renamed former datatype.ML to datatype_data.ML; datatype.ML provides uniform view on datatype.ML and datatype_rep_proofs.ML
2 Author : Jacques D. Fleuriot
3 Additional contributions by Jeremy Avigad
4 Copyright : 2000,2001 University of Edinburgh
7 header{*Logarithms: Standard Version*}
10 imports Transcendental
14 powr :: "[real,real] => real" (infixr "powr" 80) where
15 --{*exponentation with real exponent*}
16 "x powr a = exp(a * ln x)"
19 log :: "[real,real] => real" where
20 --{*logarithm of @{term x} to base @{term a}*}
21 "log a x = ln x / ln a"
25 lemma powr_one_eq_one [simp]: "1 powr a = 1"
26 by (simp add: powr_def)
28 lemma powr_zero_eq_one [simp]: "x powr 0 = 1"
29 by (simp add: powr_def)
31 lemma powr_one_gt_zero_iff [simp]: "(x powr 1 = x) = (0 < x)"
32 by (simp add: powr_def)
33 declare powr_one_gt_zero_iff [THEN iffD2, simp]
36 "[| 0 < x; 0 < y |] ==> (x * y) powr a = (x powr a) * (y powr a)"
37 by (simp add: powr_def exp_add [symmetric] ln_mult right_distrib)
39 lemma powr_gt_zero [simp]: "0 < x powr a"
40 by (simp add: powr_def)
42 lemma powr_ge_pzero [simp]: "0 <= x powr y"
43 by (rule order_less_imp_le, rule powr_gt_zero)
45 lemma powr_not_zero [simp]: "x powr a \<noteq> 0"
46 by (simp add: powr_def)
49 "[| 0 < x; 0 < y |] ==> (x / y) powr a = (x powr a)/(y powr a)"
50 apply (simp add: divide_inverse positive_imp_inverse_positive powr_mult)
51 apply (simp add: powr_def exp_minus [symmetric] exp_add [symmetric] ln_inverse)
54 lemma powr_divide2: "x powr a / x powr b = x powr (a - b)"
55 apply (simp add: powr_def)
56 apply (subst exp_diff [THEN sym])
57 apply (simp add: left_diff_distrib)
60 lemma powr_add: "x powr (a + b) = (x powr a) * (x powr b)"
61 by (simp add: powr_def exp_add [symmetric] left_distrib)
63 lemma powr_powr: "(x powr a) powr b = x powr (a * b)"
64 by (simp add: powr_def)
66 lemma powr_powr_swap: "(x powr a) powr b = (x powr b) powr a"
67 by (simp add: powr_powr real_mult_commute)
69 lemma powr_minus: "x powr (-a) = inverse (x powr a)"
70 by (simp add: powr_def exp_minus [symmetric])
72 lemma powr_minus_divide: "x powr (-a) = 1/(x powr a)"
73 by (simp add: divide_inverse powr_minus)
75 lemma powr_less_mono: "[| a < b; 1 < x |] ==> x powr a < x powr b"
76 by (simp add: powr_def)
78 lemma powr_less_cancel: "[| x powr a < x powr b; 1 < x |] ==> a < b"
79 by (simp add: powr_def)
81 lemma powr_less_cancel_iff [simp]: "1 < x ==> (x powr a < x powr b) = (a < b)"
82 by (blast intro: powr_less_cancel powr_less_mono)
84 lemma powr_le_cancel_iff [simp]: "1 < x ==> (x powr a \<le> x powr b) = (a \<le> b)"
85 by (simp add: linorder_not_less [symmetric])
87 lemma log_ln: "ln x = log (exp(1)) x"
88 by (simp add: log_def)
90 lemma DERIV_log: "x > 0 ==> DERIV (%y. log b y) x :> 1 / (ln b * x)"
92 apply (subgoal_tac "(%y. ln y / ln b) = (%y. (1 / ln b) * ln y)")
