src/HOL/BNF_Greatest_Fixpoint.thy
author wenzelm
Tue Sep 26 20:54:40 2017 +0200 (22 months ago)
changeset 66695 91500c024c7f
parent 66248 df85956228c2
child 67091 1393c2340eec
permissions -rw-r--r--
tuned;
     1 (*  Title:      HOL/BNF_Greatest_Fixpoint.thy
     2     Author:     Dmitriy Traytel, TU Muenchen
     3     Author:     Lorenz Panny, TU Muenchen
     4     Author:     Jasmin Blanchette, TU Muenchen
     5     Copyright   2012, 2013, 2014
     6 
     7 Greatest fixpoint (codatatype) operation on bounded natural functors.
     8 *)
     9 
    10 section \<open>Greatest Fixpoint (Codatatype) Operation on Bounded Natural Functors\<close>
    11 
    12 theory BNF_Greatest_Fixpoint
    13 imports BNF_Fixpoint_Base String
    14 keywords
    15   "codatatype" :: thy_decl and
    16   "primcorecursive" :: thy_goal and
    17   "primcorec" :: thy_decl
    18 begin
    19 
    20 alias proj = Equiv_Relations.proj
    21 
    22 lemma one_pointE: "\<lbrakk>\<And>x. s = x \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P"
    23   by simp
    24 
    25 lemma obj_sumE: "\<lbrakk>\<forall>x. s = Inl x \<longrightarrow> P; \<forall>x. s = Inr x \<longrightarrow> P\<rbrakk> \<Longrightarrow> P"
    26   by (cases s) auto
    27 
    28 lemma not_TrueE: "\<not> True \<Longrightarrow> P"
    29   by (erule notE, rule TrueI)
    30 
    31 lemma neq_eq_eq_contradict: "\<lbrakk>t \<noteq> u; s = t; s = u\<rbrakk> \<Longrightarrow> P"
    32   by fast
    33 
    34 lemma converse_Times: "(A \<times> B) ^-1 = B \<times> A"
    35   by fast
    36 
    37 lemma equiv_proj:
    38   assumes e: "equiv A R" and m: "z \<in> R"
    39   shows "(proj R o fst) z = (proj R o snd) z"
    40 proof -
    41   from m have z: "(fst z, snd z) \<in> R" by auto
    42   with e have "\<And>x. (fst z, x) \<in> R \<Longrightarrow> (snd z, x) \<in> R" "\<And>x. (snd z, x) \<in> R \<Longrightarrow> (fst z, x) \<in> R"
    43     unfolding equiv_def sym_def trans_def by blast+
    44   then show ?thesis unfolding proj_def[abs_def] by auto
    45 qed
    46 
    47 (* Operators: *)
    48 definition image2 where "image2 A f g = {(f a, g a) | a. a \<in> A}"
    49 
    50 lemma Id_on_Gr: "Id_on A = Gr A id"
    51   unfolding Id_on_def Gr_def by auto
    52 
    53 lemma image2_eqI: "\<lbrakk>b = f x; c = g x; x \<in> A\<rbrakk> \<Longrightarrow> (b, c) \<in> image2 A f g"
    54   unfolding image2_def by auto
    55 
    56 lemma IdD: "(a, b) \<in> Id \<Longrightarrow> a = b"
    57   by auto
    58 
    59 lemma image2_Gr: "image2 A f g = (Gr A f)^-1 O (Gr A g)"
    60   unfolding image2_def Gr_def by auto
    61 
    62 lemma GrD1: "(x, fx) \<in> Gr A f \<Longrightarrow> x \<in> A"
    63   unfolding Gr_def by simp
    64 
    65 lemma GrD2: "(x, fx) \<in> Gr A f \<Longrightarrow> f x = fx"
    66   unfolding Gr_def by simp
    67 
    68 lemma Gr_incl: "Gr A f \<subseteq> A \<times> B \<longleftrightarrow> f ` A \<subseteq> B"
    69   unfolding Gr_def by auto
    70 
    71 lemma subset_Collect_iff: "B \<subseteq> A \<Longrightarrow> (B \<subseteq> {x \<in> A. P x}) = (\<forall>x \<in> B. P x)"
    72   by blast
    73 
    74 lemma subset_CollectI: "B \<subseteq> A \<Longrightarrow> (\<And>x. x \<in> B \<Longrightarrow> Q x \<Longrightarrow> P x) \<Longrightarrow> ({x \<in> B. Q x} \<subseteq> {x \<in> A. P x})"
    75   by blast
    76 
