3 Author: Lawrence C Paulson, Cambridge University Computer Laboratory
4 Copyright 1991 University of Cambridge
6 Set theory for higher-order logic. A set is simply a predicate.
11 section "Relating predicates and sets";
13 Addsimps [Collect_mem_eq];
14 AddIffs [mem_Collect_eq];
16 goal Set.thy "!!a. P(a) ==> a : {x. P(x)}";
20 val prems = goal Set.thy "!!a. a : {x. P(x)} ==> P(a)";
21 by (Asm_full_simp_tac 1);
24 val [prem] = goal Set.thy "[| !!x. (x:A) = (x:B) |] ==> A = B";
25 by (rtac (prem RS ext RS arg_cong RS box_equals) 1);
26 by (rtac Collect_mem_eq 1);
27 by (rtac Collect_mem_eq 1);
30 val [prem] = goal Set.thy "[| !!x. P(x)=Q(x) |] ==> {x. P(x)} = {x. Q(x)}";
31 by (rtac (prem RS ext RS arg_cong) 1);
34 val CollectE = make_elim CollectD;
40 section "Bounded quantifiers";
42 val prems = goalw Set.thy [Ball_def]
43 "[| !!x. x:A ==> P(x) |] ==> ! x:A. P(x)";
44 by (REPEAT (ares_tac (prems @ [allI,impI]) 1));
47 val [major,minor] = goalw Set.thy [Ball_def]
48 "[| ! x:A. P(x); x:A |] ==> P(x)";
49 by (rtac (minor RS (major RS spec RS mp)) 1);
52 val major::prems = goalw Set.thy [Ball_def]
53 "[| ! x:A. P(x); P(x) ==> Q; x~:A ==> Q |] ==> Q";
54 by (rtac (major RS spec RS impCE) 1);
55 by (REPEAT (eresolve_tac prems 1));
58 (*Takes assumptions ! x:A.P(x) and a:A; creates assumption P(a)*)
59 fun ball_tac i = etac ballE i THEN contr_tac (i+1);
64 val prems = goalw Set.thy [Bex_def]
65 "[| P(x); x:A |] ==> ? x:A. P(x)";
66 by (REPEAT (ares_tac (prems @ [exI,conjI]) 1));
69 qed_goal "bexCI" Set.thy
70 "[| ! x:A. ~P(x) ==> P(a); a:A |] ==> ? x:A. P(x)"
73 (REPEAT (ares_tac (prems@[bexI,ballI,notI,notE]) 1)) ]);
75 val major::prems = goalw Set.thy [Bex_def]
76 "[| ? x:A. P(x); !!x. [| x:A; P(x) |] ==> Q |] ==> Q";
77 by (rtac (major RS exE) 1);
78 by (REPEAT (eresolve_tac (prems @ [asm_rl,conjE]) 1));
84 (*Trival rewrite rule*)
85 goal Set.thy "(! x:A. P) = ((? x. x:A) --> P)";
86 by (simp_tac (simpset() addsimps [Ball_def]) 1);
89 (*Dual form for existentials*)
90 goal Set.thy "(? x:A. P) = ((? x. x:A) & P)";
91 by (simp_tac (simpset() addsimps [Bex_def]) 1);
94 Addsimps [ball_triv, bex_triv];
96 (** Congruence rules **)
98 val prems = goal Set.thy
99 "[| A=B; !!x. x:B ==> P(x) = Q(x) |] ==> \
100 \ (! x:A. P(x)) = (! x:B. Q(x))";
101 by (resolve_tac (prems RL [ssubst]) 1);
102 by (REPEAT (ares_tac [ballI,iffI] 1
103 ORELSE eresolve_tac ([make_elim bspec, mp] @ (prems RL [iffE])) 1));
106 val prems = goal Set.thy
107 "[| A=B; !!x. x:B ==> P(x) = Q(x) |] ==> \
108 \ (? x:A. P(x)) = (? x:B. Q(x))";
109 by (resolve_tac (prems RL [ssubst]) 1);
110 by (REPEAT (etac bexE 1
111 ORELSE ares_tac ([bexI,iffI] @ (prems RL [iffD1,iffD2])) 1));
116 val prems = goalw Set.thy [subset_def] "(!!x. x:A ==> x:B) ==> A <= B";
117 by (REPEAT (ares_tac (prems @ [ballI]) 1));
120 Blast.overload ("op <=", domain_type); (*The <= relation is overloaded*)