94 apply (subgoal_tac "1 / (ln b * x) = (1 / ln b) * (1 / x)")
96 apply (rule DERIV_cmult)
97 apply (erule DERIV_ln_divide)
101 lemma powr_log_cancel [simp]:
102 "[| 0 < a; a \<noteq> 1; 0 < x |] ==> a powr (log a x) = x"
103 by (simp add: powr_def log_def)
105 lemma log_powr_cancel [simp]: "[| 0 < a; a \<noteq> 1 |] ==> log a (a powr y) = y"
106 by (simp add: log_def powr_def)
109 "[| 0 < a; a \<noteq> 1; 0 < x; 0 < y |]
110 ==> log a (x * y) = log a x + log a y"
111 by (simp add: log_def ln_mult divide_inverse left_distrib)
113 lemma log_eq_div_ln_mult_log:
114 "[| 0 < a; a \<noteq> 1; 0 < b; b \<noteq> 1; 0 < x |]
115 ==> log a x = (ln b/ln a) * log b x"
116 by (simp add: log_def divide_inverse)
118 text{*Base 10 logarithms*}
119 lemma log_base_10_eq1: "0 < x ==> log 10 x = (ln (exp 1) / ln 10) * ln x"
120 by (simp add: log_def)
122 lemma log_base_10_eq2: "0 < x ==> log 10 x = (log 10 (exp 1)) * ln x"
123 by (simp add: log_def)
125 lemma log_one [simp]: "log a 1 = 0"
126 by (simp add: log_def)
128 lemma log_eq_one [simp]: "[| 0 < a; a \<noteq> 1 |] ==> log a a = 1"
129 by (simp add: log_def)
132 "[| 0 < a; a \<noteq> 1; 0 < x |] ==> log a (inverse x) = - log a x"
133 apply (rule_tac a1 = "log a x" in add_left_cancel [THEN iffD1])
134 apply (simp add: log_mult [symmetric])
138 "[|0 < a; a \<noteq> 1; 0 < x; 0 < y|] ==> log a (x/y) = log a x - log a y"
139 by (simp add: log_mult divide_inverse log_inverse)
141 lemma log_less_cancel_iff [simp]:
142 "[| 1 < a; 0 < x; 0 < y |] ==> (log a x < log a y) = (x < y)"
144 apply (rule_tac [2] powr_less_cancel)
145 apply (drule_tac a = "log a x" in powr_less_mono, auto)
148 lemma log_le_cancel_iff [simp]:
149 "[| 1 < a; 0 < x; 0 < y |] ==> (log a x \<le> log a y) = (x \<le> y)"
150 by (simp add: linorder_not_less [symmetric])
153 lemma powr_realpow: "0 < x ==> x powr (real n) = x^n"
154 apply (induct n, simp)
155 apply (subgoal_tac "real(Suc n) = real n + 1")
157 apply (subst powr_add, simp, simp)
160 lemma powr_realpow2: "0 <= x ==> 0 < n ==> x^n = (if (x = 0) then 0
161 else x powr (real n))"
162 apply (case_tac "x = 0", simp, simp)
163 apply (rule powr_realpow [THEN sym], simp)
166 lemma ln_powr: "0 < x ==> 0 < y ==> ln(x powr y) = y * ln x"
167 by (unfold powr_def, simp)
169 lemma log_powr: "0 < x ==> 0 \<le> y ==> log b (x powr y) = y * log b x"
170 apply (case_tac "y = 0")
172 apply (auto simp add: log_def ln_powr field_simps)
175 lemma log_nat_power: "0 < x ==> log b (x^n) = real n * log b x"
176 apply (subst powr_realpow [symmetric])
177 apply (auto simp add: log_powr)
180 lemma ln_bound: "1 <= x ==> ln x <= x"
181 apply (subgoal_tac "ln(1 + (x - 1)) <= x - 1")
183 apply (rule ln_add_one_self_le_self, simp)
186 lemma powr_mono: "a <= b ==> 1 <= x ==> x powr a <= x powr b"
