src/HOL/WF_Rel.thy
author berghofe
Tue, 30 May 2000 18:02:49 +0200
changeset 9001 93af64f54bf2
parent 8703 816d8f6513be
child 9361 8b09c29453ac
permissions -rw-r--r--
the is now defined using primrec, avoiding explicit use of arbitrary.

(*  Title:      HOL/WF_Rel
    ID:         $Id$
    Author:     Konrad Slind
    Copyright   1995 TU Munich

Derived WF relations: inverse image, lexicographic product, measure, ...

The simple relational product, in which (x',y')<(x,y) iff x'<x and y'<y, is a
subset of the lexicographic product, and therefore does not need to be defined
separately.
*)

WF_Rel = Finite +

(* actually belongs to Finite.thy *)
instance "*" :: (finite,finite) finite   (finite_Prod) 

consts
  less_than :: "(nat*nat)set"
  inv_image :: "('b * 'b)set => ('a => 'b) => ('a * 'a)set"
  measure   :: "('a => nat) => ('a * 'a)set"
  lex_prod  :: "[('a*'a)set, ('b*'b)set] => (('a*'b)*('a*'b))set"
               (infixr "<*lex*>" 80)
  finite_psubset  :: "('a set * 'a set) set"


defs
  less_than_def "less_than == trancl pred_nat"

  inv_image_def "inv_image r f == {(x,y). (f(x), f(y)) : r}"

  measure_def   "measure == inv_image less_than"

  lex_prod_def  "ra <*lex*> rb == {((a,b),(a',b')) | a a' b b'.
                                   ((a,a') : ra | a=a' & (b,b') : rb)}"

  (* finite proper subset*)
  finite_psubset_def "finite_psubset == {(A,B). A < B & finite B}"
end