    77 lemma in_rel_Collect_case_prod_eq: "in_rel (Collect (case_prod X)) = X"
    78   unfolding fun_eq_iff by auto
    79 
    80 lemma Collect_case_prod_in_rel_leI: "X \<subseteq> Y \<Longrightarrow> X \<subseteq> Collect (case_prod (in_rel Y))"
    81   by auto
    82 
    83 lemma Collect_case_prod_in_rel_leE: "X \<subseteq> Collect (case_prod (in_rel Y)) \<Longrightarrow> (X \<subseteq> Y \<Longrightarrow> R) \<Longrightarrow> R"
    84   by force
    85 
    86 lemma conversep_in_rel: "(in_rel R)\<inverse>\<inverse> = in_rel (R\<inverse>)"
    87   unfolding fun_eq_iff by auto
    88 
    89 lemma relcompp_in_rel: "in_rel R OO in_rel S = in_rel (R O S)"
    90   unfolding fun_eq_iff by auto
    91 
    92 lemma in_rel_Gr: "in_rel (Gr A f) = Grp A f"
    93   unfolding Gr_def Grp_def fun_eq_iff by auto
    94 
    95 definition relImage where
    96   "relImage R f \<equiv> {(f a1, f a2) | a1 a2. (a1,a2) \<in> R}"
    97 
    98 definition relInvImage where
    99   "relInvImage A R f \<equiv> {(a1, a2) | a1 a2. a1 \<in> A \<and> a2 \<in> A \<and> (f a1, f a2) \<in> R}"
   100 
   101 lemma relImage_Gr:
   102   "\<lbrakk>R \<subseteq> A \<times> A\<rbrakk> \<Longrightarrow> relImage R f = (Gr A f)^-1 O R O Gr A f"
   103   unfolding relImage_def Gr_def relcomp_def by auto
   104 
   105 lemma relInvImage_Gr: "\<lbrakk>R \<subseteq> B \<times> B\<rbrakk> \<Longrightarrow> relInvImage A R f = Gr A f O R O (Gr A f)^-1"
   106   unfolding Gr_def relcomp_def image_def relInvImage_def by auto
   107 
   108 lemma relImage_mono:
   109   "R1 \<subseteq> R2 \<Longrightarrow> relImage R1 f \<subseteq> relImage R2 f"
   110   unfolding relImage_def by auto
   111 
   112 lemma relInvImage_mono:
   113   "R1 \<subseteq> R2 \<Longrightarrow> relInvImage A R1 f \<subseteq> relInvImage A R2 f"
   114   unfolding relInvImage_def by auto
   115 
   116 lemma relInvImage_Id_on:
   117   "(\<And>a1 a2. f a1 = f a2 \<longleftrightarrow> a1 = a2) \<Longrightarrow> relInvImage A (Id_on B) f \<subseteq> Id"
   118   unfolding relInvImage_def Id_on_def by auto
   119 
   120 lemma relInvImage_UNIV_relImage:
   121   "R \<subseteq> relInvImage UNIV (relImage R f) f"
   122   unfolding relInvImage_def relImage_def by auto
   123 
   124 lemma relImage_proj:
   125   assumes "equiv A R"
   126   shows "relImage R (proj R) \<subseteq> Id_on (A//R)"
   127   unfolding relImage_def Id_on_def
   128   using proj_iff[OF assms] equiv_class_eq_iff[OF assms]
   129   by (auto simp: proj_preserves)
   130 
   131 lemma relImage_relInvImage:
   132   assumes "R \<subseteq> f ` A \<times> f ` A"
   133   shows "relImage (relInvImage A R f) f = R"
   134   using assms unfolding relImage_def relInvImage_def by fast
   135 
   136 lemma subst_Pair: "P x y \<Longrightarrow> a = (x, y) \<Longrightarrow> P (fst a) (snd a)"
   137   by simp
   138 
   139 lemma fst_diag_id: "(fst \<circ> (\<lambda>x. (x, x))) z = id z" by simp
   140 lemma snd_diag_id: "(snd \<circ> (\<lambda>x. (x, x))) z = id z" by simp
   141 
   142 lemma fst_diag_fst: "fst o ((\<lambda>x. (x, x)) o fst) = fst" by auto
   143 lemma snd_diag_fst: "snd o ((\<lambda>x. (x, x)) o fst) = fst" by auto
   144 lemma fst_diag_snd: "fst o ((\<lambda>x. (x, x)) o snd) = snd" by auto
   145 lemma snd_diag_snd: "snd o ((\<lambda>x. (x, x)) o snd) = snd" by auto
   146 
   147 definition Succ where "Succ Kl kl = {k . kl @ [k] \<in> Kl}"
