src/HOL/indrule.ML
author paulson
Mon Oct 07 10:28:44 1996 +0200 (1996-10-07)
changeset 2056 93c093620c28
parent 2031 03a843f0f447
child 2270 d7513875b2b8
permissions -rw-r--r--
Removed commands made redundant by new one-point rules
     1 (*  Title:      HOL/indrule.ML
     2     ID:         $Id$
     3     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     4     Copyright   1994  University of Cambridge
     5 
     6 Induction rule module -- for Inductive/Coinductive Definitions
     7 
     8 Proves a strong induction rule and a mutual induction rule
     9 *)
    10 
    11 signature INDRULE =
    12   sig
    13   val induct        : thm                       (*main induction rule*)
    14   val mutual_induct : thm                       (*mutual induction rule*)
    15   end;
    16 
    17 
    18 functor Indrule_Fun
    19     (structure Inductive: sig include INDUCTIVE_ARG INDUCTIVE_I end and
    20          Intr_elim: sig include INTR_ELIM INTR_ELIM_AUX end) : INDRULE  =
    21 let
    22 
    23 val sign = sign_of Inductive.thy;
    24 
    25 val (Const(_,recT),rec_params) = strip_comb (hd Inductive.rec_tms);
    26 
    27 val elem_type = Ind_Syntax.dest_setT (body_type recT);
    28 val big_rec_name = space_implode "_" Intr_elim.rec_names;
    29 val big_rec_tm = list_comb(Const(big_rec_name,recT), rec_params);
    30 
    31 val _ = writeln "  Proving the induction rule...";
    32 
    33 (*** Prove the main induction rule ***)
    34 
    35 val pred_name = "P";            (*name for predicate variables*)
    36 
    37 val big_rec_def::part_rec_defs = Intr_elim.defs;
    38 
    39 (*Used to express induction rules: adds induction hypotheses.
    40    ind_alist = [(rec_tm1,pred1),...]  -- associates predicates with rec ops
    41    prem is a premise of an intr rule*)
    42 fun add_induct_prem ind_alist (prem as Const("Trueprop",_) $ 
    43                  (Const("op :",_)$t$X), iprems) =
    44      (case gen_assoc (op aconv) (ind_alist, X) of
    45           Some pred => prem :: Ind_Syntax.mk_Trueprop (pred $ t) :: iprems
    46         | None => (*possibly membership in M(rec_tm), for M monotone*)
    47             let fun mk_sb (rec_tm,pred) = 
    48                  (case binder_types (fastype_of pred) of
    49                       [T] => (rec_tm, 
    50                               Ind_Syntax.Int_const T $ rec_tm $ 
    51                                 (Ind_Syntax.Collect_const T $ pred))
    52                     | _ => error 
    53                       "Bug: add_induct_prem called with non-unary predicate")
    54             in  subst_free (map mk_sb ind_alist) prem :: iprems  end)
    55   | add_induct_prem ind_alist (prem,iprems) = prem :: iprems;
    56 
    57 (*Make a premise of the induction rule.*)
    58 fun induct_prem ind_alist intr =
    59   let val quantfrees = map dest_Free (term_frees intr \\ rec_params)
    60       val iprems = foldr (add_induct_prem ind_alist)
    61                          (Logic.strip_imp_prems intr,[])
    62       val (t,X) = Ind_Syntax.rule_concl intr
    63       val (Some pred) = gen_assoc (op aconv) (ind_alist, X)
    64       val concl = Ind_Syntax.mk_Trueprop (pred $ t)
    65   in list_all_free (quantfrees, Logic.list_implies (iprems,concl)) end
    66   handle Bind => error"Recursion term not found in conclusion";
    67 
    68 (*Avoids backtracking by delivering the correct premise to each goal*)
    69 fun ind_tac [] 0 = all_tac
    70   | ind_tac(prem::prems) i = 
    71         DEPTH_SOLVE_1 (ares_tac [Part_eqI, prem, refl] i) THEN
    72         ind_tac prems (i-1);
    73 
    74 val pred = Free(pred_name, elem_type --> Ind_Syntax.boolT);
    75 
    76 val ind_prems = map (induct_prem (map (rpair pred) Inductive.rec_tms)) 
    77                     Inductive.intr_tms;
    78 
    79 (*Debugging code...
