic_eq -> information_space.entropy_simple_distributed information_space.entropy_positive -> information_space.entropy_nonneg_simple information_space.entropy_uniform_max -> information_space.entropy_uniform information_space.KL_eq_0_imp -> information_space.KL_eq_0_iff_eq information_space.KL_eq_0 -> information_space.KL_same_eq_0 information_space.KL_ge_0 -> information_space.KL_nonneg information_space.mutual_information_eq -> information_space.mutual_information_simple_distributed information_space.mutual_information_positive -> information_space.mutual_information_nonneg_simple Int_stable_cuboids -> Int_stable_atLeastAtMost Int_stable_product_algebra_generator -> positive_integral measure_preserving -> equality "distr M N f = N" "f : measurable M N" measure_space.additive -> emeasure_additive measure_space.AE_iff_null_set -> AE_iff_null measure_space.almost_everywhere_def -> eventually_ae_filter measure_space.almost_everywhere_vimage -> AE_distrD measure_space.continuity_from_above -> INF_emeasure_decseq measure_space.continuity_from_above_Lim -> Lim_emeasure_decseq measure_space.continuity_from_below_Lim -> Lim_emeasure_incseq measure_space.continuity_from_below -> SUP_emeasure_incseq measure_space_density -> emeasure_density measure_space.density_is_absolutely_continuous -> absolutely_continuousI_density measure_space.integrable_vimage -> integrable_distr measure_space.integral_translated_density -> integral_density measure_space.integral_vimage -> integral_distr measure_space.measure_additive -> plus_emeasure measure_space.measure_compl -> emeasure_compl measure_space.measure_countable_increasing -> emeasure_countable_increasing measure_space.measure_countably_subadditive -> emeasure_subadditive_countably measure_space.measure_decseq -> decseq_emeasure measure_space.measure_Diff -> emeasure_Diff measure_space.measure_Diff_null_set -> emeasure_Diff_null_set measure_space.measure_eq_0 -> emeasure_eq_0 measure_space.measure_finitely_subadditive -> emeasure_subadditive_finite measure_space.measure_finite_singleton -> emeasure_eq_setsum_singleton measure_space.measure_incseq -> incseq_emeasure measure_space.measure_insert -> emeasure_insert measure_space.measure_mono -> emeasure_mono measure_space.measure_not_negative -> emeasure_not_MInf measure_space.measure_preserving_Int_stable -> measure_eqI_generator_eq measure_space.measure_setsum -> setsum_emeasure measure_space.measure_setsum_split -> setsum_emeasure_cover measure_space.measure_space_vimage -> emeasure_distr measure_space.measure_subadditive_finite -> emeasure_subadditive_finite measure_space.measure_subadditive -> subadditive measure_space.measure_top -> emeasure_space measure_space.measure_UN_eq_0 -> emeasure_UN_eq_0 measure_space.measure_Un_null_set -> emeasure_Un_null_set measure_space.positive_integral_translated_density -> positive_integral_density measure_space.positive_integral_vimage -> positive_integral_distr measure_space.real_continuity_from_above -> Lim_measure_decseq measure_space.real_continuity_from_below -> Lim_measure_incseq measure_space.real_measure_countably_subadditive -> measure_subadditive_countably measure_space.real_measure_Diff -> measure_Diff measure_space.real_measure_finite_Union -> measure_finite_Union measure_space.real_measure_setsum_singleton -> measure_eq_setsum_singleton measure_space.real_measure_subadditive -> measure_subadditive measure_space.real_measure_Union -> measure_Union measure_space.real_measure_UNION -> measure_UNION measure_space.simple_function_vimage -> simple_function_comp measure_space.simple_integral_vimage -> simple_integral_distr measure_space.simple_integral_vimage -> simple_integral_distr measure_unique_Int_stable -> measure_eqI_generator_eq measure_unique_Int_stable_vimage -> measure_eqI_generator_eq pair_sigma_algebra.measurable_cut_fst -> sets_Pair1 pair_sigma_algebra.measurable_cut_snd -> sets_Pair2 pair_sigma_algebra.measurable_pair_image_fst -> measurable_Pair1 pair_sigma_algebra.measurable_pair_image_snd -> measurable_Pair2 pair_sigma_algebra.measurable_product_swap -> measurable_pair_swap_iff pair_sigma_algebra.pair_sigma_algebra_measurable -> measurable_pair_swap pair_sigma_algebra.pair_sigma_algebra_swap_measurable -> measurable_pair_swap' pair_sigma_algebra.sets_swap -> sets_pair_swap pair_sigma_finite.measure_cut_measurable_fst -> pair_sigma_finite.measurable_emeasure_Pair1 pair_sigma_finite.measure_cut_measurable_snd -> pair_sigma_finite.measurable_emeasure_Pair2 pair_sigma_finite.measure_preserving_swap -> pair_sigma_finite.distr_pair_swap pair_sigma_finite.pair_measure_alt2 -> pair_sigma_finite.emeasure_pair_measure_alt2 pair_sigma_finite.pair_measure_alt -> pair_sigma_finite.emeasure_pair_measure_alt pair_sigma_finite.pair_measure_times -> pair_sigma_finite.emeasure_pair_measure_Times prob_space.indep_distribution_eq_measure -> prob_space.indep_vars_iff_distr_eq_PiM prob_space.indep_var_distributionD -> prob_space.indep_var_distribution_eq prob_space.measure_space_1 -> prob_space.emeasure_space_1 prob_space.prob_space_vimage -> prob_space_distr prob_space.random_variable_restrict -> measurable_restrict prob_space_unique_Int_stable -> measure_eqI_prob_space product_algebraE -> prod_algebraE_all product_algebra_generator_der -> prod_algebra_eq_finite product_algebra_generator_into_space -> prod_algebra_sets_into_space product_algebraI -> sets_PiM_I_finite product_measure_exists -> product_sigma_finite.sigma_finite product_prob_space.finite_index_eq_finite_product -> product_prob_space.sets_PiM_generator product_prob_space.finite_measure_infprod_emb_Pi -> product_prob_space.measure_PiM_emb product_prob_space.infprod_spec -> product_prob_space.emeasure_PiM_emb_not_empty product_prob_space.measurable_component -> measurable_component_singleton product_prob_space.measurable_emb -> measurable_prod_emb product_prob_space.measurable_into_infprod_algebra -> measurable_PiM_single product_prob_space.measurable_singleton_infprod -> measurable_component_singleton product_prob_space.measure_emb -> emeasure_prod_emb product_prob_space.measure_preserving_restrict -> product_prob_space.distr_restrict product_sigma_algebra.product_algebra_into_space -> space_closed product_sigma_finite.measure_fold -> product_sigma_finite.distr_merge product_sigma_finite.measure_preserving_component_singelton -> product_sigma_finite.distr_singleton product_sigma_finite.measure_preserving_merge -> product_sigma_finite.distr_merge sequence_space.measure_infprod -> sequence_space.measure_PiM_countable sets_product_algebra -> sets_PiM sigma_algebra.measurable_sigma -> measurable_measure_of sigma_finite_measure.disjoint_sigma_finite -> sigma_finite_disjoint sigma_finite_measure.RN_deriv_vimage -> sigma_finite_measure.RN_deriv_distr sigma_product_algebra_sigma_eq -> sigma_prod_algebra_sigma_eq space_product_algebra -> space_PiM * Session HOL-TPTP: support to parse and import TPTP problems (all languages) into Isabelle/HOL. *** FOL *** * New "case_product" attribute (see HOL). *** ZF *** * Greater support for structured proofs involving induction or case analysis. * Much greater use of mathematical symbols. * Removal of many ML theorem bindings. INCOMPATIBILITY. *** ML *** * Antiquotation @{keyword "name"} produces a parser for outer syntax from a minor keyword introduced via theory header declaration. * Antiquotation @{command_spec "name"} produces the Outer_Syntax.command_spec from a major keyword introduced via theory header declaration; it can be passed to Outer_Syntax.command etc. * Local_Theory.define no longer hard-wires default theorem name "foo_def", but retains the binding as given. If that is Binding.empty / Attrib.empty_binding, the result is not registered as user-level fact. The Local_Theory.define_internal variant allows to specify a non-empty name (used for the foundation in the background theory), while omitting the fact binding in the user-context. Potential INCOMPATIBILITY for derived definitional packages: need to specify naming policy for primitive definitions more explicitly. * Renamed Thm.capply to Thm.apply, and Thm.cabs to Thm.lambda in conformance with similar operations in structure Term and Logic. * Antiquotation @{attributes [...]} embeds attribute source representation into the ML text, which is particularly useful with declarations like Local_Theory.note. * Structure Proof_Context follows standard naming scheme. Old ProofContext has been discontinued. INCOMPATIBILITY. * Refined Local_Theory.declaration {syntax, pervasive}, with subtle change of semantics: update is applied to auxiliary local theory context as well. * Modernized some old-style infix operations: addeqcongs ~> Simplifier.add_eqcong deleqcongs ~> Simplifier.del_eqcong addcongs ~> Simplifier.add_cong delcongs ~> Simplifier.del_cong setmksimps ~> Simplifier.set_mksimps setmkcong ~> Simplifier.set_mkcong setmksym ~> Simplifier.set_mksym setmkeqTrue ~> Simplifier.set_mkeqTrue settermless ~> Simplifier.set_termless setsubgoaler ~> Simplifier.set_subgoaler addsplits ~> Splitter.add_split delsplits ~> Splitter.del_split *** System *** * USER_HOME settings variable points to cross-platform user home directory, which coincides with HOME on POSIX systems only. Likewise, the Isabelle path specification "~" now expands to $USER_HOME, instead of former $HOME. A different default for USER_HOME may be set explicitly in shell environment, before Isabelle settings are evaluated. Minor INCOMPATIBILITY: need to adapt Isabelle path where the generic user home was intended. * ISABELLE_HOME_WINDOWS refers to ISABELLE_HOME in windows file name notation, which is useful for the jEdit file browser, for example. * ISABELLE_JDK_HOME settings variable points to JDK with javac and jar (not just JRE). New in Isabelle2011-1 (October 2011) ------------------------------------ *** General *** * Improved Isabelle/jEdit Prover IDE (PIDE), which can be invoked as "isabelle jedit" or "ISABELLE_HOME/Isabelle" on the command line. - Management of multiple theory files directly from the editor buffer store -- bypassing the file-system (no requirement to save files for checking). - Markup of formal entities within the text buffer, with semantic highlighting, tooltips and hyperlinks to jump to defining source positions. - Improved text rendering, with sub/superscripts in the source buffer (including support for copy/paste wrt. output panel, HTML theory output and other non-Isabelle text boxes). - Refined scheduling of proof checking and printing of results, based on interactive editor view. (Note: jEdit folding and narrowing allows to restrict buffer perspectives explicitly.) - Reduced CPU performance requirements, usable on machines with few cores. - Reduced memory requirements due to pruning of unused document versions (garbage collection). See also ~~/src/Tools/jEdit/README.html for further information, including some remaining limitations. * Theory loader: source files are exclusively located via the master directory of each theory node (where the .thy file itself resides). The global load path (such as src/HOL/Library) has been discontinued. Note that the path element ~~ may be used to reference theories in the Isabelle home folder -- for instance, "~~/src/HOL/Library/FuncSet". INCOMPATIBILITY. * Theory loader: source files are identified by content via SHA1 digests. Discontinued former path/modtime identification and optional ISABELLE_FILE_IDENT plugin scripts. * Parallelization of nested Isar proofs is subject to Goal.parallel_proofs_threshold (default 100). See also isabelle usedir option -Q. * Name space: former unsynchronized references are now proper configuration options, with more conventional names: long_names ~> names_long short_names ~> names_short unique_names ~> names_unique Minor INCOMPATIBILITY, need to declare options in context like this: declare [[names_unique = false]] * Literal facts `prop` may contain dummy patterns, e.g. `_ = _`. Note that the result needs to be unique, which means fact specifications may have to be refined after enriching a proof context. * Attribute "case_names" has been refined: the assumptions in each case can be named now by following the case name with [name1 name2 ...]. * Isabelle/Isar reference manual has been updated and extended: - "Synopsis" provides a catalog of main Isar language concepts. - Formal references in syntax diagrams, via @{rail} antiquotation. - Updated material from classic "ref" manual, notably about "Classical Reasoner". *** HOL *** * Class bot and top require underlying partial order rather than preorder: uniqueness of bot and top is guaranteed. INCOMPATIBILITY. * Class complete_lattice: generalized a couple of lemmas from sets; generalized theorems INF_cong and SUP_cong. New type classes for complete boolean algebras and complete linear orders. Lemmas Inf_less_iff, less_Sup_iff, INF_less_iff, less_SUP_iff now reside in class complete_linorder. Changed proposition of lemmas Inf_bool_def, Sup_bool_def, Inf_fun_def, Sup_fun_def, Inf_apply, Sup_apply. Removed redundant lemmas (the right hand side gives hints how to replace them for (metis ...), or (simp only: ...) proofs): Inf_singleton ~> Inf_insert [where A="{}", unfolded Inf_empty inf_top_right] Sup_singleton ~> Sup_insert [where A="{}", unfolded Sup_empty sup_bot_right] Inf_binary ~> Inf_insert, Inf_empty, and inf_top_right Sup_binary ~> Sup_insert, Sup_empty, and sup_bot_right Int_eq_Inter ~> Inf_insert, Inf_empty, and inf_top_right Un_eq_Union ~> Sup_insert, Sup_empty, and sup_bot_right Inter_def ~> INF_def, image_def Union_def ~> SUP_def, image_def INT_eq ~> INF_def, and image_def UN_eq ~> SUP_def, and image_def INF_subset ~> INF_superset_mono [OF _ order_refl] More consistent and comprehensive names: INTER_eq_Inter_image ~> INF_def UNION_eq_Union_image ~> SUP_def INFI_def ~> INF_def SUPR_def ~> SUP_def INF_leI ~> INF_lower INF_leI2 ~> INF_lower2 le_INFI ~> INF_greatest le_SUPI ~> SUP_upper le_SUPI2 ~> SUP_upper2 SUP_leI ~> SUP_least INFI_bool_eq ~> INF_bool_eq SUPR_bool_eq ~> SUP_bool_eq INFI_apply ~> INF_apply SUPR_apply ~> SUP_apply INTER_def ~> INTER_eq UNION_def ~> UNION_eq INCOMPATIBILITY. * Renamed theory Complete_Lattice to Complete_Lattices. INCOMPATIBILITY. * Theory Complete_Lattices: lemmas Inf_eq_top_iff, INF_eq_top_iff, INF_image, Inf_insert, INF_top, Inf_top_conv, INF_top_conv, SUP_bot, Sup_bot_conv, SUP_bot_conv, Sup_eq_top_iff, SUP_eq_top_iff, SUP_image, Sup_insert are now declared as [simp]. INCOMPATIBILITY. * Theory Lattice: lemmas compl_inf_bot, compl_le_comp_iff, compl_sup_top, inf_idem, inf_left_idem, inf_sup_absorb, sup_idem, sup_inf_absob, sup_left_idem are now declared as [simp]. Minor INCOMPATIBILITY. * Added syntactic classes "inf" and "sup" for the respective constants. INCOMPATIBILITY: Changes in the argument order of the (mostly internal) locale predicates for some derived classes. * Theorem collections ball_simps and bex_simps do not contain theorems referring to UNION any longer; these have been moved to collection UN_ball_bex_simps. INCOMPATIBILITY. * Theory Archimedean_Field: floor now is defined as parameter of a separate type class floor_ceiling. * Theory Finite_Set: more coherent development of fold_set locales: locale fun_left_comm ~> locale comp_fun_commute locale fun_left_comm_idem ~> locale comp_fun_idem Both use point-free characterization; interpretation proofs may need adjustment. INCOMPATIBILITY. * Theory Limits: Type "'a net" has been renamed to "'a filter", in accordance with standard mathematical terminology. INCOMPATIBILITY. * Theory Complex_Main: The locale interpretations for the bounded_linear and bounded_bilinear locales have been removed, in order to reduce the number of duplicate lemmas. Users must use the original names for distributivity theorems, potential INCOMPATIBILITY. divide.add ~> add_divide_distrib divide.diff ~> diff_divide_distrib divide.setsum ~> setsum_divide_distrib mult.add_right ~> right_distrib mult.diff_right ~> right_diff_distrib mult_right.setsum ~> setsum_right_distrib mult_left.diff ~> left_diff_distrib * Theory Complex_Main: Several redundant theorems have been removed or replaced by more general versions. INCOMPATIBILITY. real_diff_def ~> minus_real_def real_divide_def ~> divide_real_def real_less_def ~> less_le real_abs_def ~> abs_real_def real_sgn_def ~> sgn_real_def real_mult_commute ~> mult_commute real_mult_assoc ~> mult_assoc real_mult_1 ~> mult_1_left real_add_mult_distrib ~> left_distrib real_zero_not_eq_one ~> zero_neq_one real_mult_inverse_left ~> left_inverse INVERSE_ZERO ~> inverse_zero real_le_refl ~> order_refl real_le_antisym ~> order_antisym real_le_trans ~> order_trans real_le_linear ~> linear real_le_eq_diff ~> le_iff_diff_le_0 real_add_left_mono ~> add_left_mono real_mult_order ~> mult_pos_pos real_mult_less_mono2 ~> mult_strict_left_mono real_of_int_real_of_nat ~> real_of_int_of_nat_eq real_0_le_divide_iff ~> zero_le_divide_iff realpow_two_disj ~> power2_eq_iff real_squared_diff_one_factored ~> square_diff_one_factored realpow_two_diff ~> square_diff_square_factored reals_complete2 ~> complete_real real_sum_squared_expand ~> power2_sum exp_ln_eq ~> ln_unique expi_add ~> exp_add expi_zero ~> exp_zero lemma_DERIV_subst ~> DERIV_cong LIMSEQ_Zfun_iff ~> tendsto_Zfun_iff LIMSEQ_const ~> tendsto_const LIMSEQ_norm ~> tendsto_norm LIMSEQ_add ~> tendsto_add LIMSEQ_minus ~> tendsto_minus LIMSEQ_minus_cancel ~> tendsto_minus_cancel LIMSEQ_diff ~> tendsto_diff bounded_linear.LIMSEQ ~> bounded_linear.tendsto bounded_bilinear.LIMSEQ ~> bounded_bilinear.tendsto LIMSEQ_mult ~> tendsto_mult LIMSEQ_inverse ~> tendsto_inverse LIMSEQ_divide ~> tendsto_divide LIMSEQ_pow ~> tendsto_power LIMSEQ_setsum ~> tendsto_setsum LIMSEQ_setprod ~> tendsto_setprod LIMSEQ_norm_zero ~> tendsto_norm_zero_iff LIMSEQ_rabs_zero ~> tendsto_rabs_zero_iff LIMSEQ_imp_rabs ~> tendsto_rabs LIMSEQ_add_minus ~> tendsto_add [OF _ tendsto_minus] LIMSEQ_add_const ~> tendsto_add [OF _ tendsto_const] LIMSEQ_diff_const ~> tendsto_diff [OF _ tendsto_const] LIMSEQ_Complex ~> tendsto_Complex LIM_ident ~> tendsto_ident_at LIM_const ~> tendsto_const LIM_add ~> tendsto_add LIM_add_zero ~> tendsto_add_zero LIM_minus ~> tendsto_minus LIM_diff ~> tendsto_diff LIM_norm ~> tendsto_norm LIM_norm_zero ~> tendsto_norm_zero LIM_norm_zero_cancel ~> tendsto_norm_zero_cancel LIM_norm_zero_iff ~> tendsto_norm_zero_iff LIM_rabs ~> tendsto_rabs LIM_rabs_zero ~> tendsto_rabs_zero LIM_rabs_zero_cancel ~> tendsto_rabs_zero_cancel LIM_rabs_zero_iff ~> tendsto_rabs_zero_iff LIM_compose ~> tendsto_compose LIM_mult ~> tendsto_mult LIM_scaleR ~> tendsto_scaleR LIM_of_real ~> tendsto_of_real LIM_power ~> tendsto_power LIM_inverse ~> tendsto_inverse LIM_sgn ~> tendsto_sgn isCont_LIM_compose ~> isCont_tendsto_compose bounded_linear.LIM ~> bounded_linear.tendsto bounded_linear.LIM_zero ~> bounded_linear.tendsto_zero bounded_bilinear.LIM ~> bounded_bilinear.tendsto bounded_bilinear.LIM_prod_zero ~> bounded_bilinear.tendsto_zero bounded_bilinear.LIM_left_zero ~> bounded_bilinear.tendsto_left_zero bounded_bilinear.LIM_right_zero ~> bounded_bilinear.tendsto_right_zero LIM_inverse_fun ~> tendsto_inverse [OF tendsto_ident_at] * Theory Complex_Main: The definition of infinite series was generalized. Now it is defined on the type class {topological_space, comm_monoid_add}. Hence it is useable also for extended real numbers. * Theory Complex_Main: The complex exponential function "expi" is now a type-constrained abbreviation for "exp :: complex => complex"; thus several polymorphic lemmas about "exp" are now applicable to "expi". * Code generation: - Theory Library/Code_Char_ord provides native ordering of characters in the target language. - Commands code_module and code_library are legacy, use export_code instead. - Method "evaluation" is legacy, use method "eval" instead. - Legacy evaluator "SML" is deactivated by default. May be reactivated by the following theory command: setup {* Value.add_evaluator ("SML", Codegen.eval_term) *} * Declare ext [intro] by default. Rare INCOMPATIBILITY. * New proof method "induction" that gives induction hypotheses the name "IH", thus distinguishing them from further hypotheses that come from rule induction. The latter are still called "hyps". Method "induction" is a thin wrapper around "induct" and follows the same syntax. * Method "fastsimp" has been renamed to "fastforce", but "fastsimp" is still available as a legacy feature for some time. * Nitpick: - Added "need" and "total_consts" options. - Reintroduced "show_skolems" option by popular demand. - Renamed attribute: nitpick_def ~> nitpick_unfold. INCOMPATIBILITY. * Sledgehammer: - Use quasi-sound (and efficient) translations by default. - Added support for the following provers: E-ToFoF, LEO-II, Satallax, SNARK, Waldmeister, and Z3 with TPTP syntax. - Automatically preplay and minimize proofs before showing them if this can be done within reasonable time. - sledgehammer available_provers ~> sledgehammer supported_provers. INCOMPATIBILITY. - Added "preplay_timeout", "slicing", "type_enc", "sound", "max_mono_iters", and "max_new_mono_instances" options. - Removed "explicit_apply" and "full_types" options as well as "Full Types" Proof General menu item. INCOMPATIBILITY. * Metis: - Removed "metisF" -- use "metis" instead. INCOMPATIBILITY. - Obsoleted "metisFT" -- use "metis (full_types)" instead. INCOMPATIBILITY. * Command 'try': - Renamed 'try_methods' and added "simp:", "intro:", "dest:", and "elim:" options. INCOMPATIBILITY. - Introduced 'try' that not only runs 'try_methods' but also 'solve_direct', 'sledgehammer', 'quickcheck', and 'nitpick'. * Quickcheck: - Added "eval" option to evaluate terms for the found counterexample (currently only supported by the default (exhaustive) tester). - Added post-processing of terms to obtain readable counterexamples (currently only supported by the default (exhaustive) tester). - New counterexample generator quickcheck[narrowing] enables narrowing-based testing. Requires the Glasgow Haskell compiler with its installation location defined in the Isabelle settings environment as ISABELLE_GHC. - Removed quickcheck tester "SML" based on the SML code generator (formly in HOL/Library). * Function package: discontinued option "tailrec". INCOMPATIBILITY, use 'partial_function' instead. * Theory Library/Extended_Reals replaces now the positive extended reals found in probability theory. This file is extended by Multivariate_Analysis/Extended_Real_Limits. * Theory Library/Old_Recdef: old 'recdef' package has been moved here, from where it must be imported explicitly if it is really required. INCOMPATIBILITY. * Theory Library/Wfrec: well-founded recursion combinator "wfrec" has been moved here. INCOMPATIBILITY. * Theory Library/Saturated provides type of numbers with saturated arithmetic. * Theory Library/Product_Lattice defines a pointwise ordering for the product type 'a * 'b, and provides instance proofs for various order and lattice type classes. * Theory Library/Countable now provides the "countable_datatype" proof method for proving "countable" class instances for datatypes. * Theory Library/Cset_Monad allows do notation for computable sets (cset) via the generic monad ad-hoc overloading facility. * Library: Theories of common data structures are split into theories for implementation, an invariant-ensuring type, and connection to an abstract type. INCOMPATIBILITY. - RBT is split into RBT and RBT_Mapping. - AssocList is split and renamed into AList and AList_Mapping. - DList is split into DList_Impl, DList, and DList_Cset. - Cset is split into Cset and List_Cset. * Theory Library/Nat_Infinity has been renamed to Library/Extended_Nat, with name changes of the following types and constants: type inat ~> type enat Fin ~> enat Infty ~> infinity (overloaded) iSuc ~> eSuc the_Fin ~> the_enat Every theorem name containing "inat", "Fin", "Infty", or "iSuc" has been renamed accordingly. INCOMPATIBILITY. * Session Multivariate_Analysis: The euclidean_space type class now fixes a constant "Basis :: 'a set" consisting of the standard orthonormal basis for the type. Users now have the option of quantifying over this set instead of using the "basis" function, e.g. "ALL x:Basis. P x" vs "ALL i<DIM('a). P (basis i)". * Session Multivariate_Analysis: Type "('a, 'b) cart" has been renamed to "('a, 'b) vec" (the syntax "'a ^ 'b" remains unaffected). Constants "Cart_nth" and "Cart_lambda" have been respectively renamed to "vec_nth" and "vec_lambda"; theorems mentioning those names have changed to match. Definition theorems for overloaded constants now use the standard "foo_vec_def" naming scheme. A few other theorems have been renamed as follows (INCOMPATIBILITY): Cart_eq ~> vec_eq_iff dist_nth_le_cart ~> dist_vec_nth_le tendsto_vector ~> vec_tendstoI Cauchy_vector ~> vec_CauchyI * Session Multivariate_Analysis: Several duplicate theorems have been removed, and other theorems have been renamed or replaced with more general versions. INCOMPATIBILITY. finite_choice ~> finite_set_choice eventually_conjI ~> eventually_conj eventually_and ~> eventually_conj_iff eventually_false ~> eventually_False setsum_norm ~> norm_setsum Lim_sequentially ~> LIMSEQ_def Lim_ident_at ~> LIM_ident Lim_const ~> tendsto_const Lim_cmul ~> tendsto_scaleR [OF tendsto_const] Lim_neg ~> tendsto_minus Lim_add ~> tendsto_add Lim_sub ~> tendsto_diff Lim_mul ~> tendsto_scaleR Lim_vmul ~> tendsto_scaleR [OF _ tendsto_const] Lim_null_norm ~> tendsto_norm_zero_iff [symmetric] Lim_linear ~> bounded_linear.tendsto Lim_component ~> tendsto_euclidean_component Lim_component_cart ~> tendsto_vec_nth Lim_inner ~> tendsto_inner [OF tendsto_const] dot_lsum ~> inner_setsum_left dot_rsum ~> inner_setsum_right continuous_cmul ~> continuous_scaleR [OF continuous_const] continuous_neg ~> continuous_minus continuous_sub ~> continuous_diff continuous_vmul ~> continuous_scaleR [OF _ continuous_const] continuous_mul ~> continuous_scaleR continuous_inv ~> continuous_inverse continuous_at_within_inv ~> continuous_at_within_inverse continuous_at_inv ~> continuous_at_inverse continuous_at_norm ~> continuous_norm [OF continuous_at_id] continuous_at_infnorm ~> continuous_infnorm [OF continuous_at_id] continuous_at_component ~> continuous_component [OF continuous_at_id] continuous_on_neg ~> continuous_on_minus continuous_on_sub ~> continuous_on_diff continuous_on_cmul ~> continuous_on_scaleR [OF continuous_on_const] continuous_on_vmul ~> continuous_on_scaleR [OF _ continuous_on_const] continuous_on_mul ~> continuous_on_scaleR continuous_on_mul_real ~> continuous_on_mult continuous_on_inner ~> continuous_on_inner [OF continuous_on_const] continuous_on_norm ~> continuous_on_norm [OF continuous_on_id] continuous_on_inverse ~> continuous_on_inv uniformly_continuous_on_neg ~> uniformly_continuous_on_minus uniformly_continuous_on_sub ~> uniformly_continuous_on_diff subset_interior ~> interior_mono subset_closure ~> closure_mono closure_univ ~> closure_UNIV real_arch_lt ~> reals_Archimedean2 real_arch ~> reals_Archimedean3 real_abs_norm ~> abs_norm_cancel real_abs_sub_norm ~> norm_triangle_ineq3 norm_cauchy_schwarz_abs ~> Cauchy_Schwarz_ineq2 * Session HOL-Probability: - Caratheodory's extension lemma is now proved for ring_of_sets. - Infinite products of probability measures are now available. - Sigma closure is independent, if the generator is independent - Use extended reals instead of positive extended reals. INCOMPATIBILITY. * Session HOLCF: Discontinued legacy theorem names, INCOMPATIBILITY. expand_fun_below ~> fun_below_iff below_fun_ext ~> fun_belowI expand_cfun_eq ~> cfun_eq_iff ext_cfun ~> cfun_eqI expand_cfun_below ~> cfun_below_iff below_cfun_ext ~> cfun_belowI monofun_fun_fun ~> fun_belowD monofun_fun_arg ~> monofunE monofun_lub_fun ~> adm_monofun [THEN admD] cont_lub_fun ~> adm_cont [THEN admD] cont2cont_Rep_CFun ~> cont2cont_APP cont_Rep_CFun_app ~> cont_APP_app cont_Rep_CFun_app_app ~> cont_APP_app_app cont_cfun_fun ~> cont_Rep_cfun1 [THEN contE] cont_cfun_arg ~> cont_Rep_cfun2 [THEN contE] contlub_cfun ~> lub_APP [symmetric] contlub_LAM ~> lub_LAM [symmetric] thelubI ~> lub_eqI UU_I ~> bottomI lift_distinct1 ~> lift.distinct(1) lift_distinct2 ~> lift.distinct(2) Def_not_UU ~> lift.distinct(2) Def_inject ~> lift.inject below_UU_iff ~> below_bottom_iff eq_UU_iff ~> eq_bottom_iff *** Document preparation *** * Antiquotation @{rail} layouts railroad syntax diagrams, see also isar-ref manual, both for description and actual application of the same. * Antiquotation @{value} evaluates the given term and presents its result. * Antiquotations: term style "isub" provides ad-hoc conversion of variables x1, y23 into subscripted form x\<^isub>1, y\<^isub>2\<^isub>3. * Predefined LaTeX macros for Isabelle symbols \<bind> and \<then> (e.g. see ~~/src/HOL/Library/Monad_Syntax.thy). * Localized \isabellestyle switch can be used within blocks or groups like this: \isabellestyle{it} %preferred default {\isabellestylett @{text "typewriter stuff"}} * Discontinued special treatment of hard tabulators. Implicit tab-width is now defined as 1. Potential INCOMPATIBILITY for visual layouts. *** ML *** * The inner syntax of sort/type/term/prop supports inlined YXML representations within quoted string tokens. By encoding logical entities via Term_XML (in ML or Scala) concrete syntax can be bypassed, which is particularly useful for producing bits of text under external program control. * Antiquotations for ML and document preparation are managed as theory data, which requires explicit setup. * Isabelle_Process.is_active allows tools to check if the official process wrapper is running (Isabelle/Scala/jEdit) or the old TTY loop (better known as Proof General). * Structure Proof_Context follows standard naming scheme. Old ProofContext is still available for some time as legacy alias. * Structure Timing provides various operations for timing; supersedes former start_timing/end_timing etc. * Path.print is the official way to show file-system paths to users (including quotes etc.). * Inner syntax: identifiers in parse trees of generic categories "logic", "aprop", "idt" etc. carry position information (disguised as type constraints). Occasional INCOMPATIBILITY with non-compliant translations that choke on unexpected type