   148 definition Shift where "Shift Kl k = {kl. k # kl \<in> Kl}"
   149 definition shift where "shift lab k = (\<lambda>kl. lab (k # kl))"
   150 
   151 lemma empty_Shift: "\<lbrakk>[] \<in> Kl; k \<in> Succ Kl []\<rbrakk> \<Longrightarrow> [] \<in> Shift Kl k"
   152   unfolding Shift_def Succ_def by simp
   153 
   154 lemma SuccD: "k \<in> Succ Kl kl \<Longrightarrow> kl @ [k] \<in> Kl"
   155   unfolding Succ_def by simp
   156 
   157 lemmas SuccE = SuccD[elim_format]
   158 
   159 lemma SuccI: "kl @ [k] \<in> Kl \<Longrightarrow> k \<in> Succ Kl kl"
   160   unfolding Succ_def by simp
   161 
   162 lemma ShiftD: "kl \<in> Shift Kl k \<Longrightarrow> k # kl \<in> Kl"
   163   unfolding Shift_def by simp
   164 
   165 lemma Succ_Shift: "Succ (Shift Kl k) kl = Succ Kl (k # kl)"
   166   unfolding Succ_def Shift_def by auto
   167 
   168 lemma length_Cons: "length (x # xs) = Suc (length xs)"
   169   by simp
   170 
   171 lemma length_append_singleton: "length (xs @ [x]) = Suc (length xs)"
   172   by simp
   173 
   174 (*injection into the field of a cardinal*)
   175 definition "toCard_pred A r f \<equiv> inj_on f A \<and> f ` A \<subseteq> Field r \<and> Card_order r"
   176 definition "toCard A r \<equiv> SOME f. toCard_pred A r f"
   177 
   178 lemma ex_toCard_pred:
   179   "\<lbrakk>|A| \<le>o r; Card_order r\<rbrakk> \<Longrightarrow> \<exists> f. toCard_pred A r f"
   180   unfolding toCard_pred_def
   181   using card_of_ordLeq[of A "Field r"]
   182     ordLeq_ordIso_trans[OF _ card_of_unique[of "Field r" r], of "|A|"]
   183   by blast
   184 
   185 lemma toCard_pred_toCard:
   186   "\<lbrakk>|A| \<le>o r; Card_order r\<rbrakk> \<Longrightarrow> toCard_pred A r (toCard A r)"
   187   unfolding toCard_def using someI_ex[OF ex_toCard_pred] .
   188 
   189 lemma toCard_inj: "\<lbrakk>|A| \<le>o r; Card_order r; x \<in> A; y \<in> A\<rbrakk> \<Longrightarrow> toCard A r x = toCard A r y \<longleftrightarrow> x = y"
   190   using toCard_pred_toCard unfolding inj_on_def toCard_pred_def by blast
   191 
   192 definition "fromCard A r k \<equiv> SOME b. b \<in> A \<and> toCard A r b = k"
   193 
   194 lemma fromCard_toCard:
   195   "\<lbrakk>|A| \<le>o r; Card_order r; b \<in> A\<rbrakk> \<Longrightarrow> fromCard A r (toCard A r b) = b"
   196   unfolding fromCard_def by (rule some_equality) (auto simp add: toCard_inj)
   197 
   198 lemma Inl_Field_csum: "a \<in> Field r \<Longrightarrow> Inl a \<in> Field (r +c s)"
   199   unfolding Field_card_of csum_def by auto
   200 
   201 lemma Inr_Field_csum: "a \<in> Field s \<Longrightarrow> Inr a \<in> Field (r +c s)"
   202   unfolding Field_card_of csum_def by auto
   203 
   204 lemma rec_nat_0_imp: "f = rec_nat f1 (\<lambda>n rec. f2 n rec) \<Longrightarrow> f 0 = f1"
   205   by auto
   206 
   207 lemma rec_nat_Suc_imp: "f = rec_nat f1 (\<lambda>n rec. f2 n rec) \<Longrightarrow> f (Suc n) = f2 n (f n)"
   208   by auto
   209 
   210 lemma rec_list_Nil_imp: "f = rec_list f1 (\<lambda>x xs rec. f2 x xs rec) \<Longrightarrow> f [] = f1"
   211   by auto
   212 
   213 lemma rec_list_Cons_imp: "f = rec_list f1 (\<lambda>x xs rec. f2 x xs rec) \<Longrightarrow> f (x # xs) = f2 x xs (f xs)"
   214   by auto
   215 
   216 lemma not_arg_cong_Inr: "x \<noteq> y \<Longrightarrow> Inr x \<noteq> Inr y"
   217   by simp
   218 