122 (*While (:) is not, its type must be kept
123 for overloading of = to work.*)
124 Blast.overload ("op :", domain_type);
125 seq (fn a => Blast.overload (a, HOLogic.dest_setT o domain_type))
127 (*need UNION, INTER also?*)
130 (*Rule in Modus Ponens style*)
131 val major::prems = goalw Set.thy [subset_def] "[| A <= B; c:A |] ==> c:B";
132 by (rtac (major RS bspec) 1);
133 by (resolve_tac prems 1);
136 (*The same, with reversed premises for use with etac -- cf rev_mp*)
137 qed_goal "rev_subsetD" Set.thy "[| c:A; A <= B |] ==> c:B"
138 (fn prems=> [ (REPEAT (resolve_tac (prems@[subsetD]) 1)) ]);
140 (*Converts A<=B to x:A ==> x:B*)
141 fun impOfSubs th = th RSN (2, rev_subsetD);
143 qed_goal "contra_subsetD" Set.thy "!!c. [| A <= B; c ~: B |] ==> c ~: A"
144 (fn prems=> [ (REPEAT (eresolve_tac [asm_rl, contrapos, subsetD] 1)) ]);
146 qed_goal "rev_contra_subsetD" Set.thy "!!c. [| c ~: B; A <= B |] ==> c ~: A"
147 (fn prems=> [ (REPEAT (eresolve_tac [asm_rl, contrapos, subsetD] 1)) ]);
149 (*Classical elimination rule*)
150 val major::prems = goalw Set.thy [subset_def]
151 "[| A <= B; c~:A ==> P; c:B ==> P |] ==> P";
152 by (rtac (major RS ballE) 1);
153 by (REPEAT (eresolve_tac prems 1));
156 (*Takes assumptions A<=B; c:A and creates the assumption c:B *)
157 fun set_mp_tac i = etac subsetCE i THEN mp_tac i;
160 AddEs [subsetD, subsetCE];
162 qed_goal "subset_refl" Set.thy "A <= (A::'a set)"
163 (fn _=> [Fast_tac 1]); (*Blast_tac would try order_refl and fail*)
165 val prems = goal Set.thy "!!B. [| A<=B; B<=C |] ==> A<=(C::'a set)";
172 (*Anti-symmetry of the subset relation*)
173 val prems = goal Set.thy "[| A <= B; B <= A |] ==> A = (B::'a set)";
174 by (rtac (iffI RS set_ext) 1);
175 by (REPEAT (ares_tac (prems RL [subsetD]) 1));
176 qed "subset_antisym";
177 val equalityI = subset_antisym;
181 (* Equality rules from ZF set theory -- are they appropriate here? *)
182 val prems = goal Set.thy "A = B ==> A<=(B::'a set)";
183 by (resolve_tac (prems RL [subst]) 1);
184 by (rtac subset_refl 1);
187 val prems = goal Set.thy "A = B ==> B<=(A::'a set)";
188 by (resolve_tac (prems RL [subst]) 1);
189 by (rtac subset_refl 1);
192 val prems = goal Set.thy
193 "[| A = B; [| A<=B; B<=(A::'a set) |] ==> P |] ==> P";
194 by (resolve_tac prems 1);
195 by (REPEAT (resolve_tac (prems RL [equalityD1,equalityD2]) 1));
198 val major::prems = goal Set.thy
199 "[| A = B; [| c:A; c:B |] ==> P; [| c~:A; c~:B |] ==> P |] ==> P";
200 by (rtac (major RS equalityE) 1);
201 by (REPEAT (contr_tac 1 ORELSE eresolve_tac ([asm_rl,subsetCE]@prems) 1));
204 (*Lemma for creating induction formulae -- for "pattern matching" on p
205 To make the induction hypotheses usable, apply "spec" or "bspec" to
206 put universal quantifiers over the free variables in p. *)
207 val prems = goal Set.thy