constraints. Positions can be stripped in ML translations via Syntax.strip_positions / Syntax.strip_positions_ast, or via the syntax constant "_strip_positions" within parse trees. As last resort, positions can be disabled via the configuration option Syntax.positions, which is called "syntax_positions" in Isar attribute syntax. * Discontinued special status of various ML structures that contribute to structure Syntax (Ast, Lexicon, Mixfix, Parser, Printer etc.): less pervasive content, no inclusion in structure Syntax. INCOMPATIBILITY, refer directly to Ast.Constant, Lexicon.is_identifier, Syntax_Trans.mk_binder_tr etc. * Typed print translation: discontinued show_sorts argument, which is already available via context of "advanced" translation. * Refined PARALLEL_GOALS tactical: degrades gracefully for schematic goal states; body tactic needs to address all subgoals uniformly. * Slightly more special eq_list/eq_set, with shortcut involving pointer equality (assumes that eq relation is reflexive). * Classical tactics use proper Proof.context instead of historic types claset/clasimpset. Old-style declarations like addIs, addEs, addDs operate directly on Proof.context. Raw type claset retains its use as snapshot of the classical context, which can be recovered via (put_claset HOL_cs) etc. Type clasimpset has been discontinued. INCOMPATIBILITY, classical tactics and derived proof methods require proper Proof.context. *** System *** * Discontinued support for Poly/ML 5.2, which was the last version without proper multithreading and TimeLimit implementation. * Discontinued old lib/scripts/polyml-platform, which has been obsolete since Isabelle2009-2. * Various optional external tools are referenced more robustly and uniformly by explicit Isabelle settings as follows: ISABELLE_CSDP (formerly CSDP_EXE) ISABELLE_GHC (formerly EXEC_GHC or GHC_PATH) ISABELLE_OCAML (formerly EXEC_OCAML) ISABELLE_SWIPL (formerly EXEC_SWIPL) ISABELLE_YAP (formerly EXEC_YAP) Note that automated detection from the file-system or search path has been discontinued. INCOMPATIBILITY. * Scala layer provides JVM method invocation service for static methods of type (String)String, see Invoke_Scala.method in ML. For example: Invoke_Scala.method "java.lang.System.getProperty" "java.home" Together with YXML.string_of_body/parse_body and XML.Encode/Decode this allows to pass structured values between ML and Scala. * The IsabelleText fonts includes some further glyphs to support the Prover IDE. Potential INCOMPATIBILITY: users who happen to have installed a local copy (which is normally *not* required) need to delete or update it from ~~/lib/fonts/. New in Isabelle2011 (January 2011) ---------------------------------- *** General *** * Experimental Prover IDE based on Isabelle/Scala and jEdit (see src/Tools/jEdit). This also serves as IDE for Isabelle/ML, with useful tooltips and hyperlinks produced from its static analysis. The bundled component provides an executable Isabelle tool that can be run like this: Isabelle2011/bin/isabelle jedit * Significantly improved Isabelle/Isar implementation manual. * System settings: ISABELLE_HOME_USER now includes ISABELLE_IDENTIFIER (and thus refers to something like $HOME/.isabelle/Isabelle2011), while the default heap location within that directory lacks that extra suffix. This isolates multiple Isabelle installations from each other, avoiding problems with old settings in new versions. INCOMPATIBILITY, need to copy/upgrade old user settings manually. * Source files are always encoded as UTF-8, instead of old-fashioned ISO-Latin-1. INCOMPATIBILITY. Isabelle LaTeX documents might require the following package declarations: \usepackage[utf8]{inputenc} \usepackage{textcomp} * Explicit treatment of UTF-8 sequences as Isabelle symbols, such that a Unicode character is treated as a single symbol, not a sequence of non-ASCII bytes as before. Since Isabelle/ML string literals may contain symbols without further backslash escapes, Unicode can now be used here as well. Recall that Symbol.explode in ML provides a consistent view on symbols, while raw explode (or String.explode) merely give a byte-oriented representation. * Theory loader: source files are primarily located via the master directory of each theory node (where the .thy file itself resides). The global load path is still partially available as legacy feature. Minor INCOMPATIBILITY due to subtle change in file lookup: use explicit paths, relatively to the theory. * Special treatment of ML file names has been discontinued. Historically, optional extensions .ML or .sml were added on demand -- at the cost of clarity of file dependencies. Recall that Isabelle/ML files exclusively use the .ML extension. Minor INCOMPATIBILITY. * Various options that affect pretty printing etc. are now properly handled within the context via configuration options, instead of unsynchronized references or print modes. There are both ML Config.T entities and Isar declaration attributes to access these. ML (Config.T) Isar (attribute) eta_contract eta_contract show_brackets show_brackets show_sorts show_sorts show_types show_types show_question_marks show_question_marks show_consts show_consts show_abbrevs show_abbrevs Syntax.ast_trace syntax_ast_trace Syntax.ast_stat syntax_ast_stat Syntax.ambiguity_level syntax_ambiguity_level Goal_Display.goals_limit goals_limit Goal_Display.show_main_goal show_main_goal Method.rule_trace rule_trace Thy_Output.display thy_output_display Thy_Output.quotes thy_output_quotes Thy_Output.indent thy_output_indent Thy_Output.source thy_output_source Thy_Output.break thy_output_break Note that corresponding "..._default" references in ML may only be changed globally at the ROOT session setup, but *not* within a theory. The option "show_abbrevs" supersedes the former print mode "no_abbrevs" with inverted meaning. * More systematic naming of some configuration options. INCOMPATIBILITY. trace_simp ~> simp_trace debug_simp ~> simp_debug * Support for real valued configuration options, using simplistic floating-point notation that coincides with the inner syntax for float_token. * Support for real valued preferences (with approximative PGIP type): front-ends need to accept "pgint" values in float notation. INCOMPATIBILITY. * The IsabelleText font now includes Cyrillic, Hebrew, Arabic from DejaVu Sans. * Discontinued support for Poly/ML 5.0 and 5.1 versions. *** Pure *** * Command 'type_synonym' (with single argument) replaces somewhat outdated 'types', which is still available as legacy feature for some time. * Command 'nonterminal' (with 'and' separated list of arguments) replaces somewhat outdated 'nonterminals'. INCOMPATIBILITY. * Command 'notepad' replaces former 'example_proof' for experimentation in Isar without any result. INCOMPATIBILITY. * Locale interpretation commands 'interpret' and 'sublocale' accept lists of equations to map definitions in a locale to appropriate entities in the context of the interpretation. The 'interpretation' command already provided this functionality. * Diagnostic command 'print_dependencies' prints the locale instances that would be activated if the specified expression was interpreted in the current context. Variant "print_dependencies!" assumes a context without interpretations. * Diagnostic command 'print_interps' prints interpretations in proofs in addition to interpretations in theories. * Discontinued obsolete 'global' and 'local' commands to manipulate the theory name space. Rare INCOMPATIBILITY. The ML functions Sign.root_path and Sign.local_path may be applied directly where this feature is still required for historical reasons. * Discontinued obsolete 'constdefs' command. INCOMPATIBILITY, use 'definition' instead. * The "prems" fact, which refers to the accidental collection of foundational premises in the context, is now explicitly marked as legacy feature and will be discontinued soon. Consider using "assms" of the head statement or reference facts by explicit names. * Document antiquotations @{class} and @{type} print classes and type constructors. * Document antiquotation @{file} checks file/directory entries within the local file system. *** HOL *** * Coercive subtyping: functions can be declared as coercions and type inference will add them as necessary upon input of a term. Theory Complex_Main declares real :: nat => real and real :: int => real as coercions. A coercion function f is declared like this: declare [[coercion f]] To lift coercions through type constructors (e.g. from nat => real to nat list => real list), map functions can be declared, e.g. declare [[coercion_map map]] Currently coercion inference is activated only in theories including real numbers, i.e. descendants of Complex_Main. This is controlled by the configuration option "coercion_enabled", e.g. it can be enabled in other theories like this: declare [[coercion_enabled]] * Command 'partial_function' provides basic support for recursive function definitions over complete partial orders. Concrete instances are provided for i) the option type, ii) tail recursion on arbitrary types, and iii) the heap monad of Imperative_HOL. See src/HOL/ex/Fundefs.thy and src/HOL/Imperative_HOL/ex/Linked_Lists.thy for examples. * Function package: f.psimps rules are no longer implicitly declared as [simp]. INCOMPATIBILITY. * Datatype package: theorems generated for executable equality (class "eq") carry proper names and are treated as default code equations. * Inductive package: now offers command 'inductive_simps' to automatically derive instantiated and simplified equations for inductive predicates, similar to 'inductive_cases'. * Command 'enriched_type' allows to register properties of the functorial structure of types. * Improved infrastructure for term evaluation using code generator techniques, in particular static evaluation conversions. * Code generator: Scala (2.8 or higher) has been added to the target languages. * Code generator: globbing constant expressions "*" and "Theory.*" have been replaced by the more idiomatic "_" and "Theory._". INCOMPATIBILITY. * Code generator: export_code without explicit file declaration prints to standard output. INCOMPATIBILITY. * Code generator: do not print function definitions for case combinators any longer. * Code generator: simplification with rules determined with src/Tools/Code/code_simp.ML and method "code_simp". * Code generator for records: more idiomatic representation of record types. Warning: records are not covered by ancient SML code generation any longer. INCOMPATIBILITY. In cases of need, a suitable rep_datatype declaration helps to succeed then: record 'a foo = ... ... rep_datatype foo_ext ... * Records: logical foundation type for records does not carry a '_type' suffix any longer (obsolete due to authentic syntax). INCOMPATIBILITY. * Quickcheck now by default uses exhaustive testing instead of random testing. Random testing can be invoked by "quickcheck [random]", exhaustive testing by "quickcheck [exhaustive]". * Quickcheck instantiates polymorphic types with small finite datatypes by default. This enables a simple execution mechanism to handle quantifiers and function equality over the finite datatypes. * Quickcheck random generator has been renamed from "code" to "random". INCOMPATIBILITY. * Quickcheck now has a configurable time limit which is set to 30 seconds by default. This can be changed by adding [timeout = n] to the quickcheck command. The time limit for Auto Quickcheck is still set independently. * Quickcheck in locales considers interpretations of that locale for counter example search. * Sledgehammer: - Added "smt" and "remote_smt" provers based on the "smt" proof method. See the Sledgehammer manual for details ("isabelle doc sledgehammer"). - Renamed commands: sledgehammer atp_info ~> sledgehammer running_provers sledgehammer atp_kill ~> sledgehammer kill_provers sledgehammer available_atps ~> sledgehammer available_provers INCOMPATIBILITY. - Renamed options: sledgehammer [atps = ...] ~> sledgehammer [provers = ...] sledgehammer [atp = ...] ~> sledgehammer [prover = ...] sledgehammer [timeout = 77 s] ~> sledgehammer [timeout = 77] (and "ms" and "min" are no longer supported) INCOMPATIBILITY. * Nitpick: - Renamed options: nitpick [timeout = 77 s] ~> nitpick [timeout = 77] nitpick [tac_timeout = 777 ms] ~> nitpick [tac_timeout = 0.777] INCOMPATIBILITY. - Added support for partial quotient types. - Added local versions of the "Nitpick.register_xxx" functions. - Added "whack" option. - Allow registration of quotient types as codatatypes. - Improved "merge_type_vars" option to merge more types. - Removed unsound "fast_descrs" option. - Added custom symmetry breaking for datatypes, making it possible to reach higher cardinalities. - Prevent the expansion of too large definitions. * Proof methods "metis" and "meson" now have configuration options "meson_trace", "metis_trace", and "metis_verbose" that can be enabled to diagnose these tools. E.g. using [[metis_trace = true]] * Auto Solve: Renamed "Auto Solve Direct". The tool is now available manually as command 'solve_direct'. * The default SMT solver Z3 must be enabled explicitly (due to licensing issues) by setting the environment variable Z3_NON_COMMERCIAL in etc/settings of the component, for example. For commercial applications, the SMT solver CVC3 is provided as fall-back; changing the SMT solver is done via the configuration option "smt_solver". * Remote SMT solvers need to be referred to by the "remote_" prefix, i.e. "remote_cvc3" and "remote_z3". * Added basic SMT support for datatypes, records, and typedefs using the oracle mode (no proofs). Direct support of pairs has been dropped in exchange (pass theorems fst_conv snd_conv pair_collapse to the SMT support for a similar behavior). Minor INCOMPATIBILITY. * Changed SMT configuration options: - Renamed: z3_proofs ~> smt_oracle (with inverted meaning) z3_trace_assms ~> smt_trace_used_facts INCOMPATIBILITY. - Added: smt_verbose smt_random_seed smt_datatypes smt_infer_triggers smt_monomorph_limit cvc3_options remote_cvc3_options remote_z3_options yices_options * Boogie output files (.b2i files) need to be declared in the theory header. * Simplification procedure "list_to_set_comprehension" rewrites list comprehensions applied to List.set to set comprehensions. Occasional INCOMPATIBILITY, may be deactivated like this: declare [[simproc del: list_to_set_comprehension]] * Removed old version of primrec package. INCOMPATIBILITY. * Removed simplifier congruence rule of "prod_case", as has for long been the case with "split". INCOMPATIBILITY. * String.literal is a type, but not a datatype. INCOMPATIBILITY. * Removed [split_format ... and ... and ...] version of [split_format]. Potential INCOMPATIBILITY. * Predicate "sorted" now defined inductively, with nice induction rules. INCOMPATIBILITY: former sorted.simps now named sorted_simps. * Constant "contents" renamed to "the_elem", to free the generic name contents for other uses. INCOMPATIBILITY. * Renamed class eq and constant eq (for code generation) to class equal and constant equal, plus renaming of related facts and various tuning. INCOMPATIBILITY. * Dropped type classes mult_mono and mult_mono1. INCOMPATIBILITY. * Removed output syntax "'a ~=> 'b" for "'a => 'b option". INCOMPATIBILITY. * Renamed theory Fset to Cset, type Fset.fset to Cset.set, in order to avoid confusion with finite sets. INCOMPATIBILITY. * Abandoned locales equiv, congruent and congruent2 for equivalence relations. INCOMPATIBILITY: use equivI rather than equiv_intro (same for congruent(2)). * Some previously unqualified names have been qualified: types bool ~> HOL.bool nat ~> Nat.nat constants Trueprop ~> HOL.Trueprop True ~> HOL.True False ~> HOL.False op & ~> HOL.conj op | ~> HOL.disj op --> ~> HOL.implies op = ~> HOL.eq Not ~> HOL.Not The ~> HOL.The All ~> HOL.All Ex ~> HOL.Ex Ex1 ~> HOL.Ex1 Let ~> HOL.Let If ~> HOL.If Ball ~> Set.Ball Bex ~> Set.Bex Suc ~> Nat.Suc Pair ~> Product_Type.Pair fst ~> Product_Type.fst snd ~> Product_Type.snd curry ~> Product_Type.curry op : ~> Set.member Collect ~> Set.Collect INCOMPATIBILITY. * More canonical naming convention for some fundamental definitions: bot_bool_eq ~> bot_bool_def top_bool_eq ~> top_bool_def inf_bool_eq ~> inf_bool_def sup_bool_eq ~> sup_bool_def bot_fun_eq ~> bot_fun_def top_fun_eq ~> top_fun_def inf_fun_eq ~> inf_fun_def sup_fun_eq ~> sup_fun_def INCOMPATIBILITY. * More stylized fact names: expand_fun_eq ~> fun_eq_iff expand_set_eq ~> set_eq_iff set_ext ~> set_eqI nat_number ~> eval_nat_numeral INCOMPATIBILITY. * Refactoring of code-generation specific operations in theory List: constants null ~> List.null facts mem_iff ~> member_def null_empty ~> null_def INCOMPATIBILITY. Note that these were not supposed to be used regularly unless for striking reasons; their main purpose was code generation. Various operations from the Haskell prelude are used for generating Haskell code. * Term "bij f" is now an abbreviation of "bij_betw f UNIV UNIV". Term "surj f" is now an abbreviation of "range f = UNIV". The theorems bij_def and surj_def are unchanged. INCOMPATIBILITY. * Abolished some non-alphabetic type names: "prod" and "sum" replace "*" and "+" respectively. INCOMPATIBILITY. * Name "Plus" of disjoint sum operator "<+>" is now hidden. Write "Sum_Type.Plus" instead. * Constant "split" has been merged with constant "prod_case"; names of ML functions, facts etc. involving split have been retained so far, though. INCOMPATIBILITY. * Dropped old infix syntax "_ mem _" for List.member; use "_ : set _" instead. INCOMPATIBILITY. * Removed lemma "Option.is_none_none" which duplicates "is_none_def". INCOMPATIBILITY. * Former theory Library/Enum is now part of the HOL-Main image. INCOMPATIBILITY: all constants of the Enum theory now have to be referred to by its qualified name. enum ~> Enum.enum nlists ~> Enum.nlists product ~> Enum.product * Theory Library/Monad_Syntax provides do-syntax for monad types. Syntax in Library/State_Monad has been changed to avoid ambiguities. INCOMPATIBILITY. * Theory Library/SetsAndFunctions has been split into Library/Function_Algebras and Library/Set_Algebras; canonical names for instance definitions for functions; various improvements. INCOMPATIBILITY. * Theory Library/Multiset provides stable quicksort implementation of sort_key. * Theory Library/Multiset: renamed empty_idemp ~> empty_neutral. INCOMPATIBILITY. * Session Multivariate_Analysis: introduced a type class for euclidean space. Most theorems are now stated in terms of euclidean spaces instead of finite cartesian products. types real ^ 'n ~> 'a::real_vector ~> 'a::euclidean_space ~> 'a::ordered_euclidean_space (depends on your needs) constants _ $ _ ~> _ $$ _ \<chi> x. _ ~> \<chi>\<chi> x. _ CARD('n) ~> DIM('a) Also note that the indices are now natural numbers and not from some finite type. Finite cartesian products of euclidean spaces, products of euclidean spaces the real and complex numbers are instantiated to be euclidean_spaces. INCOMPATIBILITY. * Session Probability: introduced pextreal as positive extended real numbers. Use pextreal as value for measures. Introduce the Radon-Nikodym derivative, product spaces and Fubini's theorem for arbitrary sigma finite measures. Introduces Lebesgue measure based on the integral in Multivariate Analysis. INCOMPATIBILITY. * Session Imperative_HOL: revamped, corrected dozens of inadequacies. INCOMPATIBILITY. * Session SPARK (with image HOL-SPARK) provides commands to load and prove verification conditions generated by the SPARK Ada program verifier. See also src/HOL/SPARK and src/HOL/SPARK/Examples. *** HOL-Algebra *** * Theorems for additive ring operations (locale abelian_monoid and descendants) are generated by interpretation from their multiplicative counterparts. Names (in particular theorem names) have the mandatory qualifier 'add'. Previous theorem names are redeclared for compatibility. * Structure "int_ring" is now an abbreviation (previously a definition). This fits more natural with advanced interpretations. *** HOLCF *** * The domain package now runs in definitional mode by default: The former command 'new_domain' is now called 'domain'. To use the domain package in its original axiomatic mode, use 'domain (unsafe)'. INCOMPATIBILITY. * The new class "domain" is now the default sort. Class "predomain" is an unpointed version of "domain". Theories can be updated by replacing sort annotations as shown below. INCOMPATIBILITY. 'a::type ~> 'a::countable 'a::cpo ~> 'a::predomain 'a::pcpo ~> 'a::domain * The old type class "rep" has been superseded by class "domain". Accordingly, users of the definitional package must remove any "default_sort rep" declarations. INCOMPATIBILITY. * The domain package (definitional mode) now supports unpointed predomain argument types, as long as they are marked 'lazy'. (Strict arguments must be in class "domain".) For example, the following domain definition now works: domain natlist = nil | cons (lazy "nat discr") (lazy "natlist") * Theory HOLCF/Library/HOL_Cpo provides cpo and predomain class instances for types from main HOL: bool, nat, int, char, 'a + 'b, 'a option, and 'a list. Additionally, it configures fixrec and the domain package to work with these types. For example: fixrec isInl :: "('a + 'b) u -> tr" where "isInl$(up$(Inl x)) = TT" | "isInl$(up$(Inr y)) = FF" domain V = VFun (lazy "V -> V") | VCon (lazy "nat") (lazy "V list") * The "(permissive)" option of fixrec has been replaced with a per-equation "(unchecked)" option. See src/HOL/HOLCF/Tutorial/Fixrec_ex.thy for examples. INCOMPATIBILITY. * The "bifinite" class no longer fixes a constant "approx"; the class now just asserts that such a function exists. INCOMPATIBILITY. * Former type "alg_defl" has been renamed to "defl". HOLCF no longer defines an embedding of type 'a defl into udom by default; instances of "bifinite" and "domain" classes are available in src/HOL/HOLCF/Library/Defl_Bifinite.thy. * The syntax "REP('a)" has been replaced with "DEFL('a)". * The predicate "directed" has been removed. INCOMPATIBILITY. * The type class "finite_po" has been removed. INCOMPATIBILITY. * The function "cprod_map" has been renamed to "prod_map". INCOMPATIBILITY. * The monadic bind operator on each powerdomain has new binder syntax similar to sets, e.g. "\<Union>\<sharp>x\<in>xs. t" represents "upper_bind\<cdot>xs\<cdot>(\<Lambda> x. t)". * The infix syntax for binary union on each powerdomain has changed from e.g. "+\<sharp>" to "\<union>\<sharp>", for consistency with set syntax. INCOMPATIBILITY. * The constant "UU" has been renamed to "bottom". The syntax "UU" is still supported as an input translation. * Renamed some theorems (the original names are also still available). expand_fun_below ~> fun_below_iff below_fun_ext ~> fun_belowI expand_cfun_eq ~> cfun_eq_iff ext_cfun ~> cfun_eqI expand_cfun_below ~> cfun_below_iff below_cfun_ext ~> cfun_belowI cont2cont_Rep_CFun ~> cont2cont_APP * The Abs and Rep functions for various types have changed names. Related theorem names have also changed to match. INCOMPATIBILITY. Rep_CFun ~> Rep_cfun Abs_CFun ~> Abs_cfun Rep_Sprod ~> Rep_sprod Abs_Sprod ~> Abs_sprod Rep_Ssum ~> Rep_ssum Abs_Ssum ~> Abs_ssum * Lemmas with names of the form *_defined_iff or *_strict_iff have been renamed to *_bottom_iff. INCOMPATIBILITY. * Various changes to bisimulation/coinduction with domain package: - Definitions of "bisim" constants no longer mention definedness. - With mutual recursion, "bisim" predicate is now curried. - With mutual recursion, each type gets a separate coind theorem. - Variable names in bisim_def and coinduct rules have changed. INCOMPATIBILITY. * Case combinators generated by the domain package for type "foo" are now named "foo_case" instead of "foo_when". INCOMPATIBILITY. * Several theorems have been renamed to more accurately reflect the names of constants and types involved. INCOMPATIBILITY. thelub_const ~> lub_const lub_const ~> is_lub_const thelubI ~> lub_eqI is_lub_lub ~> is_lubD2 lubI ~> is_lub_lub unique_lub ~> is_lub_unique is_ub_lub ~> is_lub_rangeD1 lub_bin_chain ~> is_lub_bin_chain lub_fun ~> is_lub_fun thelub_fun ~> lub_fun thelub_cfun ~> lub_cfun thelub_Pair ~> lub_Pair lub_cprod ~> is_lub_prod thelub_cprod ~> lub_prod minimal_cprod ~> minimal_prod inst_cprod_pcpo ~> inst_prod_pcpo UU_I ~> bottomI compact_UU ~> compact_bottom deflation_UU ~> deflation_bottom finite_deflation_UU ~> finite_deflation_bottom * Many legacy theorem names have been discontinued. INCOMPATIBILITY. sq_ord_less_eq_trans ~> below_eq_trans sq_ord_eq_less_trans ~> eq_below_trans refl_less ~> below_refl trans_less ~> below_trans antisym_less ~> below_antisym antisym_less_inverse ~> po_eq_conv [THEN iffD1] box_less ~> box_below rev_trans_less ~> rev_below_trans not_less2not_eq ~> not_below2not_eq less_UU_iff ~> below_UU_iff flat_less_iff ~> flat_below_iff adm_less ~> adm_below adm_not_less ~> adm_not_below adm_compact_not_less ~> adm_compact_not_below less_fun_def ~> below_fun_def expand_fun_less ~> fun_below_iff less_fun_ext ~> fun_belowI less_discr_def ~> below_discr_def discr_less_eq ~> discr_below_eq less_unit_def ~> below_unit_def less_cprod_def ~> below_prod_def prod_lessI ~> prod_belowI Pair_less_iff ~> Pair_below_iff fst_less_iff ~> fst_below_iff snd_less_iff ~> snd_below_iff expand_cfun_less ~> cfun_below_iff less_cfun_ext ~> cfun_belowI injection_less ~> injection_below less_up_def ~> below_up_def not_Iup_less ~> not_Iup_below Iup_less ~> Iup_below up_less ~> up_below Def_inject_less_eq ~> Def_below_Def Def_less_is_eq ~> Def_below_iff spair_less_iff ~> spair_below_iff less_sprod ~> below_sprod spair_less ~> spair_below sfst_less_iff ~> sfst_below_iff ssnd_less_iff ~> ssnd_below_iff fix_least_less ~> fix_least_below dist_less_one ~> dist_below_one less_ONE ~> below_ONE ONE_less_iff ~> ONE_below_iff less_sinlD ~> below_sinlD less_sinrD ~> below_sinrD *** FOL and ZF *** * All constant names are now qualified internally and use proper identifiers, e.g. "IFOL.eq" instead of "op =". INCOMPATIBILITY. *** ML *** * Antiquotation @{assert} inlines a function bool -> unit that raises Fail if the argument is false. Due to inlining the source position of failed assertions is included in the error output. * Discontinued antiquotation @{theory_ref}, which is obsolete since ML text is in practice always evaluated with a stable theory checkpoint. Minor INCOMPATIBILITY, use (Theory.check_thy @{theory}) instead. * Antiquotation @{theory A} refers to theory A from the ancestry of the current context, not any accidental theory loader state as before. Potential INCOMPATIBILITY, subtle change in semantics. * Syntax.pretty_priority (default 0) configures the required priority of pretty-printed output and thus affects insertion of parentheses. * Syntax.default_root (default "any") configures the inner syntax category (nonterminal symbol) for parsing of terms. * Former exception Library.UnequalLengths now coincides with ListPair.UnequalLengths. * Renamed structure MetaSimplifier to Raw_Simplifier. Note that the main functionality is provided by structure Simplifier. * Renamed raw "explode" function to "raw_explode" to emphasize its meaning. Note that internally to Isabelle, Symbol.explode is used in almost all situations. * Discontinued obsolete function sys_error and exception SYS_ERROR. See implementation manual for further details on exceptions in Isabelle/ML. * Renamed setmp_noncritical to Unsynchronized.setmp to emphasize its meaning. * Renamed structure PureThy to Pure_Thy and moved most of its operations to structure Global_Theory, to emphasize that this is rarely-used global-only stuff. * Discontinued Output.debug. Minor INCOMPATIBILITY, use plain writeln instead (or tracing for high-volume output). * Configuration option show_question_marks only affects regular pretty printing of types and terms, not raw Term.string_of_vname. * ML_Context.thm and ML_Context.thms are no longer pervasive. Rare INCOMPATIBILITY, superseded by static antiquotations @{thm} and @{thms} for most purposes. * ML structure Unsynchronized is never opened, not even in Isar interaction mode as before. Old Unsynchronized.set etc. have been discontinued -- use plain := instead. This should be *rare* anyway, since modern tools always work via official context data, notably configuration options. * Parallel and asynchronous execution requires special care concerning interrupts. Structure Exn provides some convenience functions that avoid working directly with raw Interrupt. User code must not absorb interrupts -- intermediate handling (for cleanup etc.) needs to be followed by re-raising of the original exception. Another common source of mistakes are "handle _" patterns, which make the meaning of the program subject to physical effects of the environment. New in Isabelle2009-2 (June 2010) --------------------------------- *** General *** * Authentic syntax for *all* logical entities (type classes, type constructors, term constants): provides simple and robust correspondence between formal entities and concrete syntax. Within the parse tree / AST representations, "constants" are decorated by their category (class, type, const) and spelled out explicitly with their full internal name. Substantial INCOMPATIBILITY concerning low-level syntax declarations and translations (translation rules and translation functions in ML). Some hints on upgrading: - Many existing uses of 'syntax' and 'translations' can be replaced by more modern 'type_notation', 'notation' and 'abbreviation', which are independent of this issue. - 'translations' require markup within the AST; the term syntax provides the following special forms: CONST c -- produces syntax version of constant c from context XCONST c -- literally c, checked as constant from context c -- literally c, if declared by 'syntax' Plain identifiers are treated as AST variables -- occasionally the system indicates accidental variables via the error "rhs contains extra variables". Type classes and type constructors are marked according to their concrete syntax. Some old translations rules need to be written for the "type" category, using type constructor application instead of pseudo-term application of the default category "logic". - 'parse_translation' etc. in ML may use the following antiquotations: @{class_syntax c} -- type class c within parse tree / AST @{term_syntax c} -- type constructor c within parse tree / AST @{const_syntax c} -- ML version of "CONST c" above @{syntax_const c} -- literally c (checked wrt. 