   219 definition image2p where
   220   "image2p f g R = (\<lambda>x y. \<exists>x' y'. R x' y' \<and> f x' = x \<and> g y' = y)"
   221 
   222 lemma image2pI: "R x y \<Longrightarrow> image2p f g R (f x) (g y)"
   223   unfolding image2p_def by blast
   224 
   225 lemma image2pE: "\<lbrakk>image2p f g R fx gy; (\<And>x y. fx = f x \<Longrightarrow> gy = g y \<Longrightarrow> R x y \<Longrightarrow> P)\<rbrakk> \<Longrightarrow> P"
   226   unfolding image2p_def by blast
   227 
   228 lemma rel_fun_iff_geq_image2p: "rel_fun R S f g = (image2p f g R \<le> S)"
   229   unfolding rel_fun_def image2p_def by auto
   230 
   231 lemma rel_fun_image2p: "rel_fun R (image2p f g R) f g"
   232   unfolding rel_fun_def image2p_def by auto
   233 
   234 
   235 subsection \<open>Equivalence relations, quotients, and Hilbert's choice\<close>
   236 
   237 lemma equiv_Eps_in:
   238 "\<lbrakk>equiv A r; X \<in> A//r\<rbrakk> \<Longrightarrow> Eps (\<lambda>x. x \<in> X) \<in> X"
   239   apply (rule someI2_ex)
   240   using in_quotient_imp_non_empty by blast
   241 
   242 lemma equiv_Eps_preserves:
   243   assumes ECH: "equiv A r" and X: "X \<in> A//r"
   244   shows "Eps (\<lambda>x. x \<in> X) \<in> A"
   245   apply (rule in_mono[rule_format])
   246    using assms apply (rule in_quotient_imp_subset)
   247   by (rule equiv_Eps_in) (rule assms)+
   248 
   249 lemma proj_Eps:
   250   assumes "equiv A r" and "X \<in> A//r"
   251   shows "proj r (Eps (\<lambda>x. x \<in> X)) = X"
   252 unfolding proj_def
   253 proof auto
   254   fix x assume x: "x \<in> X"
   255   thus "(Eps (\<lambda>x. x \<in> X), x) \<in> r" using assms equiv_Eps_in in_quotient_imp_in_rel by fast
   256 next
   257   fix x assume "(Eps (\<lambda>x. x \<in> X),x) \<in> r"
   258   thus "x \<in> X" using in_quotient_imp_closed[OF assms equiv_Eps_in[OF assms]] by fast
   259 qed
   260 
   261 definition univ where "univ f X == f (Eps (\<lambda>x. x \<in> X))"
   262 
   263 lemma univ_commute:
   264 assumes ECH: "equiv A r" and RES: "f respects r" and x: "x \<in> A"
   265 shows "(univ f) (proj r x) = f x"
   266 proof (unfold univ_def)
   267   have prj: "proj r x \<in> A//r" using x proj_preserves by fast
   268   hence "Eps (\<lambda>y. y \<in> proj r x) \<in> A" using ECH equiv_Eps_preserves by fast
   269   moreover have "proj r (Eps (\<lambda>y. y \<in> proj r x)) = proj r x" using ECH prj proj_Eps by fast
   270   ultimately have "(x, Eps (\<lambda>y. y \<in> proj r x)) \<in> r" using x ECH proj_iff by fast
   271   thus "f (Eps (\<lambda>y. y \<in> proj r x)) = f x" using RES unfolding congruent_def by fastforce
   272 qed
   273 
   274 lemma univ_preserves:
   275   assumes ECH: "equiv A r" and RES: "f respects r" and PRES: "\<forall>x \<in> A. f x \<in> B"
   276   shows "\<forall>X \<in> A//r. univ f X \<in> B"
   277 proof
   278   fix X assume "X \<in> A//r"
   279   then obtain x where x: "x \<in> A" and X: "X = proj r x" using ECH proj_image[of r A] by blast
   280   hence "univ f X = f x" using ECH RES univ_commute by fastforce
   281   thus "univ f X \<in> B" using x PRES by simp
   282 qed
   283 
   284 ML_file "Tools/BNF/bnf_gfp_util.ML"
   285 ML_file "Tools/BNF/bnf_gfp_tactics.ML"
   286 ML_file "Tools/BNF/bnf_gfp.ML"
   287 ML_file "Tools/BNF/bnf_gfp_rec_sugar_tactics.ML"
   288 ML_file "Tools/BNF/bnf_gfp_rec_sugar.ML"
   289 
   290 end