187 apply (case_tac "x = 1", simp)
188 apply (case_tac "a = b", simp)
189 apply (rule order_less_imp_le)
190 apply (rule powr_less_mono, auto)
193 lemma ge_one_powr_ge_zero: "1 <= x ==> 0 <= a ==> 1 <= x powr a"
194 apply (subst powr_zero_eq_one [THEN sym])
195 apply (rule powr_mono, assumption+)
198 lemma powr_less_mono2: "0 < a ==> 0 < x ==> x < y ==> x powr a <
200 apply (unfold powr_def)
201 apply (rule exp_less_mono)
202 apply (rule mult_strict_left_mono)
203 apply (subst ln_less_cancel_iff, assumption)
204 apply (rule order_less_trans)
209 lemma powr_less_mono2_neg: "a < 0 ==> 0 < x ==> x < y ==> y powr a <
211 apply (unfold powr_def)
212 apply (rule exp_less_mono)
213 apply (rule mult_strict_left_mono_neg)
214 apply (subst ln_less_cancel_iff)
216 apply (rule order_less_trans)
221 lemma powr_mono2: "0 <= a ==> 0 < x ==> x <= y ==> x powr a <= y powr a"
222 apply (case_tac "a = 0", simp)
223 apply (case_tac "x = y", simp)
224 apply (rule order_less_imp_le)
225 apply (rule powr_less_mono2, auto)
228 lemma ln_powr_bound: "1 <= x ==> 0 < a ==> ln x <= (x powr a) / a"
229 apply (rule mult_imp_le_div_pos)
231 apply (subst mult_commute)
232 apply (subst ln_powr [THEN sym])
234 apply (rule ln_bound)
235 apply (erule ge_one_powr_ge_zero)
236 apply (erule order_less_imp_le)
239 lemma ln_powr_bound2: "1 < x ==> 0 < a ==> (ln x) powr a <= (a powr a) * x"
241 assume "1 < x" and "0 < a"
242 then have "ln x <= (x powr (1 / a)) / (1 / a)"
243 apply (intro ln_powr_bound)
244 apply (erule order_less_imp_le)
245 apply (rule divide_pos_pos)
248 also have "... = a * (x powr (1 / a))"
250 finally have "(ln x) powr a <= (a * (x powr (1 / a))) powr a"
251 apply (intro powr_mono2)
252 apply (rule order_less_imp_le, rule prems)
253 apply (rule ln_gt_zero)
257 also have "... = (a powr a) * ((x powr (1 / a)) powr a)"
258 apply (rule powr_mult)
260 apply (rule powr_gt_zero)
262 also have "(x powr (1 / a)) powr a = x powr ((1 / a) * a)"
266 apply (subgoal_tac "a ~= 0")
267 apply (insert prems, auto)
269 finally show ?thesis .
272 lemma LIMSEQ_neg_powr: "0 < s ==> (%x. (real x) powr - s) ----> 0"
273 apply (unfold LIMSEQ_iff)
275 apply (rule_tac x = "natfloor(r powr (1 / - s)) + 1" in exI)
279 assume "0 < s" and "0 < r" and "natfloor (r powr (1 / - s)) + 1 <= n"
280 have "r powr (1 / - s) < real(natfloor(r powr (1 / - s))) + 1"
281 by (rule real_natfloor_add_one_gt)
282 also have "... = real(natfloor(r powr (1 / -s)) + 1)"
284 also have "... <= real n"
285 apply (subst real_of_nat_le_iff)
288 finally have "r powr (1 / - s) < real n".
289 then have "real n powr (- s) < (r powr (1 / - s)) powr - s"
290 apply (intro powr_less_mono2_neg)
291 apply (auto simp add: prems)
294 by (simp add: powr_powr prems less_imp_neq [THEN not_sym])
295 finally show "real n powr - s < r" .