'syntax' declarations) - Literal types within 'typed_print_translations', i.e. those *not* represented as pseudo-terms are represented verbatim. Use @{class c} or @{type_name c} here instead of the above syntax antiquotations. Note that old non-authentic syntax was based on unqualified base names, so all of the above "constant" names would coincide. Recall that 'print_syntax' and ML_command "set Syntax.trace_ast" help to diagnose syntax problems. * Type constructors admit general mixfix syntax, not just infix. * Concrete syntax may be attached to local entities without a proof body, too. This works via regular mixfix annotations for 'fix', 'def', 'obtain' etc. or via the explicit 'write' command, which is similar to the 'notation' command in theory specifications. * Discontinued unnamed infix syntax (legacy feature for many years) -- need to specify constant name and syntax separately. Internal ML datatype constructors have been renamed from InfixName to Infix etc. Minor INCOMPATIBILITY. * Schematic theorem statements need to be explicitly markup as such, via commands 'schematic_lemma', 'schematic_theorem', 'schematic_corollary'. Thus the relevance of the proof is made syntactically clear, which impacts performance in a parallel or asynchronous interactive environment. Minor INCOMPATIBILITY. * Use of cumulative prems via "!" in some proof methods has been discontinued (old legacy feature). * References 'trace_simp' and 'debug_simp' have been replaced by configuration options stored in the context. Enabling tracing (the case of debugging is similar) in proofs works via using [[trace_simp = true]] Tracing is then active for all invocations of the simplifier in subsequent goal refinement steps. Tracing may also still be enabled or disabled via the ProofGeneral settings menu. * Separate commands 'hide_class', 'hide_type', 'hide_const', 'hide_fact' replace the former 'hide' KIND command. Minor INCOMPATIBILITY. * Improved parallelism of proof term normalization: usedir -p2 -q0 is more efficient than combinations with -q1 or -q2. *** Pure *** * Proofterms record type-class reasoning explicitly, using the "unconstrain" operation internally. This eliminates all sort constraints from a theorem and proof, introducing explicit OFCLASS-premises. On the proof term level, this operation is automatically applied at theorem boundaries, such that closed proofs are always free of sort constraints. INCOMPATIBILITY for tools that inspect proof terms. * Local theory specifications may depend on extra type variables that are not present in the result type -- arguments TYPE('a) :: 'a itself are added internally. For example: definition unitary :: bool where "unitary = (ALL (x::'a) y. x = y)" * Predicates of locales introduced by classes carry a mandatory "class" prefix. INCOMPATIBILITY. * Vacuous class specifications observe default sort. INCOMPATIBILITY. * Old 'axclass' command has been discontinued. INCOMPATIBILITY, use 'class' instead. * Command 'code_reflect' allows to incorporate generated ML code into runtime environment; replaces immature code_datatype antiquotation. INCOMPATIBILITY. * Code generator: simple concept for abstract datatypes obeying invariants. * Code generator: details of internal data cache have no impact on the user space functionality any longer. * Methods "unfold_locales" and "intro_locales" ignore non-locale subgoals. This is more appropriate for interpretations with 'where'. INCOMPATIBILITY. * Command 'example_proof' opens an empty proof body. This allows to experiment with Isar, without producing any persistent result. * Commands 'type_notation' and 'no_type_notation' declare type syntax within a local theory context, with explicit checking of the constructors involved (in contrast to the raw 'syntax' versions). * Commands 'types' and 'typedecl' now work within a local theory context -- without introducing dependencies on parameters or assumptions, which is not possible in Isabelle/Pure. * Command 'defaultsort' has been renamed to 'default_sort', it works within a local theory context. Minor INCOMPATIBILITY. *** HOL *** * Command 'typedef' now works within a local theory context -- without introducing dependencies on parameters or assumptions, which is not possible in Isabelle/Pure/HOL. Note that the logical environment may contain multiple interpretations of local typedefs (with different non-emptiness proofs), even in a global theory context. * New package for quotient types. Commands 'quotient_type' and 'quotient_definition' may be used for defining types and constants by quotient constructions. An example is the type of integers created by quotienting pairs of natural numbers: fun intrel :: "(nat * nat) => (nat * nat) => bool" where "intrel (x, y) (u, v) = (x + v = u + y)" quotient_type int = "nat * nat" / intrel by (auto simp add: equivp_def expand_fun_eq) quotient_definition "0::int" is "(0::nat, 0::nat)" The method "lifting" can be used to lift of theorems from the underlying "raw" type to the quotient type. The example src/HOL/Quotient_Examples/FSet.thy includes such a quotient construction and provides a reasoning infrastructure for finite sets. * Renamed Library/Quotient.thy to Library/Quotient_Type.thy to avoid clash with new theory Quotient in Main HOL. * Moved the SMT binding into the main HOL session, eliminating separate HOL-SMT session. * List membership infix mem operation is only an input abbreviation. INCOMPATIBILITY. * Theory Library/Word.thy has been removed. Use library Word/Word.thy for future developements; former Library/Word.thy is still present in the AFP entry RSAPPS. * Theorem Int.int_induct renamed to Int.int_of_nat_induct and is no longer shadowed. INCOMPATIBILITY. * Dropped theorem duplicate comp_arith; use semiring_norm instead. INCOMPATIBILITY. * Dropped theorem RealPow.real_sq_order; use power2_le_imp_le instead. INCOMPATIBILITY. * Dropped normalizing_semiring etc; use the facts in semiring classes instead. INCOMPATIBILITY. * Dropped several real-specific versions of lemmas about floor and ceiling; use the generic lemmas from theory "Archimedean_Field" instead. INCOMPATIBILITY. floor_number_of_eq ~> floor_number_of le_floor_eq_number_of ~> number_of_le_floor le_floor_eq_zero ~> zero_le_floor le_floor_eq_one ~> one_le_floor floor_less_eq_number_of ~> floor_less_number_of floor_less_eq_zero ~> floor_less_zero floor_less_eq_one ~> floor_less_one less_floor_eq_number_of ~> number_of_less_floor less_floor_eq_zero ~> zero_less_floor less_floor_eq_one ~> one_less_floor floor_le_eq_number_of ~> floor_le_number_of floor_le_eq_zero ~> floor_le_zero floor_le_eq_one ~> floor_le_one floor_subtract_number_of ~> floor_diff_number_of floor_subtract_one ~> floor_diff_one ceiling_number_of_eq ~> ceiling_number_of ceiling_le_eq_number_of ~> ceiling_le_number_of ceiling_le_zero_eq ~> ceiling_le_zero ceiling_le_eq_one ~> ceiling_le_one less_ceiling_eq_number_of ~> number_of_less_ceiling less_ceiling_eq_zero ~> zero_less_ceiling less_ceiling_eq_one ~> one_less_ceiling ceiling_less_eq_number_of ~> ceiling_less_number_of ceiling_less_eq_zero ~> ceiling_less_zero ceiling_less_eq_one ~> ceiling_less_one le_ceiling_eq_number_of ~> number_of_le_ceiling le_ceiling_eq_zero ~> zero_le_ceiling le_ceiling_eq_one ~> one_le_ceiling ceiling_subtract_number_of ~> ceiling_diff_number_of ceiling_subtract_one ~> ceiling_diff_one * Theory "Finite_Set": various folding_XXX locales facilitate the application of the various fold combinators on finite sets. * Library theory "RBT" renamed to "RBT_Impl"; new library theory "RBT" provides abstract red-black tree type which is backed by "RBT_Impl" as implementation. INCOMPATIBILITY. * Theory Library/Coinductive_List has been removed -- superseded by AFP/thys/Coinductive. * Theory PReal, including the type "preal" and related operations, has been removed. INCOMPATIBILITY. * Real: new development using Cauchy Sequences. * Split off theory "Big_Operators" containing setsum, setprod, Inf_fin, Sup_fin, Min, Max from theory Finite_Set. INCOMPATIBILITY. * Theory "Rational" renamed to "Rat", for consistency with "Nat", "Int" etc. INCOMPATIBILITY. * Constant Rat.normalize needs to be qualified. INCOMPATIBILITY. * New set of rules "ac_simps" provides combined assoc / commute rewrites for all interpretations of the appropriate generic locales. * Renamed theory "OrderedGroup" to "Groups" and split theory "Ring_and_Field" into theories "Rings" and "Fields"; for more appropriate and more consistent names suitable for name prefixes within the HOL theories. INCOMPATIBILITY. * Some generic constants have been put to appropriate theories: - less_eq, less: Orderings - zero, one, plus, minus, uminus, times, abs, sgn: Groups - inverse, divide: Rings INCOMPATIBILITY. * More consistent naming of type classes involving orderings (and lattices): lower_semilattice ~> semilattice_inf upper_semilattice ~> semilattice_sup dense_linear_order ~> dense_linorder pordered_ab_group_add ~> ordered_ab_group_add pordered_ab_group_add_abs ~> ordered_ab_group_add_abs pordered_ab_semigroup_add ~> ordered_ab_semigroup_add pordered_ab_semigroup_add_imp_le ~> ordered_ab_semigroup_add_imp_le pordered_cancel_ab_semigroup_add ~> ordered_cancel_ab_semigroup_add pordered_cancel_comm_semiring ~> ordered_cancel_comm_semiring pordered_cancel_semiring ~> ordered_cancel_semiring pordered_comm_monoid_add ~> ordered_comm_monoid_add pordered_comm_ring ~> ordered_comm_ring pordered_comm_semiring ~> ordered_comm_semiring pordered_ring ~> ordered_ring pordered_ring_abs ~> ordered_ring_abs pordered_semiring ~> ordered_semiring ordered_ab_group_add ~> linordered_ab_group_add ordered_ab_semigroup_add ~> linordered_ab_semigroup_add ordered_cancel_ab_semigroup_add ~> linordered_cancel_ab_semigroup_add ordered_comm_semiring_strict ~> linordered_comm_semiring_strict ordered_field ~> linordered_field ordered_field_no_lb ~> linordered_field_no_lb ordered_field_no_ub ~> linordered_field_no_ub ordered_field_dense_linear_order ~> dense_linordered_field ordered_idom ~> linordered_idom ordered_ring ~> linordered_ring ordered_ring_le_cancel_factor ~> linordered_ring_le_cancel_factor ordered_ring_less_cancel_factor ~> linordered_ring_less_cancel_factor ordered_ring_strict ~> linordered_ring_strict ordered_semidom ~> linordered_semidom ordered_semiring ~> linordered_semiring ordered_semiring_1 ~> linordered_semiring_1 ordered_semiring_1_strict ~> linordered_semiring_1_strict ordered_semiring_strict ~> linordered_semiring_strict The following slightly odd type classes have been moved to a separate theory Library/Lattice_Algebras: lordered_ab_group_add ~> lattice_ab_group_add lordered_ab_group_add_abs ~> lattice_ab_group_add_abs lordered_ab_group_add_meet ~> semilattice_inf_ab_group_add lordered_ab_group_add_join ~> semilattice_sup_ab_group_add lordered_ring ~> lattice_ring INCOMPATIBILITY. * Refined field classes: - classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero include rule inverse 0 = 0 -- subsumes former division_by_zero class; - numerous lemmas have been ported from field to division_ring. INCOMPATIBILITY. * Refined algebra theorem collections: - dropped theorem group group_simps, use algebra_simps instead; - dropped theorem group ring_simps, use field_simps instead; - proper theorem collection field_simps subsumes former theorem groups field_eq_simps and field_simps; - dropped lemma eq_minus_self_iff which is a duplicate for equal_neg_zero. INCOMPATIBILITY. * Theory Finite_Set and List: some lemmas have been generalized from sets to lattices: fun_left_comm_idem_inter ~> fun_left_comm_idem_inf fun_left_comm_idem_union ~> fun_left_comm_idem_sup inter_Inter_fold_inter ~> inf_Inf_fold_inf union_Union_fold_union ~> sup_Sup_fold_sup Inter_fold_inter ~> Inf_fold_inf Union_fold_union ~> Sup_fold_sup inter_INTER_fold_inter ~> inf_INFI_fold_inf union_UNION_fold_union ~> sup_SUPR_fold_sup INTER_fold_inter ~> INFI_fold_inf UNION_fold_union ~> SUPR_fold_sup * Theory "Complete_Lattice": lemmas top_def and bot_def have been replaced by the more convenient lemmas Inf_empty and Sup_empty. Dropped lemmas Inf_insert_simp and Sup_insert_simp, which are subsumed by Inf_insert and Sup_insert. Lemmas Inf_UNIV and Sup_UNIV replace former Inf_Univ and Sup_Univ. Lemmas inf_top_right and sup_bot_right subsume inf_top and sup_bot respectively. INCOMPATIBILITY. * Reorganized theory Multiset: swapped notation of pointwise and multiset order: - pointwise ordering is instance of class order with standard syntax <= and <; - multiset ordering has syntax <=# and <#; partial order properties are provided by means of interpretation with prefix multiset_order; - less duplication, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation; - use insert_DiffM2 [symmetric] instead of elem_imp_eq_diff_union, if needed. Renamed: multiset_eq_conv_count_eq ~> multiset_ext_iff multi_count_ext ~> multiset_ext diff_union_inverse2 ~> diff_union_cancelR INCOMPATIBILITY. * Theory Permutation: replaced local "remove" by List.remove1. * Code generation: ML and OCaml code is decorated with signatures. * Theory List: added transpose. * Library/Nat_Bijection.thy is a collection of bijective functions between nat and other types, which supersedes the older libraries Library/Nat_Int_Bij.thy and HOLCF/NatIso.thy. INCOMPATIBILITY. Constants: Nat_Int_Bij.nat2_to_nat ~> prod_encode Nat_Int_Bij.nat_to_nat2 ~> prod_decode Nat_Int_Bij.int_to_nat_bij ~> int_encode Nat_Int_Bij.nat_to_int_bij ~> int_decode Countable.pair_encode ~> prod_encode NatIso.prod2nat ~> prod_encode NatIso.nat2prod ~> prod_decode NatIso.sum2nat ~> sum_encode NatIso.nat2sum ~> sum_decode NatIso.list2nat ~> list_encode NatIso.nat2list ~> list_decode NatIso.set2nat ~> set_encode NatIso.nat2set ~> set_decode Lemmas: Nat_Int_Bij.bij_nat_to_int_bij ~> bij_int_decode Nat_Int_Bij.nat2_to_nat_inj ~> inj_prod_encode Nat_Int_Bij.nat2_to_nat_surj ~> surj_prod_encode Nat_Int_Bij.nat_to_nat2_inj ~> inj_prod_decode Nat_Int_Bij.nat_to_nat2_surj ~> surj_prod_decode Nat_Int_Bij.i2n_n2i_id ~> int_encode_inverse Nat_Int_Bij.n2i_i2n_id ~> int_decode_inverse Nat_Int_Bij.surj_nat_to_int_bij ~> surj_int_encode Nat_Int_Bij.surj_int_to_nat_bij ~> surj_int_decode Nat_Int_Bij.inj_nat_to_int_bij ~> inj_int_encode Nat_Int_Bij.inj_int_to_nat_bij ~> inj_int_decode Nat_Int_Bij.bij_nat_to_int_bij ~> bij_int_encode Nat_Int_Bij.bij_int_to_nat_bij ~> bij_int_decode * Sledgehammer: - Renamed ATP commands: atp_info ~> sledgehammer running_atps atp_kill ~> sledgehammer kill_atps atp_messages ~> sledgehammer messages atp_minimize ~> sledgehammer minimize print_atps ~> sledgehammer available_atps INCOMPATIBILITY. - Added user's manual ("isabelle doc sledgehammer"). - Added option syntax and "sledgehammer_params" to customize Sledgehammer's behavior. See the manual for details. - Modified the Isar proof reconstruction code so that it produces direct proofs rather than proofs by contradiction. (This feature is still experimental.) - Made Isar proof reconstruction work for SPASS, remote ATPs, and in full-typed mode. - Added support for TPTP syntax for SPASS via the "spass_tptp" ATP. * Nitpick: - Added and implemented "binary_ints" and "bits" options. - Added "std" option and implemented support for nonstandard models. - Added and implemented "finitize" option to improve the precision of infinite datatypes based on a monotonicity analysis. - Added support for quotient types. - Added support for "specification" and "ax_specification" constructs. - Added support for local definitions (for "function" and "termination" proofs). - Added support for term postprocessors. - Optimized "Multiset.multiset" and "FinFun.finfun". - Improved efficiency of "destroy_constrs" optimization. - Fixed soundness bugs related to "destroy_constrs" optimization and record getters. - Fixed soundness bug related to higher-order constructors. - Fixed soundness bug when "full_descrs" is enabled. - Improved precision of set constructs. - Added "atoms" option. - Added cache to speed up repeated Kodkod invocations on the same problems. - Renamed "MiniSatJNI", "zChaffJNI", "BerkMinAlloy", and "SAT4JLight" to "MiniSat_JNI", "zChaff_JNI", "BerkMin_Alloy", and "SAT4J_Light". INCOMPATIBILITY. - Removed "skolemize", "uncurry", "sym_break", "flatten_prop", "sharing_depth", and "show_skolems" options. INCOMPATIBILITY. - Removed "nitpick_intro" attribute. INCOMPATIBILITY. * Method "induct" now takes instantiations of the form t, where t is not a variable, as a shorthand for "x == t", where x is a fresh variable. If this is not intended, t has to be enclosed in parentheses. By default, the equalities generated by definitional instantiations are pre-simplified, which may cause parameters of inductive cases to disappear, or may even delete some of the inductive cases. Use "induct (no_simp)" instead of "induct" to restore the old behaviour. The (no_simp) option is also understood by the "cases" and "nominal_induct" methods, which now perform pre-simplification, too. INCOMPATIBILITY. *** HOLCF *** * Variable names in lemmas generated by the domain package have changed; the naming scheme is now consistent with the HOL datatype package. Some proof scripts may be affected, INCOMPATIBILITY. * The domain package no longer defines the function "foo_copy" for recursive domain "foo". The reach lemma is now stated directly in terms of "foo_take". Lemmas and proofs that mention "foo_copy" must be reformulated in terms of "foo_take", INCOMPATIBILITY. * Most definedness lemmas generated by the domain package (previously of the form "x ~= UU ==> foo$x ~= UU") now have an if-and-only-if form like "foo$x = UU <-> x = UU", which works better as a simp rule. Proofs that used definedness lemmas as intro rules may break, potential INCOMPATIBILITY. * Induction and casedist rules generated by the domain package now declare proper case_names (one called "bottom", and one named for each constructor). INCOMPATIBILITY. * For mutually-recursive domains, separate "reach" and "take_lemma" rules are generated for each domain, INCOMPATIBILITY. foo_bar.reach ~> foo.reach bar.reach foo_bar.take_lemmas ~> foo.take_lemma bar.take_lemma * Some lemmas generated by the domain package have been renamed for consistency with the datatype package, INCOMPATIBILITY. foo.ind ~> foo.induct foo.finite_ind ~> foo.finite_induct foo.coind ~> foo.coinduct foo.casedist ~> foo.exhaust foo.exhaust ~> foo.nchotomy * For consistency with other definition packages, the fixrec package now generates qualified theorem names, INCOMPATIBILITY. foo_simps ~> foo.simps foo_unfold ~> foo.unfold foo_induct ~> foo.induct * The "fixrec_simp" attribute has been removed. The "fixrec_simp" method and internal fixrec proofs now use the default simpset instead. INCOMPATIBILITY. * The "contlub" predicate has been removed. Proof scripts should use lemma contI2 in place of monocontlub2cont, INCOMPATIBILITY. * The "admw" predicate has been removed, INCOMPATIBILITY. * The constants cpair, cfst, and csnd have been removed in favor of Pair, fst, and snd from Isabelle/HOL, INCOMPATIBILITY. *** ML *** * Antiquotations for basic formal entities: @{class NAME} -- type class @{class_syntax NAME} -- syntax representation of the above @{type_name NAME} -- logical type @{type_abbrev NAME} -- type abbreviation @{nonterminal NAME} -- type of concrete syntactic category @{type_syntax NAME} -- syntax representation of any of the above @{const_name NAME} -- logical constant (INCOMPATIBILITY) @{const_abbrev NAME} -- abbreviated constant @{const_syntax NAME} -- syntax representation of any of the above * Antiquotation @{syntax_const NAME} ensures that NAME refers to a raw syntax constant (cf. 'syntax' command). * Antiquotation @{make_string} inlines a function to print arbitrary values similar to the ML toplevel. The result is compiler dependent and may fall back on "?" in certain situations. * Diagnostic commands 'ML_val' and 'ML_command' may refer to antiquotations @{Isar.state} and @{Isar.goal}. This replaces impure Isar.state() and Isar.goal(), which belong to the old TTY loop and do not work with the asynchronous Isar document model. * Configuration options now admit dynamic default values, depending on the context or even global references. * SHA1.digest digests strings according to SHA-1 (see RFC 3174). It uses an efficient external library if available (for Poly/ML). * Renamed some important ML structures, while keeping the old names for some time as aliases within the structure Legacy: OuterKeyword ~> Keyword OuterLex ~> Token OuterParse ~> Parse OuterSyntax ~> Outer_Syntax PrintMode ~> Print_Mode SpecParse ~> Parse_Spec ThyInfo ~> Thy_Info ThyLoad ~> Thy_Load ThyOutput ~> Thy_Output TypeInfer ~> Type_Infer Note that "open Legacy" simplifies porting of sources, but forgetting to remove it again will complicate porting again in the future. * Most operations that refer to a global context are named accordingly, e.g. Simplifier.global_context or ProofContext.init_global. There are some situations where a global context actually works, but under normal circumstances one needs to pass the proper local context through the code! * Discontinued old TheoryDataFun with its copy/init operation -- data needs to be pure. Functor Theory_Data_PP retains the traditional Pretty.pp argument to merge, which is absent in the standard Theory_Data version. * Sorts.certify_sort and derived "cert" operations for types and terms no longer minimize sorts. Thus certification at the boundary of the inference kernel becomes invariant under addition of class relations, which is an important monotonicity principle. Sorts are now minimized in the syntax layer only, at the boundary between the end-user and the system. Subtle INCOMPATIBILITY, may have to use Sign.minimize_sort explicitly in rare situations. * Renamed old-style Drule.standard to Drule.export_without_context, to emphasize that this is in no way a standard operation. INCOMPATIBILITY. * Subgoal.FOCUS (and variants): resulting goal state is normalized as usual for resolution. Rare INCOMPATIBILITY. * Renamed varify/unvarify operations to varify_global/unvarify_global to emphasize that these only work in a global situation (which is quite rare). * Curried take and drop in library.ML; negative length is interpreted as infinity (as in chop). Subtle INCOMPATIBILITY. * Proof terms: type substitutions on proof constants now use canonical order of type variables. INCOMPATIBILITY for tools working with proof terms. * Raw axioms/defs may no longer carry sort constraints, and raw defs may no longer carry premises. User-level specifications are transformed accordingly by Thm.add_axiom/add_def. *** System *** * Discontinued special HOL_USEDIR_OPTIONS for the main HOL image; ISABELLE_USEDIR_OPTIONS applies uniformly to all sessions. Note that proof terms are enabled unconditionally in the new HOL-Proofs image. * Discontinued old ISABELLE and ISATOOL environment settings (legacy feature since Isabelle2009). Use ISABELLE_PROCESS and ISABELLE_TOOL, respectively. * Old lib/scripts/polyml-platform is superseded by the ISABELLE_PLATFORM setting variable, which defaults to the 32 bit variant, even on a 64 bit machine. The following example setting prefers 64 bit if available: ML_PLATFORM="${ISABELLE_PLATFORM64:-$ISABELLE_PLATFORM}" * The preliminary Isabelle/jEdit application demonstrates the emerging Isabelle/Scala layer for advanced prover interaction and integration. See src/Tools/jEdit or "isabelle jedit" provided by the properly built component. * "IsabelleText" is a Unicode font derived from Bitstream Vera Mono and Bluesky TeX fonts. It provides the usual Isabelle symbols, similar to the default assignment of the document preparation system (cf. isabellesym.sty). The Isabelle/Scala class Isabelle_System provides some operations for direct access to the font without asking the user for manual installation. New in Isabelle2009-1 (December 2009) ------------------------------------- *** General *** * Discontinued old form of "escaped symbols" such as \\<forall>. Only one backslash should be used, even in ML sources. *** Pure *** * Locale interpretation propagates mixins along the locale hierarchy. The currently only available mixins are the equations used to map local definitions to terms of the target domain of an interpretation. * Reactivated diagnostic command 'print_interps'. Use "print_interps loc" to print all interpretations of locale "loc" in the theory. Interpretations in proofs are not shown. * Thoroughly revised locales tutorial. New section on conditional interpretation. * On instantiation of classes, remaining undefined class parameters are formally declared. INCOMPATIBILITY. *** Document preparation *** * New generalized style concept for printing terms: @{foo (style) ...} instead of @{foo_style style ...} (old form is still retained for backward compatibility). Styles can be also applied for antiquotations prop, term_type and typeof. *** HOL *** * New proof method "smt" for a combination of first-order logic with equality, linear and nonlinear (natural/integer/real) arithmetic, and fixed-size bitvectors; there is also basic support for higher-order features (esp. lambda abstractions). It is an incomplete decision procedure based on external SMT solvers using the oracle mechanism; for the SMT solver Z3, this method is proof-producing. Certificates are provided to avoid calling the external solvers solely for re-checking proofs. Due to a remote SMT service there is no need for installing SMT solvers locally. See src/HOL/SMT. * New commands to load and prove verification conditions generated by the Boogie program verifier or derived systems (e.g. the Verifying C Compiler (VCC) or Spec#). See src/HOL/Boogie. * New counterexample generator tool 'nitpick' based on the Kodkod relational model finder. See src/HOL/Tools/Nitpick and src/HOL/Nitpick_Examples. * New commands 'code_pred' and 'values' to invoke the predicate compiler and to enumerate values of inductive predicates. * A tabled implementation of the reflexive transitive closure. * New implementation of quickcheck uses generic code generator; default generators are provided for all suitable HOL types, records and datatypes. Old quickcheck can be re-activated importing theory Library/SML_Quickcheck. * New testing tool Mirabelle for automated proof tools. Applies several tools and tactics like sledgehammer, metis, or quickcheck, to every proof step in a theory. To be used in batch mode via the "mirabelle" utility. * New proof method "sos" (sum of squares) for nonlinear real arithmetic (originally due to John Harison). It requires theory Library/Sum_Of_Squares. It is not a complete decision procedure but works well in practice on quantifier-free real arithmetic with +, -, *, ^, =, <= and <, i.e. boolean combinations of equalities and inequalities between polynomials. It makes use of external semidefinite programming solvers. Method "sos" generates a certificate that can be pasted into the proof thus avoiding the need to call an external tool every time the proof is checked. See src/HOL/Library/Sum_Of_Squares. * New method "linarith" invokes existing linear arithmetic decision procedure only. * New command 'atp_minimal' reduces result produced by Sledgehammer. * New Sledgehammer option "Full Types" in Proof General settings menu. Causes full type information to be output to the ATPs. This slows ATPs down considerably but eliminates a source of unsound "proofs" that fail later. * New method "metisFT": A version of metis that uses full type information in order to avoid failures of proof reconstruction. * New evaluator "approximate" approximates an real valued term using the same method as the approximation method. * Method "approximate" now supports arithmetic expressions as boundaries of intervals and implements interval splitting and Taylor series expansion. * ML antiquotation @{code_datatype} inserts definition of a datatype generated by the code generator; e.g. see src/HOL/Predicate.thy. * New theory SupInf of the supremum and infimum operators for sets of reals. * New theory Probability, which contains a development of measure theory, eventually leading to Lebesgue integration and probability. * Extended Multivariate Analysis to include derivation and Brouwer's fixpoint theorem. * Reorganization of number theory, INCOMPATIBILITY: - new number theory development for nat and int, in theories Divides and GCD as well as in new session Number_Theory - some constants and facts now suffixed with _nat and _int accordingly - former session NumberTheory now named Old_Number_Theory, including theories Legacy_GCD and Primes (prefer Number_Theory if possible) - moved theory Pocklington from src/HOL/Library to src/HOL/Old_Number_Theory * Theory GCD includes functions Gcd/GCD and Lcm/LCM for the gcd and lcm of finite and infinite sets. It is shown that they form a complete lattice. * Class semiring_div requires superclass no_zero_divisors and proof of div_mult_mult1; theorems div_mult_mult1, div_mult_mult2, div_mult_mult1_if, div_mult_mult1 and div_mult_mult2 have been generalized to class semiring_div, subsuming former theorems zdiv_zmult_zmult1, zdiv_zmult_zmult1_if, zdiv_zmult_zmult1 and zdiv_zmult_zmult2. div_mult_mult1 is now [simp] by default. INCOMPATIBILITY. * Refinements to lattice classes and sets: - less default intro/elim rules in locale variant, more default intro/elim rules in class variant: more uniformity - lemma ge_sup_conv renamed to le_sup_iff, in accordance with le_inf_iff - dropped lemma alias inf_ACI for inf_aci (same for sup_ACI and sup_aci) - renamed ACI to inf_sup_aci - new class "boolean_algebra" - class "complete_lattice" moved to separate theory "Complete_Lattice"; corresponding constants (and abbreviations) renamed and with authentic syntax: Set.Inf ~> Complete_Lattice.Inf Set.Sup ~> Complete_Lattice.Sup Set.INFI ~> Complete_Lattice.INFI Set.SUPR ~> Complete_Lattice.SUPR Set.Inter ~> Complete_Lattice.Inter Set.Union ~> Complete_Lattice.Union Set.INTER ~> Complete_Lattice.INTER Set.UNION ~> Complete_Lattice.UNION - authentic syntax for Set.Pow Set.image - mere abbreviations: Set.empty (for bot) Set.UNIV (for top) Set.inter (for inf, formerly Set.Int) Set.union (for sup, formerly Set.Un) Complete_Lattice.Inter (for Inf) Complete_Lattice.Union (for Sup) Complete_Lattice.INTER (for INFI) Complete_Lattice.UNION (for SUPR) - object-logic definitions as far as appropriate INCOMPATIBILITY. Care is required when theorems Int_subset_iff or Un_subset_iff are explicitly deleted as default simp rules; then also their lattice counterparts le_inf_iff and le_sup_iff have to be deleted to achieve the desired effect. * Rules inf_absorb1, inf_absorb2, sup_absorb1, sup_absorb2 are no simp rules by default any longer; the same applies to min_max.inf_absorb1 etc. INCOMPATIBILITY. * Rules sup_Int_eq and sup_Un_eq are no longer declared as pred_set_conv by default. INCOMPATIBILITY. * Power operations on relations and functions are now one dedicated constant "compow" with infix syntax "^^". Power operation on multiplicative monoids retains syntax "^" and is now defined generic in class power. INCOMPATIBILITY. * Relation composition "R O S" now has a more standard argument order: "R O S = {(x, z). EX y. (x, y) : R & (y, z) : S}". INCOMPATIBILITY, rewrite propositions with "S O R" --> "R O S". Proofs may occasionally break, since the O_assoc rule was not rewritten like this. Fix using O_assoc[symmetric]. The same applies to the curried version "R OO S". * Function "Inv" is renamed to "inv_into" and function "inv" is now an abbreviation for "inv_into UNIV". Lemmas are renamed accordingly. INCOMPATIBILITY. * Most rules produced by inductive and datatype package have mandatory prefixes. INCOMPATIBILITY. * Changed "DERIV_intros" to a dynamic fact, which can be augmented by the attribute of the same name. Each of the theorems in the list DERIV_intros assumes composition with an additional function and matches a variable to the derivative, which has to be solved by the Simplifier. Hence (auto intro!: DERIV_intros) computes the derivative of most elementary terms. Former Maclauren.DERIV_tac and Maclauren.deriv_tac should be replaced by (auto intro!: DERIV_intros). INCOMPATIBILITY. * Code generator attributes follow the usual underscore convention: code_unfold replaces code unfold code_post replaces code post etc. INCOMPATIBILITY. * Renamed methods: sizechange -> size_change induct_scheme -> induction_schema INCOMPATIBILITY. * Discontinued abbreviation "arbitrary" of constant "undefined". INCOMPATIBILITY, use "undefined" directly. * Renamed theorems: Suc_eq_add_numeral_1 -> Suc_eq_plus1 Suc_eq_add_numeral_1_left -> Suc_eq_plus1_left Suc_plus1 -> Suc_eq_plus1 *anti_sym -> *antisym* vector_less_eq_def -> vector_le_def INCOMPATIBILITY. * Added theorem List.map_map as [simp]. Removed List.map_compose. INCOMPATIBILITY. * Removed predicate "M hassize n" (<--> card M = n & finite M). INCOMPATIBILITY. *** HOLCF *** * Theory Representable defines a class "rep" of domains that are representable (via an ep-pair) in the universal domain type "udom". Instances are provided for all type constructors defined in HOLCF. * The 'new_domain' command is a purely definitional version of the domain package, for representable domains. Syntax is identical to the old domain package. The 'new_domain' package also supports indirect recursion using previously-defined type constructors. See src/HOLCF/ex/New_Domain.thy for examples. * Method "fixrec_simp" unfolds one step of a fixrec-defined constant on the left-hand side of an equation, and then performs simplification. Rewriting is done using rules declared with the "fixrec_simp" attribute. The "fixrec_simp" method is intended as a replacement for "fixpat"; see src/HOLCF/ex/Fixrec_ex.thy for examples. * The pattern-match compiler in 'fixrec' can now handle constructors with HOL function types. Pattern-match combinators for the Pair constructor are pre-configured. * The 'fixrec' package now produces better fixed-point induction rules for mutually-recursive definitions: Induction rules have conclusions of the form "P foo bar" instead of "P <foo, bar>". * The constant "sq_le" (with infix syntax "<<" or "\<sqsubseteq>") has been renamed to "below". The name "below" now replaces "less" in many theorem names. (Legacy theorem names using "less" are still supported as well.) * The 'fixrec' package now supports "bottom patterns". Bottom patterns can be used to generate strictness rules, or to make functions more strict (much like the bang-patterns supported by the Glasgow Haskell Compiler). See src/HOLCF/ex/Fixrec_ex.thy for examples. *** ML *** * Support for Poly/ML 5.3.0, with improved reporting of compiler errors and run-time exceptions, including detailed source positions. * Structure Name_Space (formerly NameSpace) now manages uniquely identified entries, with some additional information such as source position, logical grouping etc. * Theory and context data is now introduced by the simplified and modernized functors Theory_Data, Proof_Data, Generic_Data. Data needs to be pure, but the old TheoryDataFun for mutable data (with explicit copy operation) is still available for some time. * Structure Synchronized (cf. src/Pure/Concurrent/synchronized.ML) provides a high-level programming interface to synchronized state variables with atomic update. This works via pure function application within a critical section -- its runtime should be as short as possible; beware of deadlocks if critical code is nested, either directly or indirectly via other synchronized variables! * Structure Unsynchronized (cf. src/Pure/ML-Systems/unsynchronized.ML) wraps raw ML references, explicitly indicating their non-thread-safe behaviour. The Isar toplevel keeps this structure open, to accommodate Proof General as well as quick and dirty interactive experiments with references. * PARALLEL_CHOICE and PARALLEL_GOALS provide basic support for parallel tactical reasoning. * Tacticals Subgoal.FOCUS, Subgoal.FOCUS_PREMS, Subgoal.FOCUS_PARAMS are similar to SUBPROOF, but are slightly more flexible: only the specified parts of the subgoal are imported into the context, and the body tactic may introduce new subgoals and schematic variables. * Old tactical METAHYPS, which does not observe the proof context, has been renamed to Old_Goals.METAHYPS and awaits deletion. Use SUBPROOF or Subgoal.FOCUS etc. * Renamed functor TableFun to Table, and GraphFun to Graph. (Since functors have their own ML name space there is no point to mark them separately.) Minor INCOMPATIBILITY. * Renamed NamedThmsFun to Named_Thms. INCOMPATIBILITY. * Renamed several structures FooBar to Foo_Bar. Occasional, INCOMPATIBILITY. * Operations of structure Skip_Proof no longer require quick_and_dirty mode, which avoids critical setmp. * Eliminated old Attrib.add_attributes, Method.add_methods and related combinators for "args". INCOMPATIBILITY, need to use simplified Attrib/Method.setup introduced in Isabelle2009. * Proper context for simpset_of, claset_of, clasimpset_of. May fall back on global_simpset_of, global_claset_of, global_clasimpset_of as last resort. INCOMPATIBILITY. * Display.pretty_thm now requires a proper context (cf. former ProofContext.pretty_thm). May fall back on Display.pretty_thm_global or even Display.pretty_thm_without_context as last resort. INCOMPATIBILITY. * Discontinued Display.pretty_ctyp/cterm etc. INCOMPATIBILITY, use Syntax.pretty_typ/term directly, preferably with proper context instead of global theory. *** System *** * Further fine tuning of parallel proof checking, scales up to 8 cores (max. speedup factor 5.0). See also Goal.parallel_proofs in ML and usedir option -q. * Support for additional "Isabelle components" via etc/components, see also the system manual. * The isabelle makeall tool now operates on all components with IsaMakefile, not just hardwired "logics". * Removed "compress" option from isabelle-process and isabelle usedir; this is always enabled. * Discontinued support for Poly/ML 4.x versions. * Isabelle tool "wwwfind" provides web interface for 'find_theorems' on a given logic image. This requires the lighttpd webserver and is currently supported on Linux only. New in Isabelle2009 (April 2009) -------------------------------- *** General *** * Simplified main Isabelle executables, with less surprises on case-insensitive file-systems (such as Mac OS). - The main Isabelle tool wrapper is now called "isabelle" instead of "isatool." - The former "isabelle" alias for "isabelle-process" has been removed (should rarely occur to regular users). - The former "isabelle-interface" and its alias "Isabelle" have been removed (interfaces are now regular Isabelle tools). Within scripts and make files, the Isabelle environment variables ISABELLE_TOOL and ISABELLE_PROCESS replace old ISATOOL and ISABELLE, respectively. (The latter are still available as legacy feature.) The old isabelle-interface wrapper could react in confusing ways if the interface was uninstalled or changed otherwise. Individual interface tool configuration is now more explicit, see also the Isabelle system manual. In particular, Proof General is now available via "isabelle emacs". INCOMPATIBILITY, need to adapt derivative scripts. Users may need to purge installed copies of Isabelle executables and re-run "isabelle install -p ...", or use symlinks. * The default for ISABELLE_HOME_USER is now ~/.isabelle instead of the old ~/isabelle, which was slightly non-standard and apt to cause surprises on case-insensitive file-systems (such as Mac OS). INCOMPATIBILITY, need to move existing ~/isabelle/etc, ~/isabelle/heaps, ~/isabelle/browser_info to the new place. Special care is required when using older releases of Isabelle. Note that ISABELLE_HOME_USER can be changed in Isabelle/etc/settings of any Isabelle distribution, in order to use the new ~/.isabelle uniformly. * Proofs of fully specified statements are run in parallel on multi-core systems. A speedup factor of 2.5 to 3.2 can be expected on a regular 4-core machine, if the initial heap space is made reasonably large (cf. Poly/ML option -H). (Requires Poly/ML 5.2.1 or later.) * The main reference manuals ("isar-ref", "implementation", and "system") have been updated and extended. Formally checked references as hyperlinks are now available uniformly. *** Pure *** * Complete re-implementation of locales. INCOMPATIBILITY in several respects. The most important changes are listed below. See the Tutorial on Locales ("locales" manual) for details. - In locale expressions, instantiation replaces renaming. Parameters must be declared in a for clause. To aid compatibility with previous parameter inheritance, in locale declarations, parameters that are not 'touched' (instantiation position "_" or omitted) are implicitly added with their syntax at the beginning of the for clause. - Syntax from abbreviations and definitions in locales is available in locale expressions and context elements. The latter is particularly useful in locale declarations. - More flexible mechanisms to qualify names generated by locale expressions. Qualifiers (prefixes) may be specified in locale expressions, and can be marked as mandatory (syntax: "name!:") or optional (syntax "name?:"). The default depends for plain "name:" depends on the situation where a locale expression is used: in commands 'locale' and 'sublocale' prefixes are optional, in 'interpretation' and 'interpret' prefixes are mandatory. The old implicit qualifiers derived from the parameter names of a locale are no longer generated. - Command "sublocale l < e" replaces "interpretation l < e". The instantiation clause in "interpretation" and "interpret" (square brackets) is no longer available. Use locale expressions. - When converting proof scripts, mandatory qualifiers in 'interpretation' and 'interpret' should be retained by default, even if this is an INCOMPATIBILITY compared to former behavior. In the worst case, use the "name?:" form for non-mandatory ones. Qualifiers in locale expressions range over a single locale instance only. - Dropped locale element "includes". This is a major INCOMPATIBILITY. In existing theorem specifications replace the includes element by the respective context elements of the included locale, omitting those that are already present in the theorem specification. Multiple assume elements of a locale should be replaced by a single one involving the locale predicate. In the proof body, declarations (most notably theorems) may be regained by interpreting the respective locales in the proof context as required (command "interpret"). If using "includes" in replacement of a target solely because the parameter types in the theorem are not as general as in the target, consider declaring a new locale with additional type constraints on the parameters (context element "constrains"). - Discontinued "locale (open)". INCOMPATIBILITY. - Locale interpretation commands no longer attempt to simplify goal. INCOMPATIBILITY: in rare situations the generated goal differs. Use methods intro_locales and unfold_locales to clarify. - Locale interpretation commands no longer accept interpretation attributes. INCOMPATIBILITY. * Class declaration: so-called "base sort" must not be given in import list any longer, but is inferred from the specification. Particularly in HOL, write class foo = ... instead of class foo = type + ... * Class target: global versions of theorems stemming do not carry a parameter prefix any longer. INCOMPATIBILITY. * Class 'instance' command no longer accepts attached definitions. INCOMPATIBILITY, use proper 'instantiation' target instead. * Recovered hiding of consts, which was accidentally broken in Isabelle2007. Potential INCOMPATIBILITY, ``hide const c'' really makes c inaccessible; consider using ``hide (open) const c'' instead. * Slightly more coherent Pure syntax, with updated documentation in isar-ref manual. Removed locales meta_term_syntax and meta_conjunction_syntax: TERM and &&& (formerly &&) are now permanent, INCOMPATIBILITY in rare situations. Note that &&& should not be used directly in regular applications. * There is a new syntactic category "float_const" for signed decimal fractions (e.g. 123.45 or -123.45). * Removed exotic 'token_translation' command. INCOMPATIBILITY, use ML interface with 'setup' command instead. * Command 'local_setup' is similar to 'setup', but operates on a local theory context. * The 'axiomatization' command now only works within a global theory context. INCOMPATIBILITY. * Goal-directed proof now enforces strict proof irrelevance wrt. sort hypotheses. Sorts required in the course of reasoning need to be covered by the constraints in the initial statement, completed by the type instance information of the background theory. Non-trivial sort hypotheses, which rarely occur in practice, may be specified via vacuous propositions of the form SORT_CONSTRAINT('a::c). For example: lemma assumes "SORT_CONSTRAINT('a::empty)" shows False ... The result contains an implicit sort hypotheses as before -- SORT_CONSTRAINT premises are eliminated as part of the canonical rule normalization. * Generalized Isar history, with support for linear undo, direct state addressing etc. * Changed defaults for unify configuration options: unify_trace_bound = 50 (formerly 25) unify_search_bound = 60 (formerly 30) * Different bookkeeping for code equations (INCOMPATIBILITY): a) On theory merge, the last set of code equations for a particular constant is taken (in accordance with the policy applied by other parts of the code generator framework). b) Code equations stemming from explicit declarations (e.g. code attribute) gain priority over default code equations stemming from definition, primrec, fun etc. * Keyword 'code_exception' now named 'code_abort'. INCOMPATIBILITY. * Unified theorem tables for both code generators. Thus [code func] has disappeared and only [code] remains. INCOMPATIBILITY. * Command 'find_consts' searches for constants based on type and name patterns, e.g. find_consts "_ => bool" By default, matching is against subtypes, but it may be restricted to the whole type. Searching by name is possible. Multiple queries are conjunctive and queries may be negated by prefixing them with a hyphen: find_consts strict: "_ => bool" name: "Int" -"int => int" * New 'find_theorems' criterion "solves" matches theorems that directly solve the current goal (modulo higher-order unification). * Auto solve feature for main theorem statements: whenever a new goal is stated, "find_theorems solves" is called; any theorems that could solve the lemma directly are listed as part of the goal state. Cf. associated options in Proof General Isabelle settings menu, enabled by default, with reasonable timeout for pathological cases of higher-order unification. *** Document preparation *** * Antiquotation @{lemma} now imitates a regular terminal proof, demanding keyword 'by' and supporting the full method expression syntax just like the Isar command 'by'. *** HOL *** * Integrated main parts of former image HOL-Complex with HOL. Entry points Main and Complex_Main remain as before. * Logic image HOL-Plain provides a minimal HOL with the most important tools available (inductive, datatype, primrec, ...). This facilitates experimentation and tool development. Note that user applications (and library theories) should never refer to anything below theory Main, as before. * Logic image HOL-Main stops at theory Main, and thus facilitates experimentation due to shorter build times. * Logic image HOL-NSA contains theories of nonstandard analysis which were previously part of former HOL-Complex. Entry point Hyperreal remains valid, but theories formerly using Complex_Main should now use new entry point Hypercomplex. * Generic ATP manager for Sledgehammer, based on ML threads instead of Posix processes. Avoids potentially expensive forking of the ML process. New thread-based implementation also works on non-Unix platforms (Cygwin). Provers are no longer hardwired, but defined within the theory via plain ML wrapper functions. Basic Sledgehammer commands are covered in the isar-ref manual. * Wrapper scripts for remote SystemOnTPTP service allows to use sledgehammer without local ATP installation (Vampire etc.). Other provers may be included via suitable ML wrappers, see also src/HOL/ATP_Linkup.thy. * ATP selection (E/Vampire/Spass) is now via Proof General's settings menu. * The metis method no longer fails because the theorem is too trivial (contains the empty clause). * The metis method now fails in the usual manner, rather than raising an exception, if it determines that it cannot prove the theorem. * Method "coherent" implements a prover for coherent logic (see also src/Tools/coherent.ML). * Constants "undefined" and "default" replace "arbitrary". Usually "undefined" is the right choice to replace "arbitrary", though logically there is no difference. INCOMPATIBILITY. * Command "value" now integrates different evaluation mechanisms. The result of the first successful evaluation mechanism is printed. In square brackets a particular named evaluation mechanisms may be specified (currently, [SML], [code] or [nbe]). See further src/HOL/ex/Eval_Examples.thy. * Normalization by evaluation now allows non-leftlinear equations. Declare with attribute [code nbe]. * Methods "case_tac" and "induct_tac" now refer to the very same rules as the structured Isar versions "cases" and "induct", cf. the corresponding "cases" and "induct" attributes. Mutual induction rules are now presented as a list of individual projections (e.g. foo_bar.inducts for types foo and bar); the old format with explicit HOL conjunction is no longer supported. INCOMPATIBILITY, in rare situations a different rule is selected --- notably nested tuple elimination instead of former prod.exhaust: use explicit (case_tac t rule: prod.exhaust) here. * Attributes "cases", "induct", "coinduct" support "del" option. * Removed fact "case_split_thm", which duplicates "case_split". * The option datatype has been moved to a new theory Option. Renamed option_map to Option.map, and o2s to Option.set, INCOMPATIBILITY. * New predicate "strict_mono" classifies strict functions on partial orders. With strict functions on linear orders, reasoning about (in)equalities is facilitated by theorems "strict_mono_eq", "strict_mono_less_eq" and "strict_mono_less". * Some set operations are now proper qualified constants with authentic syntax. INCOMPATIBILITY: op Int ~> Set.Int op Un ~> Set.Un INTER ~> Set.INTER UNION ~> Set.UNION Inter ~> Set.Inter Union ~> Set.Union {} ~> Set.empty UNIV ~> Set.UNIV * Class complete_lattice with operations Inf, Sup, INFI, SUPR now in theory Set. * Auxiliary class "itself" has disappeared -- classes without any parameter are treated as expected by the 'class' command. * Leibnitz's Series for Pi and the arcus tangens and logarithm series. * Common decision procedures (Cooper, MIR, Ferrack, Approximation, Dense_Linear_Order) are now in directory HOL/Decision_Procs. * Theory src/HOL/Decision_Procs/Approximation provides the new proof method "approximation". It proves formulas on real values by using interval arithmetic. In the formulas are also the transcendental functions sin, cos, tan, atan, ln, exp and the constant pi are allowed. For examples see src/HOL/Descision_Procs/ex/Approximation_Ex.thy. * Theory "Reflection" now resides in HOL/Library. * Entry point to Word library now simply named "Word". INCOMPATIBILITY. * Made source layout more coherent with logical distribution structure: src/HOL/Library/RType.thy ~> src/HOL/Typerep.thy src/HOL/Library/Code_Message.thy ~> src/HOL/ src/HOL/Library/GCD.thy ~> src/HOL/ src/HOL/Library/Order_Relation.thy ~> src/HOL/ src/HOL/Library/Parity.thy ~> src/HOL/ src/HOL/Library/Univ_Poly.thy ~> src/HOL/ src/HOL/Real/ContNotDenum.thy ~> src/HOL/Library/ src/HOL/Real/Lubs.thy ~> src/HOL/ src/HOL/Real/PReal.thy ~> src/HOL/ src/HOL/Real/Rational.thy ~> src/HOL/ src/HOL/Real/RComplete.thy ~> src/HOL/ src/HOL/Real/RealDef.thy ~> src/HOL/ src/HOL/Real/RealPow.thy ~> src/HOL/ src/HOL/Real/Real.thy ~> src/HOL/ src/HOL/Complex/Complex_Main.thy ~> src/HOL/ src/HOL/Complex/Complex.thy ~> src/HOL/ src/HOL/Complex/FrechetDeriv.thy ~> src/HOL/Library/ src/HOL/Complex/Fundamental_Theorem_Algebra.thy ~> src/HOL/Library/ src/HOL/Hyperreal/Deriv.thy ~> src/HOL/ src/HOL/Hyperreal/Fact.thy ~> src/HOL/ src/HOL/Hyperreal/Integration.thy ~> src/HOL/ src/HOL/Hyperreal/Lim.thy ~> src/HOL/ src/HOL/Hyperreal/Ln.thy ~> src/HOL/ src/HOL/Hyperreal/Log.thy ~> src/HOL/ src/HOL/Hyperreal/MacLaurin.thy ~> src/HOL/ src/HOL/Hyperreal/NthRoot.thy ~> src/HOL/ src/HOL/Hyperreal/Series.thy ~> src/HOL/ src/HOL/Hyperreal/SEQ.thy ~> src/HOL/ src/HOL/Hyperreal/Taylor.thy ~> src/HOL/ src/HOL/Hyperreal/Transcendental.thy ~> src/HOL/ src/HOL/Real/Float ~> src/HOL/Library/ src/HOL/Real/HahnBanach ~> src/HOL/HahnBanach src/HOL/Real/RealVector.thy ~> src/HOL/ src/HOL/arith_data.ML ~> src/HOL/Tools src/HOL/hologic.ML ~> src/HOL/Tools src/HOL/simpdata.ML ~> src/HOL/Tools src/HOL/int_arith1.ML ~> src/HOL/Tools/int_arith.ML src/HOL/int_factor_simprocs.ML ~> src/HOL/Tools src/HOL/nat_simprocs.ML ~> src/HOL/Tools src/HOL/Real/float_arith.ML ~> src/HOL/Tools src/HOL/Real/float_syntax.ML ~> src/HOL/Tools src/HOL/Real/rat_arith.ML ~> src/HOL/Tools src/HOL/Real/real_arith.ML ~> src/HOL/Tools src/HOL/Library/Array.thy ~> src/HOL/Imperative_HOL src/HOL/Library/Heap_Monad.thy ~> src/HOL/Imperative_HOL src/HOL/Library/Heap.thy ~> src/HOL/Imperative_HOL src/HOL/Library/Imperative_HOL.thy ~> src/HOL/Imperative_HOL src/HOL/Library/Ref.thy ~> src/HOL/Imperative_HOL src/HOL/Library/Relational.thy ~> src/HOL/Imperative_HOL * If methods "eval" and "evaluation" encounter a structured proof state with !!/==>, only the conclusion is evaluated to True (if possible), avoiding strange error messages. * Method "sizechange" automates termination proofs using (a modification of) the size-change principle. Requires SAT solver. See src/HOL/ex/Termination.thy for examples. * Simplifier: simproc for let expressions now unfolds if bound variable occurs at most once in let expression body. INCOMPATIBILITY. * Method "arith": Linear arithmetic now ignores all inequalities when fast_arith_neq_limit is exceeded, instead of giving up entirely. * New attribute "arith" for facts that should always be used automatically by arithmetic. It is intended to be used locally in proofs, e.g. assumes [arith]: "x > 0" Global usage is discouraged because of possible performance impact. * New classes "top" and "bot" with corresponding operations "top" and "bot" in theory Orderings; instantiation of class "complete_lattice" requires instantiation of classes "top" and "bot". INCOMPATIBILITY. * Changed definition lemma "less_fun_def" in order to provide an instance for preorders on functions; use lemma "less_le" instead. INCOMPATIBILITY. * Theory Orderings: class "wellorder" moved here, with explicit induction rule "less_induct" as assumption. For instantiation of "wellorder" by means of predicate "wf", use rule wf_wellorderI. INCOMPATIBILITY. * Theory Orderings: added class "preorder" as superclass of "order". INCOMPATIBILITY: Instantiation proofs for order, linorder etc. slightly changed. Some theorems named order_class.* now named preorder_class.*. * Theory Relation: renamed "refl" to "refl_on", "reflexive" to "refl, "diag" to "Id_on". * Theory Finite_Set: added a new fold combinator of type ('a => 'b => 'b) => 'b => 'a set => 'b Occasionally this is more convenient than the old fold combinator which is now defined in terms of the new one and renamed to fold_image. * Theories Ring_and_Field and OrderedGroup: The lemmas "group_simps" and "ring_simps" have been replaced by "algebra_simps" (which can be extended with further lemmas!). At the moment both still exist but the former will disappear at some point. * Theory Power: Lemma power_Suc is now declared as a simp rule in class recpower. Type-specific simp rules for various recpower types have been removed. INCOMPATIBILITY, rename old lemmas as follows: rat_power_0 -> power_0 rat_power_Suc -> power_Suc realpow_0 -> power_0 realpow_Suc -> power_Suc complexpow_0 -> power_0 complexpow_Suc -> power_Suc power_poly_0 -> power_0 power_poly_Suc -> power_Suc * Theories Ring_and_Field and Divides: Definition of "op dvd" has been moved to separate class dvd in Ring_and_Field; a couple of lemmas on dvd has been generalized to class comm_semiring_1. Likewise a bunch of lemmas from Divides has been generalized from nat to class semiring_div. INCOMPATIBILITY. This involves the following theorem renames resulting from duplicate elimination: dvd_def_mod ~> dvd_eq_mod_eq_0 zero_dvd_iff ~> dvd_0_left_iff dvd_0 ~> dvd_0_right DIVISION_BY_ZERO_DIV ~> div_by_0 DIVISION_BY_ZERO_MOD ~> mod_by_0 mult_div ~> div_mult_self2_is_id mult_mod ~> mod_mult_self2_is_0 * Theory IntDiv: removed many lemmas that are instances of class-based generalizations (from Divides and Ring_and_Field). INCOMPATIBILITY, rename old lemmas as follows: dvd_diff -> nat_dvd_diff dvd_zminus_iff -> dvd_minus_iff mod_add1_eq -> mod_add_eq mod_mult1_eq -> mod_mult_right_eq mod_mult1_eq' -> mod_mult_left_eq mod_mult_distrib_mod -> mod_mult_eq nat_mod_add_left_eq -> mod_add_left_eq nat_mod_add_right_eq -> mod_add_right_eq nat_mod_div_trivial -> mod_div_trivial nat_mod_mod_trivial -> mod_mod_trivial zdiv_zadd_self1 -> div_add_self1 zdiv_zadd_self2 -> div_add_self2 zdiv_zmult_self1 -> div_mult_self2_is_id zdiv_zmult_self2 -> div_mult_self1_is_id zdvd_triv_left -> dvd_triv_left zdvd_triv_right -> dvd_triv_right zdvd_zmult_cancel_disj -> dvd_mult_cancel_left zmod_eq0_zdvd_iff -> dvd_eq_mod_eq_0[symmetric] zmod_zadd_left_eq -> mod_add_left_eq zmod_zadd_right_eq -> mod_add_right_eq zmod_zadd_self1 -> mod_add_self1 zmod_zadd_self2 -> mod_add_self2 zmod_zadd1_eq -> mod_add_eq zmod_zdiff1_eq -> mod_diff_eq zmod_zdvd_zmod -> mod_mod_cancel zmod_zmod_cancel -> mod_mod_cancel zmod_zmult_self1 -> mod_mult_self2_is_0 zmod_zmult_self2 -> mod_mult_self1_is_0 zmod_1 -> mod_by_1 zdiv_1 -> div_by_1 zdvd_abs1 -> abs_dvd_iff zdvd_abs2 -> dvd_abs_iff zdvd_refl -> dvd_refl zdvd_trans -> dvd_trans zdvd_zadd -> dvd_add zdvd_zdiff -> dvd_diff zdvd_zminus_iff -> dvd_minus_iff zdvd_zminus2_iff -> minus_dvd_iff zdvd_zmultD -> dvd_mult_right zdvd_zmultD2 -> dvd_mult_left zdvd_zmult_mono -> mult_dvd_mono zdvd_0_right -> dvd_0_right zdvd_0_left -> dvd_0_left_iff zdvd_1_left -> one_dvd zminus_dvd_iff -> minus_dvd_iff * Theory Rational: 'Fract k 0' now equals '0'. INCOMPATIBILITY. * The real numbers offer decimal input syntax: 12.34 is translated into 1234/10^2. This translation is not reversed upon output. * Theory Library/Polynomial defines an abstract type 'a poly of univariate polynomials with coefficients of type 'a. In addition to the standard ring operations, it also supports div and mod. Code generation is also supported, using list-style constructors. * Theory Library/Inner_Product defines a class of real_inner for real inner product spaces, with an overloaded operation inner :: 'a => 'a => real. Class real_inner is a subclass of real_normed_vector from theory RealVector. * Theory Library/Product_Vector provides instances for the product type 'a * 'b of several classes from RealVector and Inner_Product. Definitions of addition, subtraction, scalar multiplication, norms, and inner products are included. * Theory Library/Bit defines the field "bit" of integers modulo 2. In addition to the field operations, numerals and case syntax are also supported. * Theory Library/Diagonalize provides constructive version of Cantor's first diagonalization argument. * Theory Library/GCD: Curried operations gcd, lcm (for nat) and zgcd, zlcm (for int); carried together from various gcd/lcm developements in the HOL Distribution. Constants zgcd and zlcm replace former igcd and ilcm; corresponding theorems renamed accordingly. INCOMPATIBILITY, may recover tupled syntax as follows: hide (open) const gcd abbreviation gcd where "gcd == (%(a, b). GCD.gcd a b)" notation (output) GCD.gcd ("gcd '(_, _')") The same works for lcm, zgcd, zlcm. * Theory Library/Nat_Infinity: added addition, numeral syntax and more instantiations for algebraic structures. Removed some duplicate theorems. Changes in simp rules. INCOMPATIBILITY. * ML antiquotation @{code} takes a constant as argument and generates corresponding code in background and inserts name of the corresponding resulting ML value/function/datatype constructor binding in place. All occurrences of @{code} with a single ML block are generated simultaneously. Provides a generic and safe interface for instrumentalizing code generation. See src/HOL/Decision_Procs/Ferrack.thy for a more ambitious application. In future you ought to refrain from ad-hoc compiling generated SML code on the ML toplevel. Note that (for technical reasons) @{code} cannot refer to constants for which user-defined serializations are set. Refer to the corresponding ML counterpart directly in that cases. * Command 'rep_datatype': instead of theorem names the command now takes a list of terms denoting the constructors of the type to be represented as datatype. The characteristic theorems have to be proven. INCOMPATIBILITY. Also observe that the following theorems have disappeared in favour of existing ones: unit_induct ~> unit.induct prod_induct ~> prod.induct sum_induct ~> sum.induct Suc_Suc_eq ~> nat.inject Suc_not_Zero Zero_not_Suc ~> nat.distinct *** HOL-Algebra *** * New locales for orders and lattices where the equivalence relation is not restricted to equality. INCOMPATIBILITY: all order and lattice locales use a record structure with field eq for the equivalence. * New theory of factorial domains. * Units_l_inv and Units_r_inv are now simp rules by default. INCOMPATIBILITY. Simplifier proof that require deletion of l_inv and/or r_inv will now also require deletion of these lemmas. * Renamed the following theorems, INCOMPATIBILITY: UpperD ~> Upper_memD LowerD ~> Lower_memD least_carrier ~> least_closed greatest_carrier ~> greatest_closed greatest_Lower_above ~> greatest_Lower_below one_zero ~> carrier_one_zero one_not_zero ~> carrier_one_not_zero (collision with assumption) *** HOL-Nominal *** * Nominal datatypes can now contain type-variables. * Commands 'nominal_inductive' and 'equivariance' work with local theory targets. * Nominal primrec can now works with local theory targets and its specification syntax now conforms to the general format as seen in 'inductive' etc. * Method "perm_simp" honours the standard simplifier attributes (no_asm), (no_asm_use) etc. * The new predicate #* is defined like freshness, except that on the left hand side can be a set or list of atoms. * Experimental command 'nominal_inductive2' derives strong induction principles for inductive definitions. In contrast to 'nominal_inductive', which can only deal with a fixed number of binders, it can deal with arbitrary expressions standing for sets of atoms to be avoided. The only inductive definition we have at the moment that needs this generalisation is the typing rule for Lets in the algorithm W: Gamma |- t1 : T1 (x,close Gamma T1)::Gamma |- t2 : T2 x#Gamma ----------------------------------------------------------------- Gamma |- Let x be t1 in t2 : T2 In this rule one wants to avoid all the binders that are introduced by "close Gamma T1". We are looking for other examples where this feature might be useful. Please let us know. *** HOLCF *** * Reimplemented the simplification procedure for proving continuity subgoals. The new simproc is extensible; users can declare additional continuity introduction rules with the attribute [cont2cont]. * The continuity simproc now uses a different introduction rule for solving continuity subgoals on terms with lambda abstractions. In some rare cases the new simproc may fail to solve subgoals that the old one could solve, and "simp add: cont2cont_LAM" may be necessary. Potential INCOMPATIBILITY. * Command 'fixrec': specification syntax now conforms to the general format as seen in 'inductive' etc. See src/HOLCF/ex/Fixrec_ex.thy for examples. INCOMPATIBILITY. *** ZF *** * Proof of Zorn's Lemma for partial orders. *** ML *** * Multithreading for Poly/ML 5.1/5.2 is no longer supported, only for Poly/ML 5.2.1 or later. Important note: the TimeLimit facility depends on multithreading, so timouts will not work before Poly/ML 5.2.1! * High-level support for concurrent ML programming, see src/Pure/Cuncurrent. The data-oriented model of "future values" is particularly convenient to organize independent functional computations. The concept of "synchronized variables" provides a higher-order interface for components with shared state, avoiding the delicate details of mutexes and condition variables. (Requires Poly/ML 5.2.1 or later.) * ML bindings produced via Isar commands are stored within the Isar context (theory or proof). Consequently, commands like 'use' and 'ML' become thread-safe and work with undo as expected (concerning top-level bindings, not side-effects on global references). INCOMPATIBILITY, need to provide proper Isar context when invoking the compiler at runtime; really global bindings need to be given outside a theory. (Requires Poly/ML 5.2 or later.) * Command 'ML_prf' is analogous to 'ML' but works within a proof context. Top-level ML bindings are stored within the proof context in a purely sequential fashion, disregarding the nested proof structure. ML bindings introduced by 'ML_prf' are discarded at the end of the proof. (Requires Poly/ML 5.2 or later.) * Simplified ML attribute and method setup, cf. functions Attrib.setup and Method.setup, as well as Isar commands 'attribute_setup' and 'method_setup'. INCOMPATIBILITY for 'method_setup', need to simplify existing code accordingly, or use plain 'setup' together with old Method.add_method. * Simplified ML oracle interface Thm.add_oracle promotes 'a -> cterm to 'a -> thm, while results are always tagged with an authentic oracle name. The Isar command 'oracle' is now polymorphic, no argument type is specified. INCOMPATIBILITY, need to simplify existing oracle code accordingly. Note that extra performance may be gained by producing the cterm carefully, avoiding slow Thm.cterm_of. * Simplified interface for defining document antiquotations via ThyOutput.antiquotation, ThyOutput.output, and optionally ThyOutput.maybe_pretty_source. INCOMPATIBILITY, need to simplify user antiquotations accordingly, see src/Pure/Thy/thy_output.ML for common examples. * More systematic treatment of long names, abstract name bindings, and name space operations. Basic operations on qualified names have been move from structure NameSpace to Long_Name, e.g. Long_Name.base_name, Long_Name.append. Old type bstring has been mostly replaced by abstract type binding (see structure Binding), which supports precise qualification by packages and local theory targets, as well as proper tracking of source positions. INCOMPATIBILITY, need to wrap old bstring values into Binding.name, or better pass through abstract bindings everywhere. See further src/Pure/General/long_name.ML, src/Pure/General/binding.ML and src/Pure/General/name_space.ML * Result facts (from PureThy.note_thms, ProofContext.note_thms, LocalTheory.note etc.) now refer to the *full* internal name, not the bstring as before. INCOMPATIBILITY, not detected by ML type-checking! * Disposed old type and term read functions (Sign.read_def_typ, Sign.read_typ, Sign.read_def_terms, Sign.read_term, Thm.read_def_cterms, Thm.read_cterm etc.). INCOMPATIBILITY, should use regular Syntax.read_typ, Syntax.read_term, Syntax.read_typ_global, Syntax.read_term_global etc.; see also OldGoals.read_term as last resort for legacy applications. * Disposed old declarations, tactics, tactic combinators that refer to the simpset or claset of an implicit theory (such as Addsimps, Simp_tac, SIMPSET). INCOMPATIBILITY, should use @{simpset} etc. in embedded ML text, or local_simpset_of with a proper context passed as explicit runtime argument. * Rules and tactics that read instantiations (read_instantiate, res_inst_tac, thin_tac, subgoal_tac etc.) now demand a proper proof context, which is required for parsing and type-checking. Moreover, the variables are specified as plain indexnames, not string encodings thereof. INCOMPATIBILITY. * Generic Toplevel.add_hook interface allows to analyze the result of transactions. E.g. see src/Pure/ProofGeneral/proof_general_pgip.ML for theorem dependency output of transactions resulting in a new theory state. * ML antiquotations: block-structured compilation context indicated by \<lbrace> ... \<rbrace>; additional antiquotation forms: @{binding name} - basic name binding @{let ?pat = term} - term abbreviation (HO matching) @{note name = fact} - fact abbreviation @{thm fact} - singleton fact (with attributes) @{thms fact} - general fact (with attributes) @{lemma prop by method} - singleton goal @{lemma prop by meth1 meth2} - singleton goal @{lemma prop1 ... propN by method} - general goal @{lemma prop1 ... propN by meth1 meth2} - general goal @{lemma (open) ...} - open derivation *** System *** * The Isabelle "emacs" tool provides a specific interface to invoke Proof General / Emacs, with more explicit failure if that is not installed (the old isabelle-interface script silently falls back on isabelle-process). The PROOFGENERAL_HOME setting determines the installation location of the Proof General distribution. * Isabelle/lib/classes/Pure.jar provides basic support to integrate the Isabelle process into a JVM/Scala application. See Isabelle/lib/jedit/plugin for a minimal example. (The obsolete Java process wrapper has been discontinued.) * Added homegrown Isabelle font with unicode layout, see lib/fonts. * Various status messages (with exact source position information) are emitted, if proper markup print mode is enabled. This allows user-interface components to provide detailed feedback on internal prover operations. New in Isabelle2008 (June 2008) ------------------------------- *** General *** * The Isabelle/Isar Reference Manual (isar-ref) has been reorganized and updated, with formally checked references as hyperlinks. * Theory loader: use_thy (and similar operations) no longer set the implicit ML context, which was occasionally hard to predict and in conflict with concurrency. INCOMPATIBILITY, use ML within Isar which provides a proper context already. * Theory loader: old-style ML proof scripts being *attached* to a thy file are no longer supported. INCOMPATIBILITY, regular 'uses' and 'use' within a theory file will do the job. * Name space merge now observes canonical order, i.e. the second space is inserted into the first one, while existing entries in the first space take precedence. INCOMPATIBILITY in rare situations, may try to swap theory imports. * Syntax: symbol \<chi> is now considered a letter. Potential INCOMPATIBILITY in identifier syntax etc. * Outer syntax: string tokens no longer admit escaped white space, which was an accidental (undocumented) feature. INCOMPATIBILITY, use white space without escapes. * Outer syntax: string tokens may contain arbitrary character codes specified via 3 decimal digits (as in SML). E.g. "foo\095bar" for "foo_bar". *** Pure *** * Context-dependent token translations. Default setup reverts locally fixed variables, and adds hilite markup for undeclared frees. * Unused theorems can be found using the new command 'unused_thms'. There are three ways of invoking it: (1) unused_thms Only finds unused theorems in the current theory. (2) unused_thms thy_1 ... thy_n - Finds unused theorems in the current theory and all of its ancestors, excluding the theories thy_1 ... thy_n and all of their ancestors. (3) unused_thms thy_1 ... thy_n - thy'_1 ... thy'_m Finds unused theorems in the theories thy'_1 ... thy'_m and all of their ancestors, excluding the theories thy_1 ... thy_n and all of their ancestors. In order to increase the readability of the list produced by unused_thms, theorems that have been created by a particular instance of a theory command such as 'inductive' or 'function' are considered to belong to the same "group", meaning that if at least one theorem in this group is used, the other theorems in the same group are no longer reported as unused. Moreover, if all theorems in the group are unused, only one theorem in the group is displayed. Note that proof objects have to be switched on in order for unused_thms to work properly (i.e. !proofs must be >= 1, which is usually the case when using Proof General with the default settings). * Authentic naming of facts disallows ad-hoc overwriting of previous theorems within the same name space. INCOMPATIBILITY, need to remove duplicate fact bindings, or even accidental fact duplications. Note that tools may maintain dynamically scoped facts systematically, using PureThy.add_thms_dynamic. * Command 'hide' now allows to hide from "fact" name space as well. * Eliminated destructive theorem database, simpset, claset, and clasimpset. Potential INCOMPATIBILITY, really need to observe linear update of theories within ML code. * Eliminated theory ProtoPure and CPure, leaving just one Pure theory. INCOMPATIBILITY, object-logics depending on former Pure require additional setup PureThy.old_appl_syntax_setup; object-logics depending on former CPure need to refer to Pure. * Commands 'use' and 'ML' are now purely functional, operating on theory/local_theory. Removed former 'ML_setup' (on theory), use 'ML' instead. Added 'ML_val' as mere diagnostic replacement for 'ML'. INCOMPATIBILITY. * Command 'setup': discontinued implicit version with ML reference. * Instantiation target allows for simultaneous specification of class instance operations together with an instantiation proof. Type-checking phase allows to refer to class operations uniformly. See src/HOL/Complex/Complex.thy for an Isar example and src/HOL/Library/Eval.thy for an ML example. * Indexing of literal facts: be more serious about including only facts from the visible specification/proof context, but not the background context (locale etc.). Affects `prop` notation and method "fact". INCOMPATIBILITY: need to name facts explicitly in rare situations. * Method "cases", "induct", "coinduct": removed obsolete/undocumented "(open)" option, which used to expose internal bound variables to the proof text. * Isar statements: removed obsolete case "rule_context". INCOMPATIBILITY, better use explicit fixes/assumes. * Locale proofs: default proof step now includes 'unfold_locales'; hence 'proof' without argument may be used to unfold locale predicates. *** Document preparation *** * Simplified pdfsetup.sty: color/hyperref is used unconditionally for both pdf and dvi (hyperlinks usually work in xdvi as well); removed obsolete thumbpdf setup (contemporary PDF viewers do this on the spot); renamed link color from "darkblue" to "linkcolor" (default value unchanged, can be redefined via \definecolor); no longer sets "a4paper" option (unnecessary or even intrusive). * Antiquotation @{lemma A method} proves proposition A by the given method (either a method name or a method name plus (optional) method arguments in parentheses) and prints A just like @{prop A}. *** HOL *** * New primrec package. Specification syntax conforms in style to definition/function/.... No separate induction rule is provided. The "primrec" command distinguishes old-style and new-style specifications by syntax. The former primrec package is now named OldPrimrecPackage. When adjusting theories, beware: constants stemming from new-style primrec specifications have authentic syntax. * Metis prover is now an order of magnitude faster, and also works with multithreading. * Metis: the maximum number of clauses that can be produced from a theorem is now given by the attribute max_clauses. Theorems that exceed this number are ignored, with a warning printed. * Sledgehammer no longer produces structured proofs by default. To enable, declare [[sledgehammer_full = true]]. Attributes reconstruction_modulus, reconstruction_sorts renamed sledgehammer_modulus, sledgehammer_sorts. INCOMPATIBILITY. * Method "induct_scheme" derives user-specified induction rules from well-founded induction and completeness of patterns. This factors out some operations that are done internally by the function package and makes them available separately. See src/HOL/ex/Induction_Scheme.thy for examples. * More flexible generation of measure functions for termination proofs: Measure functions can be declared by proving a rule of the form "is_measure f" and giving it the [measure_function] attribute. The "is_measure" predicate is logically meaningless (always true), and just guides the heuristic. To find suitable measure functions, the termination prover sets up the goal "is_measure ?f" of the appropriate type and generates all solutions by Prolog-style backward proof using the declared rules. This setup also deals with rules like "is_measure f ==> is_measure (list_size f)" which accommodates nested datatypes that recurse through lists. Similar rules are predeclared for products and option types. * Turned the type of sets "'a set" into an abbreviation for "'a => bool" INCOMPATIBILITIES: - Definitions of overloaded constants on sets have to be replaced by definitions on => and bool. - Some definitions of overloaded operators on sets can now be proved using the definitions of the operators on => and bool. Therefore, the following theorems have been renamed: subset_def -> subset_eq psubset_def -> psubset_eq set_diff_def -> set_diff_eq Compl_def -> Compl_eq Sup_set_def -> Sup_set_eq Inf_set_def -> Inf_set_eq sup_set_def -> sup_set_eq inf_set_def -> inf_set_eq - Due to the incompleteness of the HO unification algorithm, some rules such as subst may require manual instantiation, if some of the unknowns in the rule is a set. - Higher order unification and forward proofs: The proof pattern have "P (S::'a set)" <...> then have "EX S. P S" .. no longer works (due to the incompleteness of the HO unification algorithm) and must be replaced by the pattern have "EX S. P S" proof show "P S" <...> qed - Calculational reasoning with subst (or similar rules): The proof pattern have "P (S::'a set)" <...> also have "S = T" <...> finally have "P T" . no longer works (for similar reasons as the previous example) and must be replaced by something like have "P (S::'a set)" <...> moreover have "S = T" <...> ultimately have "P T" by simp - Tactics or packages written in ML code: Code performing pattern matching on types via Type ("set", [T]) => ... must be rewritten. Moreover, functions like strip_type or binder_types no longer return the right value when applied to a type of the form T1 => ... => Tn => U => bool rather than T1 => ... => Tn => U set * Merged theories Wellfounded_Recursion, Accessible_Part and Wellfounded_Relations to theory Wellfounded. * Explicit class "eq" for executable equality. INCOMPATIBILITY. * Class finite no longer treats UNIV as class parameter. Use class enum from theory Library/Enum instead to achieve a similar effect. INCOMPATIBILITY. * Theory List: rule list_induct2 now has explicitly named cases "Nil" and "Cons". INCOMPATIBILITY. * HOL (and FOL): renamed variables in rules imp_elim and swap. Potential INCOMPATIBILITY. * Theory Product_Type: duplicated lemmas split_Pair_apply and injective_fst_snd removed, use split_eta and prod_eqI instead. Renamed upd_fst to apfst and upd_snd to apsnd. INCOMPATIBILITY. * Theory Nat: removed redundant lemmas that merely duplicate lemmas of the same name in theory Orderings: less_trans less_linear le_imp_less_or_eq le_less_trans less_le_trans less_not_sym less_asym Renamed less_imp_le to less_imp_le_nat, and less_irrefl to less_irrefl_nat. Potential INCOMPATIBILITY due to more general types and different variable names. * Library/Option_ord.thy: Canonical order on option type. * Library/RBT.thy: Red-black trees, an efficient implementation of finite maps. * Library/Countable.thy: Type class for countable types. * Theory Int: The representation of numerals has changed. The infix operator BIT and the bit datatype with constructors B0 and B1 have disappeared. INCOMPATIBILITY, use "Int.Bit0 x" and "Int.Bit1 y" in place of "x BIT bit.B0" and "y BIT bit.B1", respectively. Theorems involving BIT, B0, or B1 have been renamed with "Bit0" or "Bit1" accordingly. * Theory Nat: definition of <= and < on natural numbers no longer depend on well-founded relations. INCOMPATIBILITY. Definitions le_def and less_def have disappeared. Consider lemmas not_less [symmetric, where ?'a = nat] and less_eq [symmetric] instead. * Theory Finite_Set: locales ACf, ACe, ACIf, ACIfSL and ACIfSLlin (whose purpose mainly is for various fold_set functionals) have been abandoned in favor of the existing algebraic classes ab_semigroup_mult, comm_monoid_mult, ab_semigroup_idem_mult, lower_semilattice (resp. upper_semilattice) and linorder. INCOMPATIBILITY. * Theory Transitive_Closure: induct and cases rules now declare proper case_names ("base" and "step"). INCOMPATIBILITY. * Theorem Inductive.lfp_ordinal_induct generalized to complete lattices. The form set-specific version is available as Inductive.lfp_ordinal_induct_set. * Renamed theorems "power.simps" to "power_int.simps". INCOMPATIBILITY. * Class semiring_div provides basic abstract properties of semirings with division and modulo operations. Subsumes former class dvd_mod. * Merged theories IntDef, Numeral and IntArith into unified theory Int. INCOMPATIBILITY. * Theory Library/Code_Index: type "index" now represents natural numbers rather than integers. INCOMPATIBILITY. * New class "uminus" with operation "uminus" (split of from class "minus" which now only has operation "minus", binary). INCOMPATIBILITY. * Constants "card", "internal_split", "option_map" now with authentic syntax. INCOMPATIBILITY. * Definitions subset_def, psubset_def, set_diff_def, Compl_def, le_bool_def, less_bool_def, le_fun_def, less_fun_def, inf_bool_def, sup_bool_def, Inf_bool_def, Sup_bool_def, inf_fun_def, sup_fun_def, Inf_fun_def, Sup_fun_def, inf_set_def, sup_set_def, Inf_set_def, Sup_set_def, le_def, less_def, option_map_def now with object equality. INCOMPATIBILITY. * Records. Removed K_record, and replaced it by pure lambda term %x. c. The simplifier setup is now more robust against eta expansion. INCOMPATIBILITY: in cases explicitly referring to K_record. * Library/Multiset: {#a, b, c#} abbreviates {#a#} + {#b#} + {#c#}. * Library/ListVector: new theory of arithmetic vector operations. * Library/Order_Relation: new theory of various orderings as sets of pairs. Defines preorders, partial orders, linear orders and well-orders on sets and on types. *** ZF *** * Renamed some theories to allow to loading both ZF and HOL in the same session: Datatype -> Datatype_ZF Inductive -> Inductive_ZF Int -> Int_ZF IntDiv -> IntDiv_ZF Nat -> Nat_ZF List -> List_ZF Main -> Main_ZF INCOMPATIBILITY: ZF theories that import individual theories below Main might need to be adapted. Regular theory Main is still available, as trivial extension of Main_ZF. *** ML *** * ML within Isar: antiquotation @{const name} or @{const name(typargs)} produces statically-checked Const term. * Functor NamedThmsFun: data is available to the user as dynamic fact (of the same name). Removed obsolete print command. * Removed obsolete "use_legacy_bindings" function. * The ``print mode'' is now a thread-local value derived from a global template (the former print_mode reference), thus access becomes non-critical. The global print_mode reference is for session management only; user-code should use print_mode_value, print_mode_active, PrintMode.setmp etc. INCOMPATIBILITY. * Functions system/system_out provide a robust way to invoke external shell commands, with propagation of interrupts (requires Poly/ML 5.2.1). Do not use OS.Process.system etc. from the basis library! *** System *** * Default settings: PROOFGENERAL_OPTIONS no longer impose xemacs --- in accordance with Proof General 3.7, which prefers GNU emacs. * isatool tty runs Isabelle process with plain tty interaction; optional line editor may be specified via ISABELLE_LINE_EDITOR setting, the default settings attempt to locate "ledit" and "rlwrap". * isatool browser now works with Cygwin as well, using general "javapath" function defined in Isabelle process environment. * YXML notation provides a simple and efficient alternative to standard XML transfer syntax. See src/Pure/General/yxml.ML and isatool yxml as described in the Isabelle system manual. * JVM class isabelle.IsabelleProcess (located in Isabelle/lib/classes) provides general wrapper for managing an Isabelle process in a robust fashion, with ``cooked'' output from stdin/stderr. * Rudimentary Isabelle plugin for jEdit (see Isabelle/lib/jedit), based on Isabelle/JVM process wrapper (see Isabelle/lib/classes). * Removed obsolete THIS_IS_ISABELLE_BUILD feature. NB: the documented way of changing the user's settings is via ISABELLE_HOME_USER/etc/settings, which is a fully featured bash script. * Multithreading.max_threads := 0 refers to the number of actual CPU cores of the underlying machine, which is a good starting point for optimal performance tuning. The corresponding usedir option -M allows "max" as an alias for "0". WARNING: does not work on certain versions of Mac OS (with Poly/ML 5.1). * isabelle-process: non-ML sessions are run with "nice", to reduce the adverse effect of Isabelle flooding interactive front-ends (notably ProofGeneral / XEmacs). New in Isabelle2007 (November 2007) ----------------------------------- *** General *** * More uniform information about legacy features, notably a warning/error of "Legacy feature: ...", depending on the state of the tolerate_legacy_features flag (default true). FUTURE INCOMPATIBILITY: legacy features will disappear eventually. * Theory syntax: the header format ``theory A = B + C:'' has been discontinued in favour of ``theory A imports B C begin''. Use isatool fixheaders to convert existing theory files. INCOMPATIBILITY. * Theory syntax: the old non-Isar theory file format has been discontinued altogether. Note that ML proof scripts may still be used with Isar theories; migration is usually quite simple with the ML function use_legacy_bindings. INCOMPATIBILITY. * Theory syntax: some popular names (e.g. 