    80 val _ = writeln "ind_prems = ";
    81 val _ = seq (writeln o Sign.string_of_term sign) ind_prems;
    82 *)
    83 
    84 (*We use a MINIMAL simpset because others (such as HOL_ss) contain too many
    85   simplifications.  If the premises get simplified, then the proofs will 
    86   fail.  This arose with a premise of the form {(F n,G n)|n . True}, which
    87   expanded to something containing ...&True. *)
    88 val min_ss = empty_ss
    89       setmksimps (mksimps mksimps_pairs)
    90       setsolver (fn prems => resolve_tac (TrueI::refl::prems) ORELSE' atac
    91                              ORELSE' etac FalseE);
    92 
    93 val quant_induct = 
    94     prove_goalw_cterm part_rec_defs 
    95       (cterm_of sign 
    96        (Logic.list_implies (ind_prems, 
    97                             Ind_Syntax.mk_Trueprop (Ind_Syntax.mk_all_imp 
    98                                                     (big_rec_tm,pred)))))
    99       (fn prems =>
   100        [rtac (impI RS allI) 1,
   101         DETERM (etac Intr_elim.raw_induct 1),
   102         full_simp_tac (min_ss addsimps [Part_Collect]) 1,
   103         REPEAT (FIRSTGOAL (eresolve_tac [IntE, CollectE, exE, conjE, disjE] 
   104                            ORELSE' hyp_subst_tac)),
   105         ind_tac (rev prems) (length prems)])
   106     handle e => print_sign_exn sign e;
   107 
   108 (*** Prove the simultaneous induction rule ***)
   109 
   110 (*Make distinct predicates for each inductive set.
   111   Splits cartesian products in elem_type, however nested*)
   112 
   113 (*The components of the element type, several if it is a product*)
   114 val elem_factors = Prod_Syntax.factors elem_type;
   115 val elem_frees = mk_frees "za" elem_factors;
   116 val elem_tuple = Prod_Syntax.mk_tuple elem_type elem_frees;
   117 
   118 (*Given a recursive set, return the "split" predicate
   119   and a conclusion for the simultaneous induction rule*)
   120 fun mk_predpair rec_tm = 
   121   let val rec_name = (#1 o dest_Const o head_of) rec_tm
   122       val pfree = Free(pred_name ^ "_" ^ rec_name, 
   123                        elem_factors ---> Ind_Syntax.boolT)
   124       val qconcl = 
   125         foldr Ind_Syntax.mk_all 
   126           (elem_frees, 
   127            Ind_Syntax.imp $ (Ind_Syntax.mk_mem (elem_tuple, rec_tm))
   128                 $ (list_comb (pfree, elem_frees)))
   129   in  (Prod_Syntax.ap_split elem_type Ind_Syntax.boolT pfree, 
   130        qconcl)  
   131   end;
   132 
   133 val (preds,qconcls) = split_list (map mk_predpair Inductive.rec_tms);
   134 
   135 (*Used to form simultaneous induction lemma*)
   136 fun mk_rec_imp (rec_tm,pred) = 
   137     Ind_Syntax.imp $ (Ind_Syntax.mk_mem (Bound 0, rec_tm)) $  (pred $ Bound 0);
   138 
   139 (*To instantiate the main induction rule*)
   140 val induct_concl = 
   141     Ind_Syntax.mk_Trueprop
   142       (Ind_Syntax.mk_all_imp
   143        (big_rec_tm,
   144         Abs("z", elem_type, 
   145             fold_bal (app Ind_Syntax.conj) 
   146             (map mk_rec_imp (Inductive.rec_tms~~preds)))))
   147 and mutual_induct_concl = 
   148     Ind_Syntax.mk_Trueprop (fold_bal (app Ind_Syntax.conj) qconcls);
   149 
   150 val lemma_tac = FIRST' [eresolve_tac [asm_rl, conjE, PartE, mp],
   151                         resolve_tac [allI, impI, conjI, Part_eqI, refl],
   152                         dresolve_tac [spec, mp, splitD]];
   153 
   154 val lemma = (*makes the link between the two induction rules*)
   155     prove_goalw_cterm part_rec_defs 
   156           (cterm_of sign (Logic.mk_implies (induct_concl,
