renamed former datatype.ML to datatype_data.ML; datatype.ML provides uniform view on datatype.ML and datatype_rep_proofs.ML
2 Author: Tobias Nipkow, based on a theory by David von Oheimb
3 Copyright 1997-2003 TU Muenchen
5 The datatype of `maps' (written ~=>); strongly resembles maps in VDM.
14 types ('a,'b) "~=>" = "'a => 'b option" (infixr "~=>" 0)
15 translations (type) "a ~=> b " <= (type) "a => b option"
18 "~=>" :: "[type, type] => type" (infixr "\<rightharpoonup>" 0)
21 empty :: "'a ~=> 'b" where
25 map_comp :: "('b ~=> 'c) => ('a ~=> 'b) => ('a ~=> 'c)" (infixl "o'_m" 55) where
26 "f o_m g = (\<lambda>k. case g k of None \<Rightarrow> None | Some v \<Rightarrow> f v)"
29 map_comp (infixl "\<circ>\<^sub>m" 55)
32 map_add :: "('a ~=> 'b) => ('a ~=> 'b) => ('a ~=> 'b)" (infixl "++" 100) where
33 "m1 ++ m2 = (\<lambda>x. case m2 x of None => m1 x | Some y => Some y)"
36 restrict_map :: "('a ~=> 'b) => 'a set => ('a ~=> 'b)" (infixl "|`" 110) where
37 "m|`A = (\<lambda>x. if x : A then m x else None)"
39 notation (latex output)
40 restrict_map ("_\<restriction>\<^bsub>_\<^esub>" [111,110] 110)
43 dom :: "('a ~=> 'b) => 'a set" where
44 "dom m = {a. m a ~= None}"
47 ran :: "('a ~=> 'b) => 'b set" where
48 "ran m = {b. EX a. m a = Some b}"
51 map_le :: "('a ~=> 'b) => ('a ~=> 'b) => bool" (infix "\<subseteq>\<^sub>m" 50) where
52 "(m\<^isub>1 \<subseteq>\<^sub>m m\<^isub>2) = (\<forall>a \<in> dom m\<^isub>1. m\<^isub>1 a = m\<^isub>2 a)"
55 map_of :: "('a * 'b) list => 'a ~=> 'b"
56 map_upds :: "('a ~=> 'b) => 'a list => 'b list => ('a ~=> 'b)"
62 "_maplet" :: "['a, 'a] => maplet" ("_ /|->/ _")
63 "_maplets" :: "['a, 'a] => maplet" ("_ /[|->]/ _")
64 "" :: "maplet => maplets" ("_")
65 "_Maplets" :: "[maplet, maplets] => maplets" ("_,/ _")
66 "_MapUpd" :: "['a ~=> 'b, maplets] => 'a ~=> 'b" ("_/'(_')" [900,0]900)
67 "_Map" :: "maplets => 'a ~=> 'b" ("(1[_])")
70 "_maplet" :: "['a, 'a] => maplet" ("_ /\<mapsto>/ _")
71 "_maplets" :: "['a, 'a] => maplet" ("_ /[\<mapsto>]/ _")
74 "_MapUpd m (_Maplets xy ms)" == "_MapUpd (_MapUpd m xy) ms"
75 "_MapUpd m (_maplet x y)" == "m(x:=Some y)"
76 "_MapUpd m (_maplets x y)" == "map_upds m x y"
77 "_Map ms" == "_MapUpd (CONST empty) ms"
78 "_Map (_Maplets ms1 ms2)" <= "_MapUpd (_Map ms1) ms2"
79 "_Maplets ms1 (_Maplets ms2 ms3)" <= "_Maplets (_Maplets ms1 ms2) ms3"
83 "map_of (p#ps) = (map_of ps)(fst p |-> snd p)"
85 declare map_of.simps [code del]
87 lemma map_of_Cons_code [code]:
89 "map_of ((l, v) # ps) k = (if l = k then Some v else map_of ps k)"
93 map_upds_def [code]: "m(xs [|->] ys) == m ++ map_of (rev(zip xs ys))"
96 subsection {* @{term [source] empty} *}
98 lemma empty_upd_none [simp]: "empty(x := None) = empty"
102 subsection {* @{term [source] map_upd} *}
104 lemma map_upd_triv: "t k = Some x ==> t(k|->x) = t"
107 lemma map_upd_nonempty [simp]: "t(k|->x) ~= empty"
109 assume "t(k \<mapsto> x) = empty"
110 then have "(t(k \<mapsto> x)) k = None" by simp
111 then show False by simp
115 assumes "m(a\<mapsto>x) = n(a\<mapsto>y)"
118 from prems have "(m(a\<mapsto>x)) a = (n(a\<mapsto>y)) a" by simp