208 "[| p:A; !!z. z:A ==> p=z --> R |] ==> R";
210 by (REPEAT (resolve_tac (refl::prems) 1));
211 qed "setup_induction";
214 section "The empty set -- {}";
216 qed_goalw "empty_iff" Set.thy [empty_def] "(c : {}) = False"
217 (fn _ => [ (Blast_tac 1) ]);
219 Addsimps [empty_iff];
221 qed_goal "emptyE" Set.thy "!!a. a:{} ==> P"
222 (fn _ => [Full_simp_tac 1]);
226 qed_goal "empty_subsetI" Set.thy "{} <= A"
227 (fn _ => [ (Blast_tac 1) ]);
229 qed_goal "equals0I" Set.thy "[| !!y. y:A ==> False |] ==> A={}"
231 [ (blast_tac (claset() addIs [prem RS FalseE]) 1) ]);
233 qed_goal "equals0D" Set.thy "!!a. [| A={}; a:A |] ==> P"
234 (fn _ => [ (Blast_tac 1) ]);
236 goal Set.thy "Ball {} P = True";
237 by (simp_tac (HOL_ss addsimps [mem_Collect_eq, Ball_def, empty_def]) 1);
240 goal Set.thy "Bex {} P = False";
241 by (simp_tac (HOL_ss addsimps [mem_Collect_eq, Bex_def, empty_def]) 1);
243 Addsimps [ball_empty, bex_empty];
246 section "The Powerset operator -- Pow";
248 qed_goalw "Pow_iff" Set.thy [Pow_def] "(A : Pow(B)) = (A <= B)"
249 (fn _ => [ (Asm_simp_tac 1) ]);
253 qed_goalw "PowI" Set.thy [Pow_def] "!!A B. A <= B ==> A : Pow(B)"
254 (fn _ => [ (etac CollectI 1) ]);
256 qed_goalw "PowD" Set.thy [Pow_def] "!!A B. A : Pow(B) ==> A<=B"
257 (fn _=> [ (etac CollectD 1) ]);
259 val Pow_bottom = empty_subsetI RS PowI; (* {}: Pow(B) *)
260 val Pow_top = subset_refl RS PowI; (* A : Pow(A) *)
263 section "Set complement -- Compl";
265 qed_goalw "Compl_iff" Set.thy [Compl_def] "(c : Compl(A)) = (c~:A)"
266 (fn _ => [ (Blast_tac 1) ]);
268 Addsimps [Compl_iff];
270 val prems = goalw Set.thy [Compl_def]
271 "[| c:A ==> False |] ==> c : Compl(A)";
272 by (REPEAT (ares_tac (prems @ [CollectI,notI]) 1));
275 (*This form, with negated conclusion, works well with the Classical prover.
276 Negated assumptions behave like formulae on the right side of the notional
278 val major::prems = goalw Set.thy [Compl_def]
279 "c : Compl(A) ==> c~:A";
280 by (rtac (major RS CollectD) 1);
283 val ComplE = make_elim ComplD;
289 section "Binary union -- Un";
291 qed_goalw "Un_iff" Set.thy [Un_def] "(c : A Un B) = (c:A | c:B)"
292 (fn _ => [ Blast_tac 1 ]);
296 goal Set.thy "!!c. c:A ==> c : A Un B";
300 goal Set.thy "!!c. c:B ==> c : A Un B";
304 (*Classical introduction rule: no commitment to A vs B*)
305 qed_goal "UnCI" Set.thy "(c~:B ==> c:A) ==> c : A Un B"
308 (REPEAT (ares_tac (prems@[disjCI]) 1)) ]);
310 val major::prems = goalw Set.thy [Un_def]
311 "[| c : A Un B; c:A ==> P; c:B ==> P |] ==> P";
312 by (rtac (major RS CollectD RS disjE) 1);
313 by (REPEAT (eresolve_tac prems 1));
320 section "Binary intersection -- Int";
322 qed_goalw "Int_iff" Set.thy [Int_def] "(c : A Int B) = (c:A & c:B)"
323 (fn _ => [ (Blast_tac 1) ]);
327 goal Set.thy "!!c. [| c:A; c:B |] ==> c : A Int B";
331 goal Set.thy "!!c. c : A Int B ==> c:A";