   157                                             mutual_induct_concl)))
   158           (fn prems =>
   159            [cut_facts_tac prems 1,
   160             REPEAT (rewrite_goals_tac [split RS eq_reflection] THEN
   161                     lemma_tac 1)])
   162     handle e => print_sign_exn sign e;
   163 
   164 (*Mutual induction follows by freeness of Inl/Inr.*)
   165 
   166 (*Simplification largely reduces the mutual induction rule to the 
   167   standard rule*)
   168 val mut_ss = min_ss addsimps [Inl_not_Inr, Inr_not_Inl, Inl_eq, Inr_eq, split];
   169 
   170 val all_defs = [split RS eq_reflection] @ Inductive.con_defs @ part_rec_defs;
   171 
   172 (*Removes Collects caused by M-operators in the intro rules*)
   173 val cmonos = [subset_refl RS Int_Collect_mono] RL Inductive.monos RLN
   174              (2,[rev_subsetD]);
   175 
   176 (*Avoids backtracking by delivering the correct premise to each goal*)
   177 fun mutual_ind_tac [] 0 = all_tac
   178   | mutual_ind_tac(prem::prems) i = 
   179       DETERM
   180        (SELECT_GOAL 
   181           (
   182            (*Simplify the assumptions and goal by unfolding Part and
   183              using freeness of the Sum constructors; proves all but one
   184              conjunct by contradiction*)
   185            rewrite_goals_tac all_defs  THEN
   186            simp_tac (mut_ss addsimps [Part_def]) 1  THEN
   187            IF_UNSOLVED (*simp_tac may have finished it off!*)
   188              ((*simplify assumptions*)
   189               full_simp_tac mut_ss 1  THEN
   190               (*unpackage and use "prem" in the corresponding place*)
   191               REPEAT (rtac impI 1)  THEN
   192               rtac (rewrite_rule all_defs prem) 1  THEN
   193               (*prem must not be REPEATed below: could loop!*)
   194               DEPTH_SOLVE (FIRSTGOAL (ares_tac [impI] ORELSE' 
   195                                       eresolve_tac (conjE::mp::cmonos))))
   196           ) i)
   197        THEN mutual_ind_tac prems (i-1);
   198 
   199 val _ = writeln "  Proving the mutual induction rule...";
   200 
   201 val mutual_induct_split = 
   202     prove_goalw_cterm []
   203           (cterm_of sign
   204            (Logic.list_implies (map (induct_prem (Inductive.rec_tms ~~ preds)) 
   205                               Inductive.intr_tms,
   206                           mutual_induct_concl)))
   207           (fn prems =>
   208            [rtac (quant_induct RS lemma) 1,
   209             mutual_ind_tac (rev prems) (length prems)])
   210     handle e => print_sign_exn sign e;
   211 
   212 (** Uncurrying the predicate in the ordinary induction rule **)
   213 
   214 (*The name "x.1" comes from the "RS spec" !*)
   215 val xvar = cterm_of sign (Var(("x",1), elem_type));
   216 
   217 (*strip quantifier and instantiate the variable to a tuple*)
   218 val induct0 = quant_induct RS spec RSN (2,rev_mp) |>
   219               freezeT |>     (*Because elem_type contains TFrees not TVars*)
   220               instantiate ([], [(xvar, cterm_of sign elem_tuple)]);
   221 
   222 in
   223   struct
   224   val induct = standard 
   225                   (Prod_Syntax.split_rule_var
   226                     (Var((pred_name,2), elem_type --> Ind_Syntax.boolT),
   227                      induct0));
   228 
   229   (*Just "True" unless there's true mutual recursion.  This saves storage.*)
   230   val mutual_induct = 
   231       if length Intr_elim.rec_names > 1
   232       then Prod_Syntax.remove_split mutual_induct_split
   233       else TrueI;
   234   end
   235 end;