119 then show ?thesis by simp
122 lemma map_upd_Some_unfold:
123 "((m(a|->b)) x = Some y) = (x = a \<and> b = y \<or> x \<noteq> a \<and> m x = Some y)"
126 lemma image_map_upd [simp]: "x \<notin> A \<Longrightarrow> m(x \<mapsto> y) ` A = m ` A"
129 lemma finite_range_updI: "finite (range f) ==> finite (range (f(a|->b)))"
131 apply (simp (no_asm_use) add:full_SetCompr_eq)
132 apply (rule finite_subset)
133 prefer 2 apply assumption
138 subsection {* @{term [source] map_of} *}
140 lemma map_of_eq_None_iff:
141 "(map_of xys x = None) = (x \<notin> fst ` (set xys))"
142 by (induct xys) simp_all
144 lemma map_of_is_SomeD: "map_of xys x = Some y \<Longrightarrow> (x,y) \<in> set xys"
147 apply (clarsimp split: if_splits)
150 lemma map_of_eq_Some_iff [simp]:
151 "distinct(map fst xys) \<Longrightarrow> (map_of xys x = Some y) = ((x,y) \<in> set xys)"
154 apply (auto simp: map_of_eq_None_iff [symmetric])
157 lemma Some_eq_map_of_iff [simp]:
158 "distinct(map fst xys) \<Longrightarrow> (Some y = map_of xys x) = ((x,y) \<in> set xys)"
159 by (auto simp del:map_of_eq_Some_iff simp add: map_of_eq_Some_iff [symmetric])
161 lemma map_of_is_SomeI [simp]: "\<lbrakk> distinct(map fst xys); (x,y) \<in> set xys \<rbrakk>
162 \<Longrightarrow> map_of xys x = Some y"
168 lemma map_of_zip_is_None [simp]:
169 "length xs = length ys \<Longrightarrow> (map_of (zip xs ys) x = None) = (x \<notin> set xs)"
170 by (induct rule: list_induct2) simp_all
172 lemma map_of_zip_is_Some:
173 assumes "length xs = length ys"
174 shows "x \<in> set xs \<longleftrightarrow> (\<exists>y. map_of (zip xs ys) x = Some y)"
175 using assms by (induct rule: list_induct2) simp_all
177 lemma map_of_zip_upd:
178 fixes x :: 'a and xs :: "'a list" and ys zs :: "'b list"
179 assumes "length ys = length xs"
180 and "length zs = length xs"
181 and "x \<notin> set xs"
182 and "map_of (zip xs ys)(x \<mapsto> y) = map_of (zip xs zs)(x \<mapsto> z)"
183 shows "map_of (zip xs ys) = map_of (zip xs zs)"
186 show "map_of (zip xs ys) x' = map_of (zip xs zs) x'"
187 proof (cases "x = x'")
189 from assms True map_of_zip_is_None [of xs ys x']
190 have "map_of (zip xs ys) x' = None" by simp
191 moreover from assms True map_of_zip_is_None [of xs zs x']
192 have "map_of (zip xs zs) x' = None" by simp
193 ultimately show ?thesis by simp
195 case False from assms
196 have "(map_of (zip xs ys)(x \<mapsto> y)) x' = (map_of (zip xs zs)(x \<mapsto> z)) x'" by auto
197 with False show ?thesis by simp
201 lemma map_of_zip_inject:
202 assumes "length ys = length xs"
203 and "length zs = length xs"
204 and dist: "distinct xs"
205 and map_of: "map_of (zip xs ys) = map_of (zip xs zs)"
207 using assms(1) assms(2)[symmetric] using dist map_of proof (induct ys xs zs rule: list_induct3)
208 case Nil show ?case by simp
210 case (Cons y ys x xs z zs)
211 from `map_of (zip (x#xs) (y#ys)) = map_of (zip (x#xs) (z#zs))`
212 have map_of: "map_of (zip xs ys)(x \<mapsto> y) = map_of (zip xs zs)(x \<mapsto> z)" by simp
213 from Cons have "length ys = length xs" and "length zs = length xs"
214 and "x \<notin> set xs" by simp_all