332 by (Asm_full_simp_tac 1);
335 goal Set.thy "!!c. c : A Int B ==> c:B";
336 by (Asm_full_simp_tac 1);
339 val [major,minor] = goal Set.thy
340 "[| c : A Int B; [| c:A; c:B |] ==> P |] ==> P";
342 by (rtac (major RS IntD1) 1);
343 by (rtac (major RS IntD2) 1);
349 section "Set difference";
351 qed_goalw "Diff_iff" Set.thy [set_diff_def] "(c : A-B) = (c:A & c~:B)"
352 (fn _ => [ (Blast_tac 1) ]);
356 qed_goal "DiffI" Set.thy "!!c. [| c : A; c ~: B |] ==> c : A - B"
357 (fn _=> [ Asm_simp_tac 1 ]);
359 qed_goal "DiffD1" Set.thy "!!c. c : A - B ==> c : A"
360 (fn _=> [ (Asm_full_simp_tac 1) ]);
362 qed_goal "DiffD2" Set.thy "!!c. [| c : A - B; c : B |] ==> P"
363 (fn _=> [ (Asm_full_simp_tac 1) ]);
365 qed_goal "DiffE" Set.thy "[| c : A - B; [| c:A; c~:B |] ==> P |] ==> P"
367 [ (resolve_tac prems 1),
368 (REPEAT (ares_tac (prems RL [DiffD1, DiffD2 RS notI]) 1)) ]);
374 section "Augmenting a set -- insert";
376 qed_goalw "insert_iff" Set.thy [insert_def] "a : insert b A = (a=b | a:A)"
377 (fn _ => [Blast_tac 1]);
379 Addsimps [insert_iff];
381 qed_goal "insertI1" Set.thy "a : insert a B"
382 (fn _ => [Simp_tac 1]);
384 qed_goal "insertI2" Set.thy "!!a. a : B ==> a : insert b B"
385 (fn _=> [Asm_simp_tac 1]);
387 qed_goalw "insertE" Set.thy [insert_def]
388 "[| a : insert b A; a=b ==> P; a:A ==> P |] ==> P"
390 [ (rtac (major RS UnE) 1),
391 (REPEAT (eresolve_tac (prems @ [CollectE]) 1)) ]);
393 (*Classical introduction rule*)
394 qed_goal "insertCI" Set.thy "(a~:B ==> a=b) ==> a: insert b B"
397 (REPEAT (ares_tac (prems@[disjCI]) 1)) ]);
402 section "Singletons, using insert";
404 qed_goal "singletonI" Set.thy "a : {a}"
405 (fn _=> [ (rtac insertI1 1) ]);
407 goal Set.thy "!!a. b : {a} ==> b=a";
411 bind_thm ("singletonE", make_elim singletonD);
413 qed_goal "singleton_iff" thy "(b : {a}) = (b=a)"
414 (fn _ => [Blast_tac 1]);
416 goal Set.thy "!!a b. {a}={b} ==> a=b";
417 by (blast_tac (claset() addEs [equalityE]) 1);
418 qed "singleton_inject";
420 (*Redundant? But unlike insertCI, it proves the subgoal immediately!*)
422 AddSDs [singleton_inject];
425 goal Set.thy "{x. x=a} = {a}";
427 qed "singleton_conv";
428 Addsimps [singleton_conv];
430 section "The universal set -- UNIV";
432 qed_goal "UNIV_I" Set.thy "x : UNIV"
433 (fn _ => [rtac ComplI 1, etac emptyE 1]);
435 qed_goal "subset_UNIV" Set.thy "A <= UNIV"
436 (fn _ => [rtac subsetI 1, rtac UNIV_I 1]);
439 section "Unions of families -- UNION x:A. B(x) is Union(B``A)";
441 goalw Set.thy [UNION_def] "(b: (UN x:A. B(x))) = (EX x:A. b: B(x))";
447 (*The order of the premises presupposes that A is rigid; b may be flexible*)
448 goal Set.thy "!!b. [| a:A; b: B(a) |] ==> b: (UN x:A. B(x))";
452 val major::prems = goalw Set.thy [UNION_def]
453 "[| b : (UN x:A. B(x)); !!x.[| x:A; b: B(x) |] ==> R |] ==> R";
454 by (rtac (major RS CollectD RS bexE) 1);