'class', 'declaration', 'fun', 'help', 'if') are now keywords. INCOMPATIBILITY, use double quotes. * Theory loader: be more serious about observing the static theory header specifications (including optional directories), but not the accidental file locations of previously successful loads. The strict update policy of former update_thy is now already performed by use_thy, so the former has been removed; use_thys updates several theories simultaneously, just as 'imports' within a theory header specification, but without merging the results. Potential INCOMPATIBILITY: may need to refine theory headers and commands ROOT.ML which depend on load order. * Theory loader: optional support for content-based file identification, instead of the traditional scheme of full physical path plus date stamp; configured by the ISABELLE_FILE_IDENT setting (cf. the system manual). The new scheme allows to work with non-finished theories in persistent session images, such that source files may be moved later on without requiring reloads. * Theory loader: old-style ML proof scripts being *attached* to a thy file (with the same base name as the theory) are considered a legacy feature, which will disappear eventually. Even now, the theory loader no longer maintains dependencies on such files. * Syntax: the scope for resolving ambiguities via type-inference is now limited to individual terms, instead of whole simultaneous specifications as before. This greatly reduces the complexity of the syntax module and improves flexibility by separating parsing and type-checking. INCOMPATIBILITY: additional type-constraints (explicit 'fixes' etc.) are required in rare situations. * Syntax: constants introduced by new-style packages ('definition', 'abbreviation' etc.) are passed through the syntax module in ``authentic mode''. This means that associated mixfix annotations really stick to such constants, independently of potential name space ambiguities introduced later on. INCOMPATIBILITY: constants in parse trees are represented slightly differently, may need to adapt syntax translations accordingly. Use CONST marker in 'translations' and @{const_syntax} antiquotation in 'parse_translation' etc. * Legacy goal package: reduced interface to the bare minimum required to keep existing proof scripts running. Most other user-level functions are now part of the OldGoals structure, which is *not* open by default (consider isatool expandshort before open OldGoals). Removed top_sg, prin, printyp, pprint_term/typ altogether, because these tend to cause confusion about the actual goal (!) context being used here, which is not necessarily the same as the_context(). * Command 'find_theorems': supports "*" wild-card in "name:" criterion; "with_dups" option. Certain ProofGeneral versions might support a specific search form (see ProofGeneral/CHANGES). * The ``prems limit'' option (cf. ProofContext.prems_limit) is now -1 by default, which means that "prems" (and also "fixed variables") are suppressed from proof state output. Note that the ProofGeneral settings mechanism allows to change and save options persistently, but older versions of Isabelle will fail to start up if a negative prems limit is imposed. * Local theory targets may be specified by non-nested blocks of ``context/locale/class ... begin'' followed by ``end''. The body may contain definitions, theorems etc., including any derived mechanism that has been implemented on top of these primitives. This concept generalizes the existing ``theorem (in ...)'' towards more versatility and scalability. * Proof General interface: proper undo of final 'end' command; discontinued Isabelle/classic mode (ML proof scripts). *** Document preparation *** * Added antiquotation @{theory name} which prints the given name, after checking that it refers to a valid ancestor theory in the current context. * Added antiquotations @{ML_type text} and @{ML_struct text} which check the given source text as ML type/structure, printing verbatim. * Added antiquotation @{abbrev "c args"} which prints the abbreviation "c args == rhs" given in the current context. (Any number of arguments may be given on the LHS.) *** Pure *** * The 'class' package offers a combination of axclass and locale to achieve Haskell-like type classes in Isabelle. Definitions and theorems within a class context produce both relative results (with implicit parameters according to the locale context), and polymorphic constants with qualified polymorphism (according to the class context). Within the body context of a 'class' target, a separate syntax layer ("user space type system") takes care of converting between global polymorphic consts and internal locale representation. See src/HOL/ex/Classpackage.thy for examples (as well as main HOL). "isatool doc classes" provides a tutorial. * Generic code generator framework allows to generate executable code for ML and Haskell (including Isabelle classes). A short usage sketch: internal compilation: export_code <list of constants (term syntax)> in SML writing SML code to a file: export_code <list of constants (term syntax)> in SML <filename> writing OCaml code to a file: export_code <list of constants (term syntax)> in OCaml <filename> writing Haskell code to a bunch of files: export_code <list of constants (term syntax)> in Haskell <filename> evaluating closed propositions to True/False using code generation: method ``eval'' Reasonable default setup of framework in HOL. Theorem attributs for selecting and transforming function equations theorems: [code fun]: select a theorem as function equation for a specific constant [code fun del]: deselect a theorem as function equation for a specific constant [code inline]: select an equation theorem for unfolding (inlining) in place [code inline del]: deselect an equation theorem for unfolding (inlining) in place User-defined serializations (target in {SML, OCaml, Haskell}): code_const <and-list of constants (term syntax)> {(target) <and-list of const target syntax>}+ code_type <and-list of type constructors> {(target) <and-list of type target syntax>}+ code_instance <and-list of instances> {(target)}+ where instance ::= <type constructor> :: <class> code_class <and_list of classes> {(target) <and-list of class target syntax>}+ where class target syntax ::= <class name> {where {<classop> == <target syntax>}+}? code_instance and code_class only are effective to target Haskell. For example usage see src/HOL/ex/Codegenerator.thy and src/HOL/ex/Codegenerator_Pretty.thy. A separate tutorial on code generation from Isabelle/HOL theories is available via "isatool doc codegen". * Code generator: consts in 'consts_code' Isar commands are now referred to by usual term syntax (including optional type annotations). * Command 'no_translations' removes translation rules from theory syntax. * Overloaded definitions are now actually checked for acyclic dependencies. The overloading scheme is slightly more general than that of Haskell98, although Isabelle does not demand an exact correspondence to type class and instance declarations. INCOMPATIBILITY, use ``defs (unchecked overloaded)'' to admit more exotic versions of overloading -- at the discretion of the user! Polymorphic constants are represented via type arguments, i.e. the instantiation that matches an instance against the most general declaration given in the signature. For example, with the declaration c :: 'a => 'a => 'a, an instance c :: nat => nat => nat is represented as c(nat). Overloading is essentially simultaneous structural recursion over such type arguments. Incomplete specification patterns impose global constraints on all occurrences, e.g. c('a * 'a) on the LHS means that more general c('a * 'b) will be disallowed on any RHS. Command 'print_theory' outputs the normalized system of recursive equations, see section "definitions". * Configuration options are maintained within the theory or proof context (with name and type bool/int/string), providing a very simple interface to a poor-man's version of general context data. Tools may declare options in ML (e.g. using Attrib.config_int) and then refer to these values using Config.get etc. Users may change options via an associated attribute of the same name. This form of context declaration works particularly well with commands 'declare' or 'using', for example ``declare [[foo = 42]]''. Thus it has become very easy to avoid global references, which would not observe Isar toplevel undo/redo and fail to work with multithreading. Various global ML references of Pure and HOL have been turned into configuration options: Unify.search_bound unify_search_bound Unify.trace_bound unify_trace_bound Unify.trace_simp unify_trace_simp Unify.trace_types unify_trace_types Simplifier.simp_depth_limit simp_depth_limit Blast.depth_limit blast_depth_limit DatatypeProp.dtK datatype_distinctness_limit fast_arith_neq_limit fast_arith_neq_limit fast_arith_split_limit fast_arith_split_limit * Named collections of theorems may be easily installed as context data using the functor NamedThmsFun (see also src/Pure/Tools/named_thms.ML). The user may add or delete facts via attributes; there is also a toplevel print command. This facility is just a common case of general context data, which is the preferred way for anything more complex than just a list of facts in canonical order. * Isar: command 'declaration' augments a local theory by generic declaration functions written in ML. This enables arbitrary content being added to the context, depending on a morphism that tells the difference of the original declaration context wrt. the application context encountered later on. * Isar: proper interfaces for simplification procedures. Command 'simproc_setup' declares named simprocs (with match patterns, and body text in ML). Attribute "simproc" adds/deletes simprocs in the current context. ML antiquotation @{simproc name} retrieves named simprocs. * Isar: an extra pair of brackets around attribute declarations abbreviates a theorem reference involving an internal dummy fact, which will be ignored later --- only the effect of the attribute on the background context will persist. This form of in-place declarations is particularly useful with commands like 'declare' and 'using', for example ``have A using [[simproc a]] by simp''. * Isar: method "assumption" (and implicit closing of subproofs) now takes simple non-atomic goal assumptions into account: after applying an assumption as a rule the resulting subgoals are solved by atomic assumption steps. This is particularly useful to finish 'obtain' goals, such as "!!x. (!!x. P x ==> thesis) ==> P x ==> thesis", without referring to the original premise "!!x. P x ==> thesis" in the Isar proof context. POTENTIAL INCOMPATIBILITY: method "assumption" is more permissive. * Isar: implicit use of prems from the Isar proof context is considered a legacy feature. Common applications like ``have A .'' may be replaced by ``have A by fact'' or ``note `A`''. In general, referencing facts explicitly here improves readability and maintainability of proof texts. * Isar: improper proof element 'guess' is like 'obtain', but derives the obtained context from the course of reasoning! For example: assume "EX x y. A x & B y" -- "any previous fact" then guess x and y by clarify This technique is potentially adventurous, depending on the facts and proof tools being involved here. * Isar: known facts from the proof context may be specified as literal propositions, using ASCII back-quote syntax. This works wherever named facts used to be allowed so far, in proof commands, proof methods, attributes etc. Literal facts are retrieved from the context according to unification of type and term parameters. For example, provided that "A" and "A ==> B" and "!!x. P x ==> Q x" are known theorems in the current context, then these are valid literal facts: `A` and `A ==> B` and `!!x. P x ==> Q x" as well as `P a ==> Q a` etc. There is also a proof method "fact" which does the same composition for explicit goal states, e.g. the following proof texts coincide with certain special cases of literal facts: have "A" by fact == note `A` have "A ==> B" by fact == note `A ==> B` have "!!x. P x ==> Q x" by fact == note `!!x. P x ==> Q x` have "P a ==> Q a" by fact == note `P a ==> Q a` * Isar: ":" (colon) is no longer a symbolic identifier character in outer syntax. Thus symbolic identifiers may be used without additional white space in declarations like this: ``assume *: A''. * Isar: 'print_facts' prints all local facts of the current context, both named and unnamed ones. * Isar: 'def' now admits simultaneous definitions, e.g.: def x == "t" and y == "u" * Isar: added command 'unfolding', which is structurally similar to 'using', but affects both the goal state and facts by unfolding given rewrite rules. Thus many occurrences of the 'unfold' method or 'unfolded' attribute may be replaced by first-class proof text. * Isar: methods 'unfold' / 'fold', attributes 'unfolded' / 'folded', and command 'unfolding' now all support object-level equalities (potentially conditional). The underlying notion of rewrite rule is analogous to the 'rule_format' attribute, but *not* that of the Simplifier (which is usually more generous). * Isar: the new attribute [rotated n] (default n = 1) rotates the premises of a theorem by n. Useful in conjunction with drule. * Isar: the goal restriction operator [N] (default N = 1) evaluates a method expression within a sandbox consisting of the first N sub-goals, which need to exist. For example, ``simp_all [3]'' simplifies the first three sub-goals, while (rule foo, simp_all)[] simplifies all new goals that emerge from applying rule foo to the originally first one. * Isar: schematic goals are no longer restricted to higher-order patterns; e.g. ``lemma "?P(?x)" by (rule TrueI)'' now works as expected. * Isar: the conclusion of a long theorem statement is now either 'shows' (a simultaneous conjunction, as before), or 'obtains' (essentially a disjunction of cases with local parameters and assumptions). The latter allows to express general elimination rules adequately; in this notation common elimination rules look like this: lemma exE: -- "EX x. P x ==> (!!x. P x ==> thesis) ==> thesis" assumes "EX x. P x" obtains x where "P x" lemma conjE: -- "A & B ==> (A ==> B ==> thesis) ==> thesis" assumes "A & B" obtains A and B lemma disjE: -- "A | B ==> (A ==> thesis) ==> (B ==> thesis) ==> thesis" assumes "A | B" obtains A | B The subsequent classical rules even refer to the formal "thesis" explicitly: lemma classical: -- "(~ thesis ==> thesis) ==> thesis" obtains "~ thesis" lemma Peirce's_Law: -- "((thesis ==> something) ==> thesis) ==> thesis" obtains "thesis ==> something" The actual proof of an 'obtains' statement is analogous to that of the Isar proof element 'obtain', only that there may be several cases. Optional case names may be specified in parentheses; these will be available both in the present proof and as annotations in the resulting rule, for later use with the 'cases' method (cf. attribute case_names). * Isar: the assumptions of a long theorem statement are available as "assms" fact in the proof context. This is more appropriate than the (historical) "prems", which refers to all assumptions of the current context, including those from the target locale, proof body etc. * Isar: 'print_statement' prints theorems from the current theory or proof context in long statement form, according to the syntax of a top-level lemma. * Isar: 'obtain' takes an optional case name for the local context introduction rule (default "that"). * Isar: removed obsolete 'concl is' patterns. INCOMPATIBILITY, use explicit (is "_ ==> ?foo") in the rare cases where this still happens to occur. * Pure: syntax "CONST name" produces a fully internalized constant according to the current context. This is particularly useful for syntax translations that should refer to internal constant representations independently of name spaces. * Pure: syntax constant for foo (binder "FOO ") is called "foo_binder" instead of "FOO ". This allows multiple binder declarations to coexist in the same context. INCOMPATIBILITY. * Isar/locales: 'notation' provides a robust interface to the 'syntax' primitive that also works in a locale context (both for constants and fixed variables). Type declaration and internal syntactic representation of given constants retrieved from the context. Likewise, the 'no_notation' command allows to remove given syntax annotations from the current context. * Isar/locales: new derived specification elements 'axiomatization', 'definition', 'abbreviation', which support type-inference, admit object-level specifications (equality, equivalence). See also the isar-ref manual. Examples: axiomatization eq (infix "===" 50) where eq_refl: "x === x" and eq_subst: "x === y ==> P x ==> P y" definition "f x y = x + y + 1" definition g where "g x = f x x" abbreviation neq (infix "=!=" 50) where "x =!= y == ~ (x === y)" These specifications may be also used in a locale context. Then the constants being introduced depend on certain fixed parameters, and the constant name is qualified by the locale base name. An internal abbreviation takes care for convenient input and output, making the parameters implicit and using the original short name. See also src/HOL/ex/Abstract_NAT.thy for an example of deriving polymorphic entities from a monomorphic theory. Presently, abbreviations are only available 'in' a target locale, but not inherited by general import expressions. Also note that 'abbreviation' may be used as a type-safe replacement for 'syntax' + 'translations' in common applications. The "no_abbrevs" print mode prevents folding of abbreviations in term output. Concrete syntax is attached to specified constants in internal form, independently of name spaces. The parse tree representation is slightly different -- use 'notation' instead of raw 'syntax', and 'translations' with explicit "CONST" markup to accommodate this. * Pure/Isar: unified syntax for new-style specification mechanisms (e.g. 'definition', 'abbreviation', or 'inductive' in HOL) admits full type inference and dummy patterns ("_"). For example: definition "K x _ = x" inductive conj for A B where "A ==> B ==> conj A B" * Pure: command 'print_abbrevs' prints all constant abbreviations of the current context. Print mode "no_abbrevs" prevents inversion of abbreviations on output. * Isar/locales: improved parameter handling: use of locales "var" and "struct" no longer necessary; - parameter renamings are no longer required to be injective. For example, this allows to define endomorphisms as locale endom = homom mult mult h. * Isar/locales: changed the way locales with predicates are defined. Instead of accumulating the specification, the imported expression is now an interpretation. INCOMPATIBILITY: different normal form of locale expressions. In particular, in interpretations of locales with predicates, goals repesenting already interpreted fragments are not removed automatically. Use methods `intro_locales' and `unfold_locales'; see below. * Isar/locales: new methods `intro_locales' and `unfold_locales' provide backward reasoning on locales predicates. The methods are aware of interpretations and discharge corresponding goals. `intro_locales' is less aggressive then `unfold_locales' and does not unfold predicates to assumptions. * Isar/locales: the order in which locale fragments are accumulated has changed. This enables to override declarations from fragments due to interpretations -- for example, unwanted simp rules. * Isar/locales: interpretation in theories and proof contexts has been extended. One may now specify (and prove) equations, which are unfolded in interpreted theorems. This is useful for replacing defined concepts (constants depending on locale parameters) by concepts already existing in the target context. Example: interpretation partial_order ["op <= :: [int, int] => bool"] where "partial_order.less (op <=) (x::int) y = (x < y)" Typically, the constant `partial_order.less' is created by a definition specification element in the context of locale partial_order. * Method "induct": improved internal context management to support local fixes and defines on-the-fly. Thus explicit meta-level connectives !! and ==> are rarely required anymore in inductive goals (using object-logic connectives for this purpose has been long obsolete anyway). Common proof patterns are explained in src/HOL/Induct/Common_Patterns.thy, see also src/HOL/Isar_examples/Puzzle.thy and src/HOL/Lambda for realistic examples. * Method "induct": improved handling of simultaneous goals. Instead of introducing object-level conjunction, the statement is now split into several conclusions, while the corresponding symbolic cases are nested accordingly. INCOMPATIBILITY, proofs need to be structured explicitly, see src/HOL/Induct/Common_Patterns.thy, for example. * Method "induct": mutual induction rules are now specified as a list of rule sharing the same induction cases. HOL packages usually provide foo_bar.inducts for mutually defined items foo and bar (e.g. inductive predicates/sets or datatypes). INCOMPATIBILITY, users need to specify mutual induction rules differently, i.e. like this: (induct rule: foo_bar.inducts) (induct set: foo bar) (induct pred: foo bar) (induct type: foo bar) The ML function ProjectRule.projections turns old-style rules into the new format. * Method "coinduct": dual of induction, see src/HOL/Library/Coinductive_List.thy for various examples. * Method "cases", "induct", "coinduct": the ``(open)'' option is considered a legacy feature. * Attribute "symmetric" produces result with standardized schematic variables (index 0). Potential INCOMPATIBILITY. * Simplifier: by default the simplifier trace only shows top level rewrites now. That is, trace_simp_depth_limit is set to 1 by default. Thus there is less danger of being flooded by the trace. The trace indicates where parts have been suppressed. * Provers/classical: removed obsolete classical version of elim_format attribute; classical elim/dest rules are now treated uniformly when manipulating the claset. * Provers/classical: stricter checks to ensure that supplied intro, dest and elim rules are well-formed; dest and elim rules must have at least one premise. * Provers/classical: attributes dest/elim/intro take an optional weight argument for the rule (just as the Pure versions). Weights are ignored by automated tools, but determine the search order of single rule steps. * Syntax: input syntax now supports dummy variable binding "%_. b", where the body does not mention the bound variable. Note that dummy patterns implicitly depend on their context of bounds, which makes "{_. _}" match any set comprehension as expected. Potential INCOMPATIBILITY -- parse translations need to cope with syntactic constant "_idtdummy" in the binding position. * Syntax: removed obsolete syntactic constant "_K" and its associated parse translation. INCOMPATIBILITY -- use dummy abstraction instead, for example "A -> B" => "Pi A (%_. B)". * Pure: 'class_deps' command visualizes the subclass relation, using the graph browser tool. * Pure: 'print_theory' now suppresses certain internal declarations by default; use '!' option for full details. *** HOL *** * Method "metis" proves goals by applying the Metis general-purpose resolution prover (see also http://gilith.com/software/metis/). Examples are in the directory MetisExamples. WARNING: the Isabelle/HOL-Metis integration does not yet work properly with multi-threading. * Command 'sledgehammer' invokes external automatic theorem provers as background processes. It generates calls to the "metis" method if successful. These can be pasted into the proof. Users do not have to wait for the automatic provers to return. WARNING: does not really work with multi-threading. * New "auto_quickcheck" feature tests outermost goal statements for potential counter-examples. Controlled by ML references auto_quickcheck (default true) and auto_quickcheck_time_limit (default 5000 milliseconds). Fails silently if statements is outside of executable fragment, or any other codgenerator problem occurs. * New constant "undefined" with axiom "undefined x = undefined". * Added class "HOL.eq", allowing for code generation with polymorphic equality. * Some renaming of class constants due to canonical name prefixing in the new 'class' package: HOL.abs ~> HOL.abs_class.abs HOL.divide ~> HOL.divide_class.divide 0 ~> HOL.zero_class.zero 1 ~> HOL.one_class.one op + ~> HOL.plus_class.plus op - ~> HOL.minus_class.minus uminus ~> HOL.minus_class.uminus op * ~> HOL.times_class.times op < ~> HOL.ord_class.less op <= > HOL.ord_class.less_eq Nat.power ~> Power.power_class.power Nat.size ~> Nat.size_class.size Numeral.number_of ~> Numeral.number_class.number_of FixedPoint.Inf ~> Lattices.complete_lattice_class.Inf FixedPoint.Sup ~> Lattices.complete_lattice_class.Sup Orderings.min ~> Orderings.ord_class.min Orderings.max ~> Orderings.ord_class.max Divides.op div ~> Divides.div_class.div Divides.op mod ~> Divides.div_class.mod Divides.op dvd ~> Divides.div_class.dvd INCOMPATIBILITY. Adaptions may be required in the following cases: a) User-defined constants using any of the names "plus", "minus", "times", "less" or "less_eq". The standard syntax translations for "+", "-" and "*" may go wrong. INCOMPATIBILITY: use more specific names. b) Variables named "plus", "minus", "times", "less", "less_eq" INCOMPATIBILITY: use more specific names. c) Permutative equations (e.g. "a + b = b + a") Since the change of names also changes the order of terms, permutative rewrite rules may get applied in a different order. Experience shows that this is rarely the case (only two adaptions in the whole Isabelle distribution). INCOMPATIBILITY: rewrite proofs d) ML code directly refering to constant names This in general only affects hand-written proof tactics, simprocs and so on. INCOMPATIBILITY: grep your sourcecode and replace names. Consider using @{const_name} antiquotation. * New class "default" with associated constant "default". * Function "sgn" is now overloaded and available on int, real, complex (and other numeric types), using class "sgn". Two possible defs of sgn are given as equational assumptions in the classes sgn_if and sgn_div_norm; ordered_idom now also inherits from sgn_if. INCOMPATIBILITY. * Locale "partial_order" now unified with class "order" (cf. theory Orderings), added parameter "less". INCOMPATIBILITY. * Renamings in classes "order" and "linorder": facts "refl", "trans" and "cases" to "order_refl", "order_trans" and "linorder_cases", to avoid clashes with HOL "refl" and "trans". INCOMPATIBILITY. * Classes "order" and "linorder": potential INCOMPATIBILITY due to changed order of proof goals in instance proofs. * The transitivity reasoner for partial and linear orders is set up for classes "order" and "linorder". Instances of the reasoner are available in all contexts importing or interpreting the corresponding locales. Method "order" invokes the reasoner separately; the reasoner is also integrated with the Simplifier as a solver. Diagnostic command 'print_orders' shows the available instances of the reasoner in the current context. * Localized monotonicity predicate in theory "Orderings"; integrated lemmas max_of_mono and min_of_mono with this predicate. INCOMPATIBILITY. * Formulation of theorem "dense" changed slightly due to integration with new class dense_linear_order. * Uniform lattice theory development in HOL. constants "meet" and "join" now named "inf" and "sup" constant "Meet" now named "Inf" classes "meet_semilorder" and "join_semilorder" now named "lower_semilattice" and "upper_semilattice" class "lorder" now named "lattice" class "comp_lat" now named "complete_lattice" Instantiation of lattice classes allows explicit definitions for "inf" and "sup" operations (or "Inf" and "Sup" for complete lattices). INCOMPATIBILITY. Theorem renames: meet_left_le ~> inf_le1 meet_right_le ~> inf_le2 join_left_le ~> sup_ge1 join_right_le ~> sup_ge2 meet_join_le ~> inf_sup_ord le_meetI ~> le_infI join_leI ~> le_supI le_meet ~> le_inf_iff le_join ~> ge_sup_conv meet_idempotent ~> inf_idem join_idempotent ~> sup_idem meet_comm ~> inf_commute join_comm ~> sup_commute meet_leI1 ~> le_infI1 meet_leI2 ~> le_infI2 le_joinI1 ~> le_supI1 le_joinI2 ~> le_supI2 meet_assoc ~> inf_assoc join_assoc ~> sup_assoc meet_left_comm ~> inf_left_commute meet_left_idempotent ~> inf_left_idem join_left_comm ~> sup_left_commute join_left_idempotent ~> sup_left_idem meet_aci ~> inf_aci join_aci ~> sup_aci le_def_meet ~> le_iff_inf le_def_join ~> le_iff_sup join_absorp2 ~> sup_absorb2 join_absorp1 ~> sup_absorb1 meet_absorp1 ~> inf_absorb1 meet_absorp2 ~> inf_absorb2 meet_join_absorp ~> inf_sup_absorb join_meet_absorp ~> sup_inf_absorb distrib_join_le ~> distrib_sup_le distrib_meet_le ~> distrib_inf_le add_meet_distrib_left ~> add_inf_distrib_left add_join_distrib_left ~> add_sup_distrib_left is_join_neg_meet ~> is_join_neg_inf is_meet_neg_join ~> is_meet_neg_sup add_meet_distrib_right ~> add_inf_distrib_right add_join_distrib_right ~> add_sup_distrib_right add_meet_join_distribs ~> add_sup_inf_distribs join_eq_neg_meet ~> sup_eq_neg_inf meet_eq_neg_join ~> inf_eq_neg_sup add_eq_meet_join ~> add_eq_inf_sup meet_0_imp_0 ~> inf_0_imp_0 join_0_imp_0 ~> sup_0_imp_0 meet_0_eq_0 ~> inf_0_eq_0 join_0_eq_0 ~> sup_0_eq_0 neg_meet_eq_join ~> neg_inf_eq_sup neg_join_eq_meet ~> neg_sup_eq_inf join_eq_if ~> sup_eq_if mono_meet ~> mono_inf mono_join ~> mono_sup meet_bool_eq ~> inf_bool_eq join_bool_eq ~> sup_bool_eq meet_fun_eq ~> inf_fun_eq join_fun_eq ~> sup_fun_eq meet_set_eq ~> inf_set_eq join_set_eq ~> sup_set_eq meet1_iff ~> inf1_iff meet2_iff ~> inf2_iff meet1I ~> inf1I meet2I ~> inf2I meet1D1 ~> inf1D1 meet2D1 ~> inf2D1 meet1D2 ~> inf1D2 meet2D2 ~> inf2D2 meet1E ~> inf1E meet2E ~> inf2E join1_iff ~> sup1_iff join2_iff ~> sup2_iff join1I1 ~> sup1I1 join2I1 ~> sup2I1 join1I1 ~> sup1I1 join2I2 ~> sup1I2 join1CI ~> sup1CI join2CI ~> sup2CI join1E ~> sup1E join2E ~> sup2E is_meet_Meet ~> is_meet_Inf Meet_bool_def ~> Inf_bool_def Meet_fun_def ~> Inf_fun_def Meet_greatest ~> Inf_greatest Meet_lower ~> Inf_lower Meet_set_def ~> Inf_set_def Sup_def ~> Sup_Inf Sup_bool_eq ~> Sup_bool_def Sup_fun_eq ~> Sup_fun_def Sup_set_eq ~> Sup_set_def listsp_meetI ~> listsp_infI listsp_meet_eq ~> listsp_inf_eq meet_min ~> inf_min join_max ~> sup_max * Added syntactic class "size"; overloaded constant "size" now has type "'a::size ==> bool" * Internal reorganisation of `size' of datatypes: size theorems "foo.size" are no longer subsumed by "foo.simps" (but are still simplification rules by default!); theorems "prod.size" now named "*.size". * Class "div" now inherits from class "times" rather than "type". INCOMPATIBILITY. * HOL/Finite_Set: "name-space" locales Lattice, Distrib_lattice, Linorder etc. have disappeared; operations defined in terms of fold_set now are named Inf_fin, Sup_fin. INCOMPATIBILITY. * HOL/Nat: neq0_conv no longer declared as iff. INCOMPATIBILITY. * HOL-Word: New extensive library and type for generic, fixed size machine words, with arithmetic, bit-wise, shifting and rotating operations, reflection into int, nat, and bool lists, automation for linear arithmetic (by automatic reflection into nat or int), including lemmas on overflow and monotonicity. Instantiated to all appropriate arithmetic type classes, supporting automatic simplification of numerals on all operations. * Library/Boolean_Algebra: locales for abstract boolean algebras. * Library/Numeral_Type: numbers as types, e.g. TYPE(32). * Code generator library theories: - Code_Integer represents HOL integers by big integer literals in target languages. - Code_Char represents HOL characters by character literals in target languages. - Code_Char_chr like Code_Char, but also offers treatment of character codes; includes Code_Integer. - Executable_Set allows to generate code for finite sets using lists. - Executable_Rat implements rational numbers as triples (sign, enumerator, denominator). - Executable_Real implements a subset of real numbers, namly those representable by rational numbers. - Efficient_Nat implements natural numbers by integers, which in general will result in higher efficency; pattern matching with 0/Suc is eliminated; includes Code_Integer. - Code_Index provides an additional datatype index which is mapped to target-language built-in integers. - Code_Message provides an additional datatype message_string which is isomorphic to strings; messages are mapped to target-language strings. * New package for inductive predicates An n-ary predicate p with m parameters z_1, ..., z_m can now be defined via inductive p :: "U_1 => ... => U_m => T_1 => ... => T_n => bool" for z_1 :: U_1 and ... and z_n :: U_m where rule_1: "... ==> p z_1 ... z_m t_1_1 ... t_1_n" | ... with full support for type-inference, rather than consts s :: "U_1 => ... => U_m => (T_1 * ... * T_n) set" abbreviation p :: "U_1 => ... => U_m => T_1 => ... => T_n => bool" where "p z_1 ... z_m x_1 ... x_n == (x_1, ..., x_n) : s z_1 ... z_m" inductive "s z_1 ... z_m" intros rule_1: "... ==> (t_1_1, ..., t_1_n) : s z_1 ... z_m" ... For backward compatibility, there is a wrapper allowing inductive sets to be defined with the new package via inductive_set s :: "U_1 => ... => U_m => (T_1 * ... * T_n) set" for z_1 :: U_1 and ... and z_n :: U_m where rule_1: "... ==> (t_1_1, ..., t_1_n) : s z_1 ... z_m" | ... or inductive_set s :: "U_1 => ... => U_m => (T_1 * ... * T_n) set" and p :: "U_1 => ... => U_m => T_1 => ... => T_n => bool" for z_1 :: U_1 and ... and z_n :: U_m where "p z_1 ... z_m x_1 ... x_n == (x_1, ..., x_n) : s z_1 ... z_m" | rule_1: "... ==> p z_1 ... z_m t_1_1 ... t_1_n" | ... if the additional syntax "p ..." is required. Numerous examples can be found in the subdirectories src/HOL/Auth, src/HOL/Bali, src/HOL/Induct, and src/HOL/MicroJava. INCOMPATIBILITIES: - Since declaration and definition of inductive sets or predicates is no longer separated, abbreviations involving the newly introduced sets or predicates must be specified together with the introduction rules after the 'where' keyword (see above), rather than before the actual inductive definition. - The variables in induction and elimination rules are now quantified in the order of their occurrence in the introduction rules, rather than in alphabetical order. Since this may break some proofs, these proofs either have to be repaired, e.g. by reordering the variables a_i_1 ... a_i_{k_i} in Isar 'case' statements of the form case (rule_i a_i_1 ... a_i_{k_i}) or the old order of quantification has to be restored by explicitly adding meta-level quantifiers in the introduction rules, i.e. | rule_i: "!!a_i_1 ... a_i_{k_i}. ... ==> p z_1 ... z_m t_i_1 ... t_i_n" - The format of the elimination rules is now p z_1 ... z_m x_1 ... x_n ==> (!!a_1_1 ... a_1_{k_1}. x_1 = t_1_1 ==> ... ==> x_n = t_1_n ==> ... ==> P) ==> ... ==> P for predicates and (x_1, ..., x_n) : s z_1 ... z_m ==> (!!a_1_1 ... a_1_{k_1}. x_1 = t_1_1 ==> ... ==> x_n = t_1_n ==> ... ==> P) ==> ... ==> P for sets rather than x : s z_1 ... z_m ==> (!!a_1_1 ... a_1_{k_1}. x = (t_1_1, ..., t_1_n) ==> ... ==> P) ==> ... ==> P This may require terms in goals to be expanded to n-tuples (e.g. using case_tac or simplification with the split_paired_all rule) before the above elimination rule is applicable. - The elimination or case analysis rules for (mutually) inductive sets or predicates are now called "p_1.cases" ... "p_k.cases". The list of rules "p_1_..._p_k.elims" is no longer available. * New package "function"/"fun" for general recursive functions, supporting mutual and nested recursion, definitions in local contexts, more general pattern matching and partiality. See HOL/ex/Fundefs.thy for small examples, and the separate tutorial on the function package. The old recdef "package" is still available as before, but users are encouraged to use the new package. * Method "lexicographic_order" automatically synthesizes termination relations as lexicographic combinations of size measures. * Case-expressions allow arbitrary constructor-patterns (including "_") and take their order into account, like in functional programming. Internally, this is translated into nested case-expressions; missing cases are added and mapped to the predefined constant "undefined". In complicated cases printing may no longer show the original input but the internal form. Lambda-abstractions allow the same form of pattern matching: "% pat1 => e1 | ..." is an abbreviation for "%x. case x of pat1 => e1 | ..." where x is a new variable. * IntDef: The constant "int :: nat => int" has been removed; now "int" is an abbreviation for "of_nat :: nat => int". The simplification rules for "of_nat" have been changed to work like "int" did previously. Potential INCOMPATIBILITY: - "of_nat (Suc m)" simplifies to "1 + of_nat m" instead of "of_nat m + 1" - of_nat_diff and of_nat_mult are no longer default simp rules * Method "algebra" solves polynomial equations over (semi)rings using Groebner bases. The (semi)ring structure is defined by locales and the tool setup depends on that generic context. Installing the method for a specific type involves instantiating the locale and possibly adding declarations for computation on the coefficients. The method is already instantiated for natural numbers and for the axiomatic class of idoms with numerals. See also the paper by Chaieb and Wenzel at CALCULEMUS 2007 for the general principles underlying this architecture of context-aware proof-tools. * Method "ferrack" implements quantifier elimination over special-purpose dense linear orders using locales (analogous to "algebra"). The method is already installed for class {ordered_field,recpower,number_ring} which subsumes real, hyperreal, rat, etc. * Former constant "List.op @" now named "List.append". Use ML antiquotations @{const_name List.append} or @{term " ... @ ... "} to circumvent possible incompatibilities when working on ML level. * primrec: missing cases mapped to "undefined" instead of "arbitrary". * New function listsum :: 'a list => 'a for arbitrary monoids. Special syntax: "SUM x <- xs. f x" (and latex variants) * New syntax for Haskell-like list comprehension (input only), eg. [(x,y). x <- xs, y <- ys, x ~= y], see also src/HOL/List.thy. * The special syntax for function "filter" has changed from [x : xs. P] to [x <- xs. P] to avoid an ambiguity caused by list comprehension syntax, and for uniformity. INCOMPATIBILITY. * [a..b] is now defined for arbitrary linear orders. It used to be defined on nat only, as an abbreviation for [a..