215 then have "map_of (zip xs ys) = map_of (zip xs zs)" using map_of by (rule map_of_zip_upd)
216 with Cons.hyps `distinct (x # xs)` have "ys = zs" by simp
217 moreover from map_of have "y = z" by (rule map_upd_eqD1)
218 ultimately show ?case by simp
221 lemma map_of_zip_map:
222 "map_of (zip xs (map f xs)) = (\<lambda>x. if x \<in> set xs then Some (f x) else None)"
223 by (induct xs) (simp_all add: expand_fun_eq)
225 lemma finite_range_map_of: "finite (range (map_of xys))"
227 apply (simp_all add: image_constant)
228 apply (rule finite_subset)
229 prefer 2 apply assumption
233 lemma map_of_SomeD: "map_of xs k = Some y \<Longrightarrow> (k, y) \<in> set xs"
234 by (induct xs) (simp, atomize (full), auto)
236 lemma map_of_mapk_SomeI:
237 "inj f ==> map_of t k = Some x ==>
238 map_of (map (split (%k. Pair (f k))) t) (f k) = Some x"
239 by (induct t) (auto simp add: inj_eq)
241 lemma weak_map_of_SomeI: "(k, x) : set l ==> \<exists>x. map_of l k = Some x"
244 lemma map_of_filter_in:
245 "map_of xs k = Some z \<Longrightarrow> P k z \<Longrightarrow> map_of (filter (split P) xs) k = Some z"
248 lemma map_of_map: "map_of (map (%(a,b). (a,f b)) xs) x = Option.map f (map_of xs x)"
252 subsection {* @{const Option.map} related *}
254 lemma option_map_o_empty [simp]: "Option.map f o empty = empty"
257 lemma option_map_o_map_upd [simp]:
258 "Option.map f o m(a|->b) = (Option.map f o m)(a|->f b)"
262 subsection {* @{term [source] map_comp} related *}
264 lemma map_comp_empty [simp]:
265 "m \<circ>\<^sub>m empty = empty"
266 "empty \<circ>\<^sub>m m = empty"
267 by (auto simp add: map_comp_def intro: ext split: option.splits)
269 lemma map_comp_simps [simp]:
270 "m2 k = None \<Longrightarrow> (m1 \<circ>\<^sub>m m2) k = None"
271 "m2 k = Some k' \<Longrightarrow> (m1 \<circ>\<^sub>m m2) k = m1 k'"
272 by (auto simp add: map_comp_def)
274 lemma map_comp_Some_iff:
275 "((m1 \<circ>\<^sub>m m2) k = Some v) = (\<exists>k'. m2 k = Some k' \<and> m1 k' = Some v)"
276 by (auto simp add: map_comp_def split: option.splits)
278 lemma map_comp_None_iff:
279 "((m1 \<circ>\<^sub>m m2) k = None) = (m2 k = None \<or> (\<exists>k'. m2 k = Some k' \<and> m1 k' = None)) "
280 by (auto simp add: map_comp_def split: option.splits)
283 subsection {* @{text "++"} *}
285 lemma map_add_empty[simp]: "m ++ empty = m"
286 by(simp add: map_add_def)
288 lemma empty_map_add[simp]: "empty ++ m = m"
289 by (rule ext) (simp add: map_add_def split: option.split)
291 lemma map_add_assoc[simp]: "m1 ++ (m2 ++ m3) = (m1 ++ m2) ++ m3"
292 by (rule ext) (simp add: map_add_def split: option.split)
294 lemma map_add_Some_iff:
295 "((m ++ n) k = Some x) = (n k = Some x | n k = None & m k = Some x)"
296 by (simp add: map_add_def split: option.split)
298 lemma map_add_SomeD [dest!]:
299 "(m ++ n) k = Some x \<Longrightarrow> n k = Some x \<or> n k = None \<and> m k = Some x"
300 by (rule map_add_Some_iff [THEN iffD1])
302 lemma map_add_find_right [simp]: "!!xx. n k = Some xx ==> (m ++ n) k = Some xx"
303 by (subst map_add_Some_iff) fast
305 lemma map_add_None [iff]: "((m ++ n) k = None) = (n k = None & m k = None)"