455 by (REPEAT (ares_tac prems 1));
461 val prems = goal Set.thy
462 "[| A=B; !!x. x:B ==> C(x) = D(x) |] ==> \
463 \ (UN x:A. C(x)) = (UN x:B. D(x))";
464 by (REPEAT (etac UN_E 1
465 ORELSE ares_tac ([UN_I,equalityI,subsetI] @
466 (prems RL [equalityD1,equalityD2] RL [subsetD])) 1));
470 section "Intersections of families -- INTER x:A. B(x) is Inter(B``A)";
472 goalw Set.thy [INTER_def] "(b: (INT x:A. B(x))) = (ALL x:A. b: B(x))";
478 val prems = goalw Set.thy [INTER_def]
479 "(!!x. x:A ==> b: B(x)) ==> b : (INT x:A. B(x))";
480 by (REPEAT (ares_tac ([CollectI,ballI] @ prems) 1));
483 goal Set.thy "!!b. [| b : (INT x:A. B(x)); a:A |] ==> b: B(a)";
487 (*"Classical" elimination -- by the Excluded Middle on a:A *)
488 val major::prems = goalw Set.thy [INTER_def]
489 "[| b : (INT x:A. B(x)); b: B(a) ==> R; a~:A ==> R |] ==> R";
490 by (rtac (major RS CollectD RS ballE) 1);
491 by (REPEAT (eresolve_tac prems 1));
495 AddEs [INT_D, INT_E];
497 val prems = goal Set.thy
498 "[| A=B; !!x. x:B ==> C(x) = D(x) |] ==> \
499 \ (INT x:A. C(x)) = (INT x:B. D(x))";
500 by (REPEAT_FIRST (resolve_tac [INT_I,equalityI,subsetI]));
501 by (REPEAT (dtac INT_D 1
502 ORELSE ares_tac (prems RL [equalityD1,equalityD2] RL [subsetD]) 1));
506 section "Unions over a type; UNION1(B) = Union(range(B))";
508 goalw Set.thy [UNION1_def] "(b: (UN x. B(x))) = (EX x. b: B(x))";
515 (*The order of the premises presupposes that A is rigid; b may be flexible*)
516 goal Set.thy "!!b. b: B(x) ==> b: (UN x. B(x))";
520 val major::prems = goalw Set.thy [UNION1_def]
521 "[| b : (UN x. B(x)); !!x. b: B(x) ==> R |] ==> R";
522 by (rtac (major RS UN_E) 1);
523 by (REPEAT (ares_tac prems 1));
530 section "Intersections over a type; INTER1(B) = Inter(range(B))";
532 goalw Set.thy [INTER1_def] "(b: (INT x. B(x))) = (ALL x. b: B(x))";
539 val prems = goalw Set.thy [INTER1_def]
540 "(!!x. b: B(x)) ==> b : (INT x. B(x))";
541 by (REPEAT (ares_tac (INT_I::prems) 1));
544 goal Set.thy "!!b. b : (INT x. B(x)) ==> b: B(a)";
545 by (Asm_full_simp_tac 1);
554 goalw Set.thy [Union_def] "(A : Union(C)) = (EX X:C. A:X)";
558 Addsimps [Union_iff];
560 (*The order of the premises presupposes that C is rigid; A may be flexible*)
561 goal Set.thy "!!X. [| X:C; A:X |] ==> A : Union(C)";
565 val major::prems = goalw Set.thy [Union_def]
566 "[| A : Union(C); !!X.[| A:X; X:C |] ==> R |] ==> R";
567 by (rtac (major RS UN_E) 1);
568 by (REPEAT (ares_tac prems 1));
577 goalw Set.thy [Inter_def] "(A : Inter(C)) = (ALL X:C. A:X)";
581 Addsimps [Inter_iff];
583 val prems = goalw Set.thy [Inter_def]
584 "[| !!X. X:C ==> A:X |] ==> A : Inter(C)";
585 by (REPEAT (ares_tac ([INT_I] @ prems) 1));
588 (*A "destruct" rule -- every X in C contains A as an element, but
589 A:X can hold when X:C does not! This rule is analogous to "spec". *)
590 goal Set.thy "!!X. [| A : Inter(C); X:C |] ==> A:X";