<Suc b] INCOMPATIBILITY. * Renamed lemma "set_take_whileD" to "set_takeWhileD". * New functions "sorted" and "sort" in src/HOL/List.thy. * New lemma collection field_simps (an extension of ring_simps) for manipulating (in)equations involving division. Multiplies with all denominators that can be proved to be non-zero (in equations) or positive/negative (in inequations). * Lemma collections ring_eq_simps, group_eq_simps and ring_distrib have been improved and renamed to ring_simps, group_simps and ring_distribs. Removed lemmas field_xyz in theory Ring_and_Field because they were subsumed by lemmas xyz. INCOMPATIBILITY. * Theory Library/Commutative_Ring: switched from recdef to function package; constants add, mul, pow now curried. Infix syntax for algebraic operations. * Dropped redundant lemma def_imp_eq in favor of meta_eq_to_obj_eq. INCOMPATIBILITY. * Dropped redundant lemma if_def2 in favor of if_bool_eq_conj. INCOMPATIBILITY. * HOL/records: generalised field-update to take a function on the field rather than the new value: r(|A := x|) is translated to A_update (K x) r The K-combinator that is internally used is called K_record. INCOMPATIBILITY: Usage of the plain update functions has to be adapted. * Class "semiring_0" now contains annihilation axioms x * 0 = 0 and 0 * x = 0, which are required for a semiring. Richer structures do not inherit from semiring_0 anymore, because this property is a theorem there, not an axiom. INCOMPATIBILITY: In instances of semiring_0, there is more to prove, but this is mostly trivial. * Class "recpower" is generalized to arbitrary monoids, not just commutative semirings. INCOMPATIBILITY: may need to incorporate commutativity or semiring properties additionally. * Constant "List.list_all2" in List.thy now uses authentic syntax. INCOMPATIBILITY: translations containing list_all2 may go wrong, better use 'abbreviation'. * Renamed constant "List.op mem" to "List.member". INCOMPATIBILITY. * Numeral syntax: type 'bin' which was a mere type copy of 'int' has been abandoned in favour of plain 'int'. INCOMPATIBILITY -- significant changes for setting up numeral syntax for types: - New constants Numeral.pred and Numeral.succ instead of former Numeral.bin_pred and Numeral.bin_succ. - Use integer operations instead of bin_add, bin_mult and so on. - Numeral simplification theorems named Numeral.numeral_simps instead of Bin_simps. - ML structure Bin_Simprocs now named Int_Numeral_Base_Simprocs. See src/HOL/Integ/IntArith.thy for an example setup. * Command 'normal_form' computes the normal form of a term that may contain free variables. For example ``normal_form "rev [a, b, c]"'' produces ``[b, c, a]'' (without proof). This command is suitable for heavy-duty computations because the functions are compiled to ML first. Correspondingly, a method "normalization" is provided. See further src/HOL/ex/NormalForm.thy and src/Tools/nbe.ML. * Alternative iff syntax "A <-> B" for equality on bool (with priority 25 like -->); output depends on the "iff" print_mode, the default is "A = B" (with priority 50). * Relations less (<) and less_eq (<=) are also available on type bool. Modified syntax to disallow nesting without explicit parentheses, e.g. "(x < y) < z" or "x < (y < z)", but NOT "x < y < z". Potential INCOMPATIBILITY. * "LEAST x:A. P" expands to "LEAST x. x:A & P" (input only). * Relation composition operator "op O" now has precedence 75 and binds stronger than union and intersection. INCOMPATIBILITY. * The old set interval syntax "{m..n(}" (and relatives) has been removed. Use "{m..<n}" (and relatives) instead. * In the context of the assumption "~(s = t)" the Simplifier rewrites "t = s" to False (by simproc "neq"). INCOMPATIBILITY, consider using ``declare [[simproc del: neq]]''. * Simplifier: "m dvd n" where m and n are numbers is evaluated to True/False. * Theorem Cons_eq_map_conv no longer declared as "simp". * Theorem setsum_mult renamed to setsum_right_distrib. * Prefer ex1I over ex_ex1I in single-step reasoning, e.g. by the ``rule'' method. * Reimplemented methods "sat" and "satx", with several improvements: goals no longer need to be stated as "<prems> ==> False", equivalences (i.e. "=" on type bool) are handled, variable names of the form "lit_<n>" are no longer reserved, significant speedup. * Methods "sat" and "satx" can now replay MiniSat proof traces. zChaff is still supported as well. * 'inductive' and 'datatype': provide projections of mutual rules, bundled as foo_bar.inducts; * Library: moved theories Parity, GCD, Binomial, Infinite_Set to Library. * Library: moved theory Accessible_Part to main HOL. * Library: added theory Coinductive_List of potentially infinite lists as greatest fixed-point. * Library: added theory AssocList which implements (finite) maps as association lists. * Method "evaluation" solves goals (i.e. a boolean expression) efficiently by compiling it to ML. The goal is "proved" (via an oracle) if it evaluates to True. * Linear arithmetic now splits certain operators (e.g. min, max, abs) also when invoked by the simplifier. This results in the Simplifier being more powerful on arithmetic goals. INCOMPATIBILITY. Configuration option fast_arith_split_limit=0 recovers the old behavior. * Support for hex (0x20) and binary (0b1001) numerals. * New method: reify eqs (t), where eqs are equations for an interpretation I :: 'a list => 'b => 'c and t::'c is an optional parameter, computes a term s::'b and a list xs::'a list and proves the theorem I xs s = t. This is also known as reification or quoting. The resulting theorem is applied to the subgoal to substitute t with I xs s. If t is omitted, the subgoal itself is reified. * New method: reflection corr_thm eqs (t). The parameters eqs and (t) are as explained above. corr_thm is a theorem for I vs (f t) = I vs t, where f is supposed to be a computable function (in the sense of code generattion). The method uses reify to compute s and xs as above then applies corr_thm and uses normalization by evaluation to "prove" f s = r and finally gets the theorem t = r, which is again applied to the subgoal. An Example is available in src/HOL/ex/ReflectionEx.thy. * Reflection: Automatic reification now handels binding, an example is available in src/HOL/ex/ReflectionEx.thy * HOL-Statespace: ``State Spaces: The Locale Way'' introduces a command 'statespace' that is similar to 'record', but introduces an abstract specification based on the locale infrastructure instead of HOL types. This leads to extra flexibility in composing state spaces, in particular multiple inheritance and renaming of components. *** HOL-Complex *** * Hyperreal: Functions root and sqrt are now defined on negative real inputs so that root n (- x) = - root n x and sqrt (- x) = - sqrt x. Nonnegativity side conditions have been removed from many lemmas, so that more subgoals may now be solved by simplification; potential INCOMPATIBILITY. * Real: new type classes formalize real normed vector spaces and algebras, using new overloaded constants scaleR :: real => 'a => 'a and norm :: 'a => real. * Real: constant of_real :: real => 'a::real_algebra_1 injects from reals into other types. The overloaded constant Reals :: 'a set is now defined as range of_real; potential INCOMPATIBILITY. * Real: proper support for ML code generation, including 'quickcheck'. Reals are implemented as arbitrary precision rationals. * Hyperreal: Several constants that previously worked only for the reals have been generalized, so they now work over arbitrary vector spaces. Type annotations may need to be added in some cases; potential INCOMPATIBILITY. Infinitesimal :: ('a::real_normed_vector) star set HFinite :: ('a::real_normed_vector) star set HInfinite :: ('a::real_normed_vector) star set approx :: ('a::real_normed_vector) star => 'a star => bool monad :: ('a::real_normed_vector) star => 'a star set galaxy :: ('a::real_normed_vector) star => 'a star set (NS)LIMSEQ :: [nat => 'a::real_normed_vector, 'a] => bool (NS)convergent :: (nat => 'a::real_normed_vector) => bool (NS)Bseq :: (nat => 'a::real_normed_vector) => bool (NS)Cauchy :: (nat => 'a::real_normed_vector) => bool (NS)LIM :: ['a::real_normed_vector => 'b::real_normed_vector, 'a, 'b] => bool is(NS)Cont :: ['a::real_normed_vector => 'b::real_normed_vector, 'a] => bool deriv :: ['a::real_normed_field => 'a, 'a, 'a] => bool sgn :: 'a::real_normed_vector => 'a exp :: 'a::{recpower,real_normed_field,banach} => 'a * Complex: Some complex-specific constants are now abbreviations for overloaded ones: complex_of_real = of_real, cmod = norm, hcmod = hnorm. Other constants have been entirely removed in favor of the polymorphic versions (INCOMPATIBILITY): approx <-- capprox HFinite <-- CFinite HInfinite <-- CInfinite Infinitesimal <-- CInfinitesimal monad <-- cmonad galaxy <-- cgalaxy (NS)LIM <-- (NS)CLIM, (NS)CRLIM is(NS)Cont <-- is(NS)Contc, is(NS)contCR (ns)deriv <-- (ns)cderiv *** HOL-Algebra *** * Formalisation of ideals and the quotient construction over rings. * Order and lattice theory no longer based on records. INCOMPATIBILITY. * Renamed lemmas least_carrier -> least_closed and greatest_carrier -> greatest_closed. INCOMPATIBILITY. * Method algebra is now set up via an attribute. For examples see Ring.thy. INCOMPATIBILITY: the method is now weaker on combinations of algebraic structures. * Renamed theory CRing to Ring. *** HOL-Nominal *** * Substantial, yet incomplete support for nominal datatypes (binding structures) based on HOL-Nominal logic. See src/HOL/Nominal and src/HOL/Nominal/Examples. Prospective users should consult http://isabelle.in.tum.de/nominal/ *** ML *** * ML basics: just one true type int, which coincides with IntInf.int (even on SML/NJ). * ML within Isar: antiquotations allow to embed statically-checked formal entities in the source, referring to the context available at compile-time. For example: ML {* @{sort "{zero,one}"} *} ML {* @{typ "'a => 'b"} *} ML {* @{term "%x. x"} *} ML {* @{prop "x == y"} *} ML {* @{ctyp "'a => 'b"} *} ML {* @{cterm "%x. x"} *} ML {* @{cprop "x == y"} *} ML {* @{thm asm_rl} *} ML {* @{thms asm_rl} *} ML {* @{type_name c} *} ML {* @{type_syntax c} *} ML {* @{const_name c} *} ML {* @{const_syntax c} *} ML {* @{context} *} ML {* @{theory} *} ML {* @{theory Pure} *} ML {* @{theory_ref} *} ML {* @{theory_ref Pure} *} ML {* @{simpset} *} ML {* @{claset} *} ML {* @{clasimpset} *} The same works for sources being ``used'' within an Isar context. * ML in Isar: improved error reporting; extra verbosity with ML_Context.trace enabled. * Pure/General/table.ML: the join operations now works via exceptions DUP/SAME instead of type option. This is simpler in simple cases, and admits slightly more efficient complex applications. * Pure: 'advanced' translation functions (parse_translation etc.) now use Context.generic instead of just theory. * Pure: datatype Context.generic joins theory/Proof.context and provides some facilities for code that works in either kind of context, notably GenericDataFun for uniform theory and proof data. * Pure: simplified internal attribute type, which is now always Context.generic * thm -> Context.generic * thm. Global (theory) vs. local (Proof.context) attributes have been discontinued, while minimizing code duplication. Thm.rule_attribute and Thm.declaration_attribute build canonical attributes; see also structure Context for further operations on Context.generic, notably GenericDataFun. INCOMPATIBILITY, need to adapt attribute type declarations and definitions. * Context data interfaces (Theory/Proof/GenericDataFun): removed name/print, uninitialized data defaults to ad-hoc copy of empty value, init only required for impure data. INCOMPATIBILITY: empty really need to be empty (no dependencies on theory content!) * Pure/kernel: consts certification ignores sort constraints given in signature declarations. (This information is not relevant to the logic, but only for type inference.) SIGNIFICANT INTERNAL CHANGE, potential INCOMPATIBILITY. * Pure: axiomatic type classes are now purely definitional, with explicit proofs of class axioms and super class relations performed internally. See Pure/axclass.ML for the main internal interfaces -- notably AxClass.define_class supercedes AxClass.add_axclass, and AxClass.axiomatize_class/classrel/arity supersede Sign.add_classes/classrel/arities. * Pure/Isar: Args/Attrib parsers operate on Context.generic -- global/local versions on theory vs. Proof.context have been discontinued; Attrib.syntax and Method.syntax have been adapted accordingly. INCOMPATIBILITY, need to adapt parser expressions for attributes, methods, etc. * Pure: several functions of signature "... -> theory -> theory * ..." have been reoriented to "... -> theory -> ... * theory" in order to allow natural usage in combination with the ||>, ||>>, |-> and fold_map combinators. * Pure: official theorem names (closed derivations) and additional comments (tags) are now strictly separate. Name hints -- which are maintained as tags -- may be attached any time without affecting the derivation. * Pure: primitive rule lift_rule now takes goal cterm instead of an actual goal state (thm). Use Thm.lift_rule (Thm.cprem_of st i) to achieve the old behaviour. * Pure: the "Goal" constant is now called "prop", supporting a slightly more general idea of ``protecting'' meta-level rule statements. * Pure: Logic.(un)varify only works in a global context, which is now enforced instead of silently assumed. INCOMPATIBILITY, may use Logic.legacy_(un)varify as temporary workaround. * Pure: structure Name provides scalable operations for generating internal variable names, notably Name.variants etc. This replaces some popular functions from term.ML: Term.variant -> Name.variant Term.variantlist -> Name.variant_list Term.invent_names -> Name.invent_list Note that low-level renaming rarely occurs in new code -- operations from structure Variable are used instead (see below). * Pure: structure Variable provides fundamental operations for proper treatment of fixed/schematic variables in a context. For example, Variable.import introduces fixes for schematics of given facts and Variable.export reverses the effect (up to renaming) -- this replaces various freeze_thaw operations. * Pure: structure Goal provides simple interfaces for init/conclude/finish and tactical prove operations (replacing former Tactic.prove). Goal.prove is the canonical way to prove results within a given context; Goal.prove_global is a degraded version for theory level goals, including a global Drule.standard. Note that OldGoals.prove_goalw_cterm has long been obsolete, since it is ill-behaved in a local proof context (e.g. with local fixes/assumes or in a locale context). * Pure/Syntax: generic interfaces for parsing (Syntax.parse_term etc.) and type checking (Syntax.check_term etc.), with common combinations (Syntax.read_term etc.). These supersede former Sign.read_term etc. which are considered legacy and await removal. * Pure/Syntax: generic interfaces for type unchecking (Syntax.uncheck_terms etc.) and unparsing (Syntax.unparse_term etc.), with common combinations (Syntax.pretty_term, Syntax.string_of_term etc.). Former Sign.pretty_term, Sign.string_of_term etc. are still available for convenience, but refer to the very same operations using a mere theory instead of a full context. * Isar: simplified treatment of user-level errors, using exception ERROR of string uniformly. Function error now merely raises ERROR, without any side effect on output channels. The Isar toplevel takes care of proper display of ERROR exceptions. ML code may use plain handle/can/try; cat_error may be used to concatenate errors like this: ... handle ERROR msg => cat_error msg "..." Toplevel ML code (run directly or through the Isar toplevel) may be embedded into the Isar toplevel with exception display/debug like this: Isar.toplevel (fn () => ...) INCOMPATIBILITY, removed special transform_error facilities, removed obsolete variants of user-level exceptions (ERROR_MESSAGE, Context.PROOF, ProofContext.CONTEXT, Proof.STATE, ProofHistory.FAIL) -- use plain ERROR instead. * Isar: theory setup now has type (theory -> theory), instead of a list. INCOMPATIBILITY, may use #> to compose setup functions. * Isar: ML toplevel pretty printer for type Proof.context, subject to ProofContext.debug/verbose flags. * Isar: Toplevel.theory_to_proof admits transactions that modify the theory before entering a proof state. Transactions now always see a quasi-functional intermediate checkpoint, both in interactive and batch mode. * Isar: simplified interfaces for outer syntax. Renamed OuterSyntax.add_keywords to OuterSyntax.keywords. Removed OuterSyntax.add_parsers -- this functionality is now included in OuterSyntax.command etc. INCOMPATIBILITY. * Simplifier: the simpset of a running simplification process now contains a proof context (cf. Simplifier.the_context), which is the very context that the initial simpset has been retrieved from (by simpset_of/local_simpset_of). Consequently, all plug-in components (solver, looper etc.) may depend on arbitrary proof data. * Simplifier.inherit_context inherits the proof context (plus the local bounds) of the current simplification process; any simproc etc. that calls the Simplifier recursively should do this! Removed former Simplifier.inherit_bounds, which is already included here -- INCOMPATIBILITY. Tools based on low-level rewriting may even have to specify an explicit context using Simplifier.context/theory_context. * Simplifier/Classical Reasoner: more abstract interfaces change_simpset/claset for modifying the simpset/claset reference of a theory; raw versions simpset/claset_ref etc. have been discontinued -- INCOMPATIBILITY. * Provers: more generic wrt. syntax of object-logics, avoid hardwired "Trueprop" etc. *** System *** * settings: the default heap location within ISABELLE_HOME_USER now includes ISABELLE_IDENTIFIER. This simplifies use of multiple Isabelle installations. * isabelle-process: option -S (secure mode) disables some critical operations, notably runtime compilation and evaluation of ML source code. * Basic Isabelle mode for jEdit, see Isabelle/lib/jedit/. * Support for parallel execution, using native multicore support of Poly/ML 5.1. The theory loader exploits parallelism when processing independent theories, according to the given theory header specifications. The maximum number of worker threads is specified via usedir option -M or the "max-threads" setting in Proof General. A speedup factor of 1.5--3.5 can be expected on a 4-core machine, and up to 6 on a 8-core machine. User-code needs to observe certain guidelines for thread-safe programming, see appendix A in the Isar Implementation manual. New in Isabelle2005 (October 2005) ---------------------------------- *** General *** * Theory headers: the new header syntax for Isar theories is theory <name> imports <theory1> ... <theoryN> uses <file1> ... <fileM> begin where the 'uses' part is optional. The previous syntax theory <name> = <theory1> + ... + <theoryN>: will disappear in the next release. Use isatool fixheaders to convert existing theory files. Note that there is no change in ancient non-Isar theories now, but these will disappear soon. * Theory loader: parent theories can now also be referred to via relative and absolute paths. * Command 'find_theorems' searches for a list of criteria instead of a list of constants. Known criteria are: intro, elim, dest, name:string, simp:term, and any term. Criteria can be preceded by '-' to select theorems that do not match. Intro, elim, dest select theorems that match the current goal, name:s selects theorems whose fully qualified name contain s, and simp:term selects all simplification rules whose lhs match term. Any other term is interpreted as pattern and selects all theorems matching the pattern. Available in ProofGeneral under 'ProofGeneral -> Find Theorems' or C-c C-f. Example: C-c C-f (100) "(_::nat) + _ + _" intro -name: "HOL." prints the last 100 theorems matching the pattern "(_::nat) + _ + _", matching the current goal as introduction rule and not having "HOL." in their name (i.e. not being defined in theory HOL). * Command 'thms_containing' has been discontinued in favour of 'find_theorems'; INCOMPATIBILITY. * Communication with Proof General is now 8bit clean, which means that Unicode text in UTF-8 encoding may be used within theory texts (both formal and informal parts). Cf. option -U of the Isabelle Proof General interface. Here are some simple examples (cf. src/HOL/ex): http://isabelle.in.tum.de/library/HOL/ex/Hebrew.html http://isabelle.in.tum.de/library/HOL/ex/Chinese.html * Improved efficiency of the Simplifier and, to a lesser degree, the Classical Reasoner. Typical big applications run around 2 times faster. *** Document preparation *** * Commands 'display_drafts' and 'print_drafts' perform simple output of raw sources. Only those symbols that do not require additional LaTeX packages (depending on comments in isabellesym.sty) are displayed properly, everything else is left verbatim. isatool display and isatool print are used as front ends (these are subject to the DVI/PDF_VIEWER and PRINT_COMMAND settings, respectively). * Command tags control specific markup of certain regions of text, notably folding and hiding. Predefined tags include "theory" (for theory begin and end), "proof" for proof commands, and "ML" for commands involving ML code; the additional tags "visible" and "invisible" are unused by default. Users may give explicit tag specifications in the text, e.g. ''by %invisible (auto)''. The interpretation of tags is determined by the LaTeX job during document preparation: see option -V of isatool usedir, or options -n and -t of isatool document, or even the LaTeX macros \isakeeptag, \isafoldtag, \isadroptag. Several document versions may be produced at the same time via isatool usedir (the generated index.html will link all of them). Typical specifications include ''-V document=theory,proof,ML'' to present theory/proof/ML parts faithfully, ''-V outline=/proof,/ML'' to fold proof and ML commands, and ''-V mutilated=-theory,-proof,-ML'' to omit these parts without any formal replacement text. The Isabelle site default settings produce ''document'' and ''outline'' versions as specified above. * Several new antiquotations: @{term_type term} prints a term with its type annotated; @{typeof term} prints the type of a term; @{const const} is the same as @{term const}, but checks that the argument is a known logical constant; @{term_style style term} and @{thm_style style thm} print a term or theorem applying a "style" to it @{ML text} Predefined styles are 'lhs' and 'rhs' printing the lhs/rhs of definitions, equations, inequations etc., 'concl' printing only the conclusion of a meta-logical statement theorem, and 'prem1' .. 'prem19' to print the specified premise. TermStyle.add_style provides an ML interface for introducing further styles. See also the "LaTeX Sugar" document practical applications. The ML antiquotation prints type-checked ML expressions verbatim. * Markup commands 'chapter', 'section', 'subsection', 'subsubsection', and 'text' support optional locale specification '(in loc)', which specifies the default context for interpreting antiquotations. For example: 'text (in lattice) {* @{thm inf_assoc}*}'. * Option 'locale=NAME' of antiquotations specifies an alternative context interpreting the subsequent argument. For example: @{thm [locale=lattice] inf_assoc}. * Proper output of proof terms (@{prf ...} and @{full_prf ...