594 (*"Classical" elimination rule -- does not require proving X:C *)
595 val major::prems = goalw Set.thy [Inter_def]
596 "[| A : Inter(C); X~:C ==> R; A:X ==> R |] ==> R";
597 by (rtac (major RS INT_E) 1);
598 by (REPEAT (eresolve_tac prems 1));
602 AddEs [InterD, InterE];
605 (*** Image of a set under a function ***)
607 (*Frequently b does not have the syntactic form of f(x).*)
608 val prems = goalw thy [image_def] "[| b=f(x); x:A |] ==> b : f``A";
609 by (REPEAT (resolve_tac (prems @ [CollectI,bexI,prem]) 1));
611 Addsimps [image_eqI];
613 bind_thm ("imageI", refl RS image_eqI);
615 (*The eta-expansion gives variable-name preservation.*)
616 val major::prems = goalw thy [image_def]
617 "[| b : (%x. f(x))``A; !!x.[| b=f(x); x:A |] ==> P |] ==> P";
618 by (rtac (major RS CollectD RS bexE) 1);
619 by (REPEAT (ares_tac prems 1));
625 goalw thy [o_def] "(f o g)``r = f``(g``r)";
629 goal thy "f``(A Un B) = f``A Un f``B";
633 goal Set.thy "(z : f``A) = (EX x:A. z = f x)";
638 (*** Range of a function -- just a translation for image! ***)
640 goal thy "!!b. b=f(x) ==> b : range(f)";
641 by (EVERY1 [etac image_eqI, rtac UNIV_I]);
642 bind_thm ("range_eqI", UNIV_I RSN (2,image_eqI));
644 bind_thm ("rangeI", UNIV_I RS imageI);
646 val [major,minor] = goal thy
647 "[| b : range(%x. f(x)); !!x. b=f(x) ==> P |] ==> P";
648 by (rtac (major RS imageE) 1);
653 (*** Set reasoning tools ***)
656 (** Rewrite rules for boolean case-splitting: faster than
660 bind_thm ("expand_if_eq1", read_instantiate [("P", "%x. x = ?b")] expand_if);
661 bind_thm ("expand_if_eq2", read_instantiate [("P", "%x. ?a = x")] expand_if);
663 bind_thm ("expand_if_mem1",
664 read_instantiate_sg (sign_of Set.thy) [("P", "%x. x : ?b")] expand_if);
665 bind_thm ("expand_if_mem2",
666 read_instantiate_sg (sign_of Set.thy) [("P", "%x. ?a : x")] expand_if);
668 val expand_ifs = [if_bool_eq, expand_if_eq1, expand_if_eq2,
669 expand_if_mem1, expand_if_mem2];
672 (*Each of these has ALREADY been added to simpset() above.*)
673 val mem_simps = [insert_iff, empty_iff, Un_iff, Int_iff, Compl_iff, Diff_iff,
675 UN_iff, UN1_iff, Union_iff,
676 INT_iff, INT1_iff, Inter_iff];
678 (*Not for Addsimps -- it can cause goals to blow up!*)
679 goal Set.thy "(a : (if Q then x else y)) = ((Q --> a:x) & (~Q --> a : y))";
680 by (simp_tac (simpset() addsplits [expand_if]) 1);
683 val mksimps_pairs = ("Ball",[bspec]) :: mksimps_pairs;
685 simpset_ref() := simpset() addcongs [ball_cong,bex_cong]
686 setmksimps (mksimps mksimps_pairs);
688 Addsimps[subset_UNIV, empty_subsetI, subset_refl];
693 goalw Set.thy [psubset_def] "!!A::'a set. [| A <= B; A ~= B |] ==> A<B";
697 goalw Set.thy [psubset_def]
698 "!!x. A < insert x B ==> (x ~: A) & A<=B | x:A & A-{x}<B";
700 qed "psubset_insertD";
702 bind_thm ("psubset_eq", psubset_def RS meta_eq_to_obj_eq);