}) within a proof context. * Proper output of antiquotations for theory commands involving a proof context (such as 'locale' or 'theorem (in loc) ...'). * Delimiters of outer tokens (string etc.) now produce separate LaTeX macros (\isachardoublequoteopen, isachardoublequoteclose etc.). * isatool usedir: new option -C (default true) controls whether option -D should include a copy of the original document directory; -C false prevents unwanted effects such as copying of administrative CVS data. *** Pure *** * Considerably improved version of 'constdefs' command. Now performs automatic type-inference of declared constants; additional support for local structure declarations (cf. locales and HOL records), see also isar-ref manual. Potential INCOMPATIBILITY: need to observe strictly sequential dependencies of definitions within a single 'constdefs' section; moreover, the declared name needs to be an identifier. If all fails, consider to fall back on 'consts' and 'defs' separately. * Improved indexed syntax and implicit structures. First of all, indexed syntax provides a notational device for subscripted application, using the new syntax \<^bsub>term\<^esub> for arbitrary expressions. Secondly, in a local context with structure declarations, number indexes \<^sub>n or the empty index (default number 1) refer to a certain fixed variable implicitly; option show_structs controls printing of implicit structures. Typical applications of these concepts involve record types and locales. * New command 'no_syntax' removes grammar declarations (and translations) resulting from the given syntax specification, which is interpreted in the same manner as for the 'syntax' command. * 'Advanced' translation functions (parse_translation etc.) may depend on the signature of the theory context being presently used for parsing/printing, see also isar-ref manual. * Improved 'oracle' command provides a type-safe interface to turn an ML expression of type theory -> T -> term into a primitive rule of type theory -> T -> thm (i.e. the functionality of Thm.invoke_oracle is already included here); see also FOL/ex/IffExample.thy; INCOMPATIBILITY. * axclass: name space prefix for class "c" is now "c_class" (was "c" before); "cI" is no longer bound, use "c.intro" instead. INCOMPATIBILITY. This change avoids clashes of fact bindings for axclasses vs. locales. * Improved internal renaming of symbolic identifiers -- attach primes instead of base 26 numbers. * New flag show_question_marks controls printing of leading question marks in schematic variable names. * In schematic variable names, *any* symbol following \<^isub> or \<^isup> is now treated as part of the base name. For example, the following works without printing of awkward ".0" indexes: lemma "x\<^isub>1 = x\<^isub>2 ==> x\<^isub>2 = x\<^isub>1" by simp * Inner syntax includes (*(*nested*) comments*). * Pretty printer now supports unbreakable blocks, specified in mixfix annotations as "(00...)". * Clear separation of logical types and nonterminals, where the latter may only occur in 'syntax' specifications or type abbreviations. Before that distinction was only partially implemented via type class "logic" vs. "{}". Potential INCOMPATIBILITY in rare cases of improper use of 'types'/'consts' instead of 'nonterminals'/'syntax'. Some very exotic syntax specifications may require further adaption (e.g. Cube/Cube.thy). * Removed obsolete type class "logic", use the top sort {} instead. Note that non-logical types should be declared as 'nonterminals' rather than 'types'. INCOMPATIBILITY for new object-logic specifications. * Attributes 'induct' and 'cases': type or set names may now be locally fixed variables as well. * Simplifier: can now control the depth to which conditional rewriting is traced via the PG menu Isabelle -> Settings -> Trace Simp Depth Limit. * Simplifier: simplification procedures may now take the current simpset into account (cf. Simplifier.simproc(_i) / mk_simproc interface), which is very useful for calling the Simplifier recursively. Minor INCOMPATIBILITY: the 'prems' argument of simprocs is gone -- use prems_of_ss on the simpset instead. Moreover, the low-level mk_simproc no longer applies Logic.varify internally, to allow for use in a context of fixed variables. * thin_tac now works even if the assumption being deleted contains !! or ==>. More generally, erule now works even if the major premise of the elimination rule contains !! or ==>. * Method 'rules' has been renamed to 'iprover'. INCOMPATIBILITY. * Reorganized bootstrapping of the Pure theories; CPure is now derived from Pure, which contains all common declarations already. Both theories are defined via plain Isabelle/Isar .thy files. INCOMPATIBILITY: elements of CPure (such as the CPure.intro / CPure.elim / CPure.dest attributes) now appear in the Pure name space; use isatool fixcpure to adapt your theory and ML sources. * New syntax 'name(i-j, i-, i, ...)' for referring to specific selections of theorems in named facts via index ranges. * 'print_theorems': in theory mode, really print the difference wrt. the last state (works for interactive theory development only), in proof mode print all local facts (cf. 'print_facts'); * 'hide': option '(open)' hides only base names. * More efficient treatment of intermediate checkpoints in interactive theory development. * Code generator is now invoked via code_module (incremental code generation) and code_library (modular code generation, ML structures for each theory). INCOMPATIBILITY: new keywords 'file' and 'contains' must be quoted when used as identifiers. * New 'value' command for reading, evaluating and printing terms using the code generator. INCOMPATIBILITY: command keyword 'value' must be quoted when used as identifier. *** Locales *** * New commands for the interpretation of locale expressions in theories (1), locales (2) and proof contexts (3). These generate proof obligations from the expression specification. After the obligations have been discharged, theorems of the expression are added to the theory, target locale or proof context. The synopsis of the commands is a follows: (1) interpretation expr inst (2) interpretation target < expr (3) interpret expr inst Interpretation in theories and proof contexts require a parameter instantiation of terms from the current context. This is applied to specifications and theorems of the interpreted expression. Interpretation in locales only permits parameter renaming through the locale expression. Interpretation is smart in that interpretations that are active already do not occur in proof obligations, neither are instantiated theorems stored in duplicate. Use 'print_interps' to inspect active interpretations of a particular locale. For details, see the Isar Reference manual. Examples can be found in HOL/Finite_Set.thy and HOL/Algebra/UnivPoly.thy. INCOMPATIBILITY: former 'instantiate' has been withdrawn, use 'interpret' instead. * New context element 'constrains' for adding type constraints to parameters. * Context expressions: renaming of parameters with syntax redeclaration. * Locale declaration: 'includes' disallowed. * Proper static binding of attribute syntax -- i.e. types / terms / facts mentioned as arguments are always those of the locale definition context, independently of the context of later invocations. Moreover, locale operations (renaming and type / term instantiation) are applied to attribute arguments as expected. INCOMPATIBILITY of the ML interface: always pass Attrib.src instead of actual attributes; rare situations may require Attrib.attribute to embed those attributes into Attrib.src that lack concrete syntax. Attribute implementations need to cooperate properly with the static binding mechanism. Basic parsers Args.XXX_typ/term/prop and Attrib.XXX_thm etc. already do the right thing without further intervention. Only unusual applications -- such as "where" or "of" (cf. src/Pure/Isar/attrib.ML), which process arguments depending both on the context and the facts involved -- may have to assign parsed values to argument tokens explicitly. * Changed parameter management in theorem generation for long goal statements with 'includes'. INCOMPATIBILITY: produces a different theorem statement in rare situations. * Locale inspection command 'print_locale' omits notes elements. Use 'print_locale!' to have them included in the output. *** Provers *** * Provers/hypsubst.ML: improved version of the subst method, for single-step rewriting: it now works in bound variable contexts. New is 'subst (asm)', for rewriting an assumption. INCOMPATIBILITY: may rewrite a different subterm than the original subst method, which is still available as 'simplesubst'. * Provers/quasi.ML: new transitivity reasoners for transitivity only and quasi orders. * Provers/trancl.ML: new transitivity reasoner for transitive and reflexive-transitive closure of relations. * Provers/blast.ML: new reference depth_limit to make blast's depth limit (previously hard-coded with a value of 20) user-definable. * Provers/simplifier.ML has been moved to Pure, where Simplifier.setup is peformed already. Object-logics merely need to finish their initial simpset configuration as before. INCOMPATIBILITY. *** HOL *** * Symbolic syntax of Hilbert Choice Operator is now as follows: syntax (epsilon) "_Eps" :: "[pttrn, bool] => 'a" ("(3\<some>_./ _)" [0, 10] 10) The symbol \<some> is displayed as the alternative epsilon of LaTeX and x-symbol; use option '-m epsilon' to get it actually printed. Moreover, the mathematically important symbolic identifier \<epsilon> becomes available as variable, constant etc. INCOMPATIBILITY, * "x > y" abbreviates "y < x" and "x >= y" abbreviates "y <= x". Similarly for all quantifiers: "ALL x > y" etc. The x-symbol for >= is \<ge>. New transitivity rules have been added to HOL/Orderings.thy to support corresponding Isar calculations. * "{x:A. P}" abbreviates "{x. x:A & P}", and similarly for "\<in>" instead of ":". * theory SetInterval: changed the syntax for open intervals: Old New {..n(} {..<n} {)n..} {n<..} {m..n(} {m..<n} {)m..n} {m<..n} {)m..n(} {m<..<n} The old syntax is still supported but will disappear in the next release. For conversion use the following Emacs search and replace patterns (these are not perfect but work quite well): {)\([^\.]*\)\.\. -> {\1<\.\.} \.\.\([^(}]*\)(} -> \.\.<\1} * Theory Commutative_Ring (in Library): method comm_ring for proving equalities in commutative rings; method 'algebra' provides a generic interface. * Theory Finite_Set: changed the syntax for 'setsum', summation over finite sets: "setsum (%x. e) A", which used to be "\<Sum>x:A. e", is now either "SUM x:A. e" or "\<Sum>x \<in> A. e". The bound variable can be a tuple pattern. Some new syntax forms are available: "\<Sum>x | P. e" for "setsum (%x. e) {x. P}" "\<Sum>x = a..b. e" for "setsum (%x. e) {a..b}" "\<Sum>x = a..<b. e" for "setsum (%x. e) {a..<b}" "\<Sum>x < k. e" for "setsum (%x. e) {..<k}" The latter form "\<Sum>x < k. e" used to be based on a separate function "Summation", which has been discontinued. * theory Finite_Set: in structured induction proofs, the insert case is now 'case (insert x F)' instead of the old counterintuitive 'case (insert F x)'. * The 'refute' command has been extended to support a much larger fragment of HOL, including axiomatic type classes, constdefs and typedefs, inductive datatypes and recursion. * New tactics 'sat' and 'satx' to prove propositional tautologies. Requires zChaff with proof generation to be installed. See HOL/ex/SAT_Examples.thy for examples. * Datatype induction via method 'induct' now preserves the name of the induction variable. For example, when proving P(xs::'a list) by induction on xs, the induction step is now P(xs) ==> P(a#xs) rather than P(list) ==> P(a#list) as previously. Potential INCOMPATIBILITY in unstructured proof scripts. * Reworked implementation of records. Improved scalability for records with many fields, avoiding performance problems for type inference. Records are no longer composed of nested field types, but of nested extension types. Therefore the record type only grows linear in the number of extensions and not in the number of fields. The top-level (users) view on records is preserved. Potential INCOMPATIBILITY only in strange cases, where the theory depends on the old record representation. The type generated for a record is called <record_name>_ext_type. Flag record_quick_and_dirty_sensitive can be enabled to skip the proofs triggered by a record definition or a simproc (if quick_and_dirty is enabled). Definitions of large records can take quite long. New simproc record_upd_simproc for simplification of multiple record updates enabled by default. Moreover, trivial updates are also removed: r(|x := x r|) = r. INCOMPATIBILITY: old proofs break occasionally, since simplification is more powerful by default. * typedef: proper support for polymorphic sets, which contain extra type-variables in the term. * Simplifier: automatically reasons about transitivity chains involving "trancl" (r^+) and "rtrancl" (r^*) by setting up tactics provided by Provers/trancl.ML as additional solvers. INCOMPATIBILITY: old proofs break occasionally as simplification may now solve more goals than previously. * Simplifier: converts x <= y into x = y if assumption y <= x is present. Works for all partial orders (class "order"), in particular numbers and sets. For linear orders (e.g. numbers) it treats ~ x < y just like y <= x. * Simplifier: new simproc for "let x = a in f x". If a is a free or bound variable or a constant then the let is unfolded. Otherwise first a is simplified to b, and then f b is simplified to g. If possible we abstract b from g arriving at "let x = b in h x", otherwise we unfold the let and arrive at g. The simproc can be enabled/disabled by the reference use_let_simproc. Potential INCOMPATIBILITY since simplification is more powerful by default. * Classical reasoning: the meson method now accepts theorems as arguments. * Prover support: pre-release of the Isabelle-ATP linkup, which runs background jobs to provide advice on the provability of subgoals. * Theory OrderedGroup and Ring_and_Field: various additions and improvements to faciliate calculations involving equalities and inequalities. The following theorems have been eliminated or modified (INCOMPATIBILITY): abs_eq now named abs_of_nonneg abs_of_ge_0 now named abs_of_nonneg abs_minus_eq now named abs_of_nonpos imp_abs_id now named abs_of_nonneg imp_abs_neg_id now named abs_of_nonpos mult_pos now named mult_pos_pos mult_pos_le now named mult_nonneg_nonneg mult_pos_neg_le now named mult_nonneg_nonpos mult_pos_neg2_le now named mult_nonneg_nonpos2 mult_neg now named mult_neg_neg mult_neg_le now named mult_nonpos_nonpos * The following lemmas in Ring_and_Field have been added to the simplifier: zero_le_square not_square_less_zero The following lemmas have been deleted from Real/RealPow: realpow_zero_zero realpow_two realpow_less zero_le_power realpow_two_le abs_realpow_two realpow_two_abs * Theory Parity: added rules for simplifying exponents. * Theory List: The following theorems have been eliminated or modified (INCOMPATIBILITY): list_all_Nil now named list_all.simps(1) list_all_Cons now named list_all.simps(2) list_all_conv now named list_all_iff set_mem_eq now named mem_iff * Theories SetsAndFunctions and BigO (see HOL/Library) support asymptotic "big O" calculations. See the notes in BigO.thy. *** HOL-Complex *** * Theory RealDef: better support for embedding natural numbers and integers in the reals. The following theorems have been eliminated or modified (INCOMPATIBILITY): exp_ge_add_one_self now requires no hypotheses real_of_int_add reversed direction of equality (use [symmetric]) real_of_int_minus reversed direction of equality (use [symmetric]) real_of_int_diff reversed direction of equality (use [symmetric]) real_of_int_mult reversed direction of equality (use [symmetric]) * Theory RComplete: expanded support for floor and ceiling functions. * Theory Ln is new, with properties of the natural logarithm * Hyperreal: There is a new type constructor "star" for making nonstandard types. The old type names are now type synonyms: hypreal = real star hypnat = nat star hcomplex = complex star * Hyperreal: Many groups of similarly-defined constants have been replaced by polymorphic versions (INCOMPATIBILITY): star_of <-- hypreal_of_real, hypnat_of_nat, hcomplex_of_complex starset <-- starsetNat, starsetC *s* <-- *sNat*, *sc* starset_n <-- starsetNat_n, starsetC_n *sn* <-- *sNatn*, *scn* InternalSets <-- InternalNatSets, InternalCSets starfun <-- starfun{Nat,Nat2,C,RC,CR} *f* <-- *fNat*, *fNat2*, *fc*, *fRc*, *fcR* starfun_n <-- starfun{Nat,Nat2,C,RC,CR}_n *fn* <-- *fNatn*, *fNat2n*, *fcn*, *fRcn*, *fcRn* InternalFuns <-- InternalNatFuns, InternalNatFuns2, Internal{C,RC,CR}Funs * Hyperreal: Many type-specific theorems have been removed in favor of theorems specific to various axiomatic type classes (INCOMPATIBILITY): add_commute <-- {hypreal,hypnat,hcomplex}_add_commute add_assoc <-- {hypreal,hypnat,hcomplex}_add_assocs OrderedGroup.add_0 <-- {hypreal,hypnat,hcomplex}_add_zero_left OrderedGroup.add_0_right <-- {hypreal,hcomplex}_add_zero_right right_minus <-- hypreal_add_minus left_minus <-- {hypreal,hcomplex}_add_minus_left mult_commute <-- {hypreal,hypnat,hcomplex}_mult_commute mult_assoc <-- {hypreal,hypnat,hcomplex}_mult_assoc mult_1_left <-- {hypreal,hypnat}_mult_1, hcomplex_mult_one_left mult_1_right <-- hcomplex_mult_one_right mult_zero_left <-- hcomplex_mult_zero_left left_distrib <-- {hypreal,hypnat,hcomplex}_add_mult_distrib right_distrib <-- hypnat_add_mult_distrib2 zero_neq_one <-- {hypreal,hypnat,hcomplex}_zero_not_eq_one right_inverse <-- hypreal_mult_inverse left_inverse <-- hypreal_mult_inverse_left, hcomplex_mult_inv_left order_refl <-- {hypreal,hypnat}_le_refl order_trans <-- {hypreal,hypnat}_le_trans order_antisym <-- {hypreal,hypnat}_le_anti_sym order_less_le <-- {hypreal,hypnat}_less_le linorder_linear <-- {hypreal,hypnat}_le_linear add_left_mono <-- {hypreal,hypnat}_add_left_mono mult_strict_left_mono <-- {hypreal,hypnat}_mult_less_mono2 add_nonneg_nonneg <-- hypreal_le_add_order * Hyperreal: Separate theorems having to do with type-specific versions of constants have been merged into theorems that apply to the new polymorphic constants (INCOMPATIBILITY): STAR_UNIV_set <-- {STAR_real,NatStar_real,STARC_complex}_set STAR_empty_set <-- {STAR,NatStar,STARC}_empty_set STAR_Un <-- {STAR,NatStar,STARC}_Un STAR_Int <-- {STAR,NatStar,STARC}_Int STAR_Compl <-- {STAR,NatStar,STARC}_Compl STAR_subset <-- {STAR,NatStar,STARC}_subset STAR_mem <-- {STAR,NatStar,STARC}_mem STAR_mem_Compl <-- {STAR,STARC}_mem_Compl STAR_diff <-- {STAR,STARC}_diff STAR_star_of_image_subset <-- {STAR_hypreal_of_real, NatStar_hypreal_of_real, STARC_hcomplex_of_complex}_image_subset starset_n_Un <-- starset{Nat,C}_n_Un starset_n_Int <-- starset{Nat,C}_n_Int starset_n_Compl <-- starset{Nat,C}_n_Compl starset_n_diff <-- starset{Nat,C}_n_diff InternalSets_Un <-- Internal{Nat,C}Sets_Un InternalSets_Int <-- Internal{Nat,C}Sets_Int InternalSets_Compl <-- Internal{Nat,C}Sets_Compl InternalSets_diff <-- Internal{Nat,C}Sets_diff InternalSets_UNIV_diff <-- Internal{Nat,C}Sets_UNIV_diff InternalSets_starset_n <-- Internal{Nat,C}Sets_starset{Nat,C}_n starset_starset_n_eq <-- starset{Nat,C}_starset{Nat,C}_n_eq starset_n_starset <-- starset{Nat,C}_n_starset{Nat,C} starfun_n_starfun <-- starfun{Nat,Nat2,C,RC,CR}_n_starfun{Nat,Nat2,C,RC,CR} starfun <-- starfun{Nat,Nat2,C,RC,CR} starfun_mult <-- starfun{Nat,Nat2,C,RC,CR}_mult starfun_add <-- starfun{Nat,Nat2,C,RC,CR}_add starfun_minus <-- starfun{Nat,Nat2,C,RC,CR}_minus starfun_diff <-- starfun{C,RC,CR}_diff starfun_o <-- starfun{NatNat2,Nat2,_stafunNat,C,C_starfunRC,_starfunCR}_o starfun_o2 <-- starfun{NatNat2,_stafunNat,C,C_starfunRC,_starfunCR}_o2 starfun_const_fun <-- starfun{Nat,Nat2,C,RC,CR}_const_fun starfun_inverse <-- starfun{Nat,C,RC,CR}_inverse starfun_eq <-- starfun{Nat,Nat2,C,RC,CR}_eq starfun_eq_iff <-- starfun{C,RC,CR}_eq_iff starfun_Id <-- starfunC_Id starfun_approx <-- starfun{Nat,CR}_approx starfun_capprox <-- starfun{C,RC}_capprox starfun_abs <-- starfunNat_rabs starfun_lambda_cancel <-- starfun{C,CR,RC}_lambda_cancel starfun_lambda_cancel2 <-- starfun{C,CR,RC}_lambda_cancel2 starfun_mult_HFinite_approx <-- starfunCR_mult_HFinite_capprox starfun_mult_CFinite_capprox <-- starfun{C,RC}_mult_CFinite_capprox starfun_add_capprox <-- starfun{C,RC}_add_capprox starfun_add_approx <-- starfunCR_add_approx starfun_inverse_inverse <-- starfunC_inverse_inverse starfun_divide <-- starfun{C,CR,RC}_divide starfun_n <-- starfun{Nat,C}_n starfun_n_mult <-- starfun{Nat,C}_n_mult starfun_n_add <-- starfun{Nat,C}_n_add starfun_n_add_minus <-- starfunNat_n_add_minus starfun_n_const_fun <-- starfun{Nat,C}_n_const_fun starfun_n_minus <-- starfun{Nat,C}_n_minus starfun_n_eq <-- starfun{Nat,C}_n_eq star_n_add <-- {hypreal,hypnat,hcomplex}_add star_n_minus <-- {hypreal,hcomplex}_minus star_n_diff <-- {hypreal,hcomplex}_diff star_n_mult <-- {hypreal,hcomplex}_mult star_n_inverse <-- {hypreal,hcomplex}_inverse star_n_le <-- {hypreal,hypnat}_le star_n_less <-- {hypreal,hypnat}_less star_n_zero_num <-- {hypreal,hypnat,hcomplex}_zero_num star_n_one_num <-- {hypreal,hypnat,hcomplex}_one_num star_n_abs <-- hypreal_hrabs star_n_divide <-- hcomplex_divide star_of_add <-- {hypreal_of_real,hypnat_of_nat,hcomplex_of_complex}_add star_of_minus <-- {hypreal_of_real,hcomplex_of_complex}_minus star_of_diff <-- hypreal_of_real_diff star_of_mult <-- {hypreal_of_real,hypnat_of_nat,hcomplex_of_complex}_mult star_of_one <-- {hypreal_of_real,hcomplex_of_complex}_one star_of_zero <-- {hypreal_of_real,hypnat_of_nat,hcomplex_of_complex}_zero star_of_le <-- {hypreal_of_real,hypnat_of_nat}_le_iff star_of_less <-- {hypreal_of_real,hypnat_of_nat}_less_iff star_of_eq <-- {hypreal_of_real,hypnat_of_nat,hcomplex_of_complex}_eq_iff star_of_inverse <-- {hypreal_of_real,hcomplex_of_complex}_inverse star_of_divide <-- {hypreal_of_real,hcomplex_of_complex}_divide star_of_of_nat <-- {hypreal_of_real,hcomplex_of_complex}_of_nat star_of_of_int <-- {hypreal_of_real,hcomplex_of_complex}_of_int star_of_number_of <-- {hypreal,hcomplex}_number_of star_of_number_less <-- number_of_less_hypreal_of_real_iff star_of_number_le <-- number_of_le_hypreal_of_real_iff star_of_eq_number <-- hypreal_of_real_eq_number_of_iff star_of_less_number <-- hypreal_of_real_less_number_of_iff star_of_le_number <-- hypreal_of_real_le_number_of_iff star_of_power <-- hypreal_of_real_power star_of_eq_0 <-- hcomplex_of_complex_zero_iff * Hyperreal: new method "transfer" that implements the transfer principle of nonstandard analysis. With a subgoal that mentions nonstandard types like "'a star", the command "apply transfer" replaces it with an equivalent one that mentions only standard types. To be successful, all free variables must have standard types; non- standard variables must have explicit universal quantifiers. * Hyperreal: A theory of Taylor series. *** HOLCF *** * Discontinued special version of 'constdefs' (which used to support continuous functions) in favor of the general Pure one with full type-inference. * New simplification procedure for solving continuity conditions; it is much faster on terms with many nested lambda abstractions (cubic instead of exponential time). * New syntax for domain package: selector names are now optional. Parentheses should be omitted unless argument is lazy, for example: domain 'a stream = cons "'a" (lazy "'a stream") * New command 'fixrec' for defining recursive functions with pattern matching; defining multiple functions with mutual recursion is also supported. Patterns may include the constants cpair, spair, up, sinl, sinr, or any data constructor defined by the domain package. The given equations are proven as rewrite rules. See HOLCF/ex/Fixrec_ex.thy for syntax and examples. * New commands 'cpodef' and 'pcpodef' for defining predicate subtypes of cpo and pcpo types. Syntax is exactly like the 'typedef' command, but the proof obligation additionally includes an admissibility requirement. The packages generate instances of class cpo or pcpo, with continuity and strictness theorems for Rep and Abs. * HOLCF: Many theorems have been renamed according to a more standard naming scheme (INCOMPATIBILITY): foo_inject: "foo$x = foo$y ==> x = y" foo_eq: "(foo$x = foo$y) = (x = y)" foo_less: "(foo$x << foo$y) = (x << y)" foo_strict: "foo$UU = UU" foo_defined: "... ==> foo$x ~= UU" foo_defined_iff: "(foo$x = UU) = (x = UU)" *** ZF *** * ZF/ex: theories Group and Ring provide examples in abstract algebra, including the First Isomorphism Theorem (on quotienting by the kernel of a homomorphism). * ZF/Simplifier: install second copy of type solver that actually makes use of TC rules declared to Isar proof contexts (or locales); the old version is still required for ML proof scripts. *** Cube *** * Converted to Isar theory format; use locales instead of axiomatic theories. *** ML *** * Pure/library.ML: added ##>, ##>>, #>> -- higher-order counterparts for ||>, ||>>, |>>, * Pure/library.ML no longer defines its own option datatype, but uses that of the SML basis, which has constructors NONE and SOME instead of None and Some, as well as exception Option.Option instead of OPTION. The functions the, if_none, is_some, is_none have been adapted accordingly, while Option.map replaces apsome. * Pure/library.ML: the exception LIST has been given up in favour of the standard exceptions Empty and Subscript, as well as Library.UnequalLengths. Function like Library.hd and Library.tl are superceded by the standard hd and tl functions etc. A number of basic list functions are no longer exported to the ML toplevel, as they are variants of predefined functions. The following suggests how one can translate existing code: rev_append xs ys = List.revAppend (xs, ys) nth_elem (i, xs) = List.nth (xs, i) last_elem xs = List.last xs flat xss = List.concat xss seq fs = List.app fs partition P xs = List.partition P xs mapfilter f xs = List.mapPartial f xs * Pure/library.ML: several combinators for linear functional transformations, notably reverse application and composition: x |> f f #> g (x, y) |-> f f #-> g * Pure/library.ML: introduced/changed precedence of infix operators: infix 1 |> |-> ||> ||>> |>> |>>> #> #->; infix 2 ?; infix 3 o oo ooo oooo; infix 4 ~~ upto downto; Maybe INCOMPATIBILITY when any of those is used in conjunction with other infix operators. * Pure/library.ML: natural list combinators fold, fold_rev, and fold_map support linear functional transformations and nesting. For example: fold f [x1, ..., xN] y = y |> f x1 |> ... |> f xN (fold o fold) f [xs1, ..., xsN] y = y |> fold f xs1 |> ... |> fold f xsN fold f [x1, ..., xN] = f x1 #> ... #> f xN (fold o fold) f [xs1, ..., xsN] = fold f xs1 #> ... #> fold f xsN * Pure/library.ML: the following selectors on type 'a option are available: the: 'a option -> 'a (*partial*) these: 'a option -> 'a where 'a = 'b list the_default: 'a -> 'a option -> 'a the_list: 'a option -> 'a list * Pure/General: structure AList (cf. Pure/General/alist.ML) provides basic operations for association lists, following natural argument order; moreover the explicit equality predicate passed here avoids potentially expensive polymorphic runtime equality checks. The old functions may be expressed as follows: assoc = uncurry (AList.lookup (op =)) assocs = these oo AList.lookup (op =) overwrite = uncurry (AList.update (op =)) o swap * Pure/General: structure AList (cf. Pure/General/alist.ML) provides val make: ('a -> 'b) -> 'a list -> ('a * 'b) list val find: ('a * 'b -> bool) -> ('c * 'b) list -> 'a -> 'c list replacing make_keylist and keyfilter (occassionally used) Naive rewrites: make_keylist = AList.make keyfilter = AList.find (op =) * eq_fst and eq_snd now take explicit equality parameter, thus avoiding eqtypes. Naive rewrites: eq_fst = eq_fst (op =) eq_snd = eq_snd (op =) * Removed deprecated apl and apr (rarely used). Naive rewrites: apl (n, op) =>>= curry op n apr (op, m) =>>= fn n => op (n, m) * Pure/General: structure OrdList (cf. Pure/General/ord_list.ML) provides a reasonably efficient light-weight implementation of sets as lists. * Pure/General: generic tables (cf. Pure/General/table.ML) provide a few new operations; existing lookup and update are now curried to follow natural argument order (for use with fold etc.); INCOMPATIBILITY, use (uncurry Symtab.lookup) etc. as last resort. * Pure/General: output via the Isabelle channels of writeln/warning/error etc. is now passed through Output.output, with a hook for arbitrary transformations depending on the print_mode (cf. Output.add_mode -- the first active mode that provides a output function wins). Already formatted output may be embedded into further text via Output.raw; the result of Pretty.string_of/str_of and derived functions (string_of_term/cterm/thm etc.) is already marked raw to accommodate easy composition of diagnostic messages etc. Programmers rarely need to care about Output.output or Output.raw at all, with some notable exceptions: Output.output is required when bypassing the standard channels (writeln etc.), or in token translations to produce properly formatted results; Output.raw is required when capturing already output material that will eventually be presented to the user a second time. For the default print mode, both Output.output and Output.raw have no effect. * Pure/General: Output.time_accumulator NAME creates an operator ('a -> 'b) -> 'a -> 'b to measure runtime and count invocations; the cumulative results are displayed at the end of a batch session. * Pure/General: File.sysify_path and File.quote_sysify path have been replaced by File.platform_path and File.shell_path (with appropriate hooks). This provides a clean interface for unusual systems where the internal and external process view of file names are different. * Pure: more efficient orders for basic syntactic entities: added fast_string_ord, fast_indexname_ord, fast_term_ord; changed sort_ord and typ_ord to use fast_string_ord and fast_indexname_ord (term_ord is NOT affected); structures Symtab, Vartab, Typtab, Termtab use the fast orders now -- potential INCOMPATIBILITY for code that depends on a particular order for Symtab.keys, Symtab.dest, etc. (consider using Library.sort_strings on result). * Pure/term.ML: combinators fold_atyps, fold_aterms, fold_term_types, fold_types traverse types/terms from left to right, observing natural argument order. Supercedes previous foldl_XXX versions, add_frees, add_vars etc. have been adapted as well: INCOMPATIBILITY. * Pure: name spaces have been refined, with significant changes of the internal interfaces -- INCOMPATIBILITY. Renamed cond_extern(_table) to extern(_table). The plain name entry path is superceded by a general 'naming' context, which also includes the 'policy' to produce a fully qualified name and external accesses of a fully qualified name; NameSpace.extend is superceded by context dependent Sign.declare_name. Several theory and proof context operations modify the naming context. Especially note Theory.restore_naming and ProofContext.restore_naming to get back to a sane state; note that Theory.add_path is no longer sufficient to recover from Theory.absolute_path in particular. * Pure: new flags short_names (default false) and unique_names (default true) for controlling output of qualified names. If short_names is set, names are printed unqualified. If unique_names is reset, the name prefix is reduced to the minimum required to achieve the original result when interning again, even if there is an overlap with earlier declarations. * Pure/TheoryDataFun: change of the argument structure; 'prep_ext' is now 'extend', and 'merge' gets an additional Pretty.pp argument (useful for printing error messages). INCOMPATIBILITY. * Pure: major reorganization of the theory context. Type Sign.sg and Theory.theory are now identified, referring to the universal Context.theory (see Pure/context.ML). Actual signature and theory content is managed as theory data. The old code and interfaces were spread over many files and structures; the new arrangement introduces considerable INCOMPATIBILITY to gain more clarity: Context -- theory management operations (name, identity, inclusion, parents, ancestors, merge, etc.), plus generic theory data;