306 by (simp add: map_add_def split: option.split)
308 lemma map_add_upd[simp]: "f ++ g(x|->y) = (f ++ g)(x|->y)"
309 by (rule ext) (simp add: map_add_def)
311 lemma map_add_upds[simp]: "m1 ++ (m2(xs[\<mapsto>]ys)) = (m1++m2)(xs[\<mapsto>]ys)"
312 by (simp add: map_upds_def)
314 lemma map_add_upd_left: "m\<notin>dom e2 \<Longrightarrow> e1(m \<mapsto> u1) ++ e2 = (e1 ++ e2)(m \<mapsto> u1)"
315 by (rule ext) (auto simp: map_add_def dom_def split: option.split)
317 lemma map_of_append[simp]: "map_of (xs @ ys) = map_of ys ++ map_of xs"
318 unfolding map_add_def
322 apply (simp split add: option.split)
325 lemma finite_range_map_of_map_add:
326 "finite (range f) ==> finite (range (f ++ map_of l))"
328 apply (auto simp del: fun_upd_apply)
329 apply (erule finite_range_updI)
332 lemma inj_on_map_add_dom [iff]:
333 "inj_on (m ++ m') (dom m') = inj_on m' (dom m')"
334 by (fastsimp simp: map_add_def dom_def inj_on_def split: option.splits)
337 subsection {* @{term [source] restrict_map} *}
339 lemma restrict_map_to_empty [simp]: "m|`{} = empty"
340 by (simp add: restrict_map_def)
342 lemma restrict_map_insert: "f |` (insert a A) = (f |` A)(a := f a)"
343 by (auto simp add: restrict_map_def intro: ext)
345 lemma restrict_map_empty [simp]: "empty|`D = empty"
346 by (simp add: restrict_map_def)
348 lemma restrict_in [simp]: "x \<in> A \<Longrightarrow> (m|`A) x = m x"
349 by (simp add: restrict_map_def)
351 lemma restrict_out [simp]: "x \<notin> A \<Longrightarrow> (m|`A) x = None"
352 by (simp add: restrict_map_def)
354 lemma ran_restrictD: "y \<in> ran (m|`A) \<Longrightarrow> \<exists>x\<in>A. m x = Some y"
355 by (auto simp: restrict_map_def ran_def split: split_if_asm)
357 lemma dom_restrict [simp]: "dom (m|`A) = dom m \<inter> A"
358 by (auto simp: restrict_map_def dom_def split: split_if_asm)
360 lemma restrict_upd_same [simp]: "m(x\<mapsto>y)|`(-{x}) = m|`(-{x})"
361 by (rule ext) (auto simp: restrict_map_def)
363 lemma restrict_restrict [simp]: "m|`A|`B = m|`(A\<inter>B)"
364 by (rule ext) (auto simp: restrict_map_def)
366 lemma restrict_fun_upd [simp]:
367 "m(x := y)|`D = (if x \<in> D then (m|`(D-{x}))(x := y) else m|`D)"
368 by (simp add: restrict_map_def expand_fun_eq)
370 lemma fun_upd_None_restrict [simp]:
371 "(m|`D)(x := None) = (if x:D then m|`(D - {x}) else m|`D)"
372 by (simp add: restrict_map_def expand_fun_eq)
374 lemma fun_upd_restrict: "(m|`D)(x := y) = (m|`(D-{x}))(x := y)"
375 by (simp add: restrict_map_def expand_fun_eq)
377 lemma fun_upd_restrict_conv [simp]:
378 "x \<in> D \<Longrightarrow> (m|`D)(x := y) = (m|`(D-{x}))(x := y)"
379 by (simp add: restrict_map_def expand_fun_eq)
382 subsection {* @{term [source] map_upds} *}
384 lemma map_upds_Nil1 [simp]: "m([] [|->] bs) = m"
385 by (simp add: map_upds_def)
387 lemma map_upds_Nil2 [simp]: "m(as [|->] []) = m"
388 by (simp add:map_upds_def)
390 lemma map_upds_Cons [simp]: "m(a#as [|->] b#bs) = (m(a|->b))(as[|->]bs)"
391 by (simp add:map_upds_def)
393 lemma map_upds_append1 [simp]: "\<And>ys m. size xs < size ys \<Longrightarrow>
394 m(xs@[x] [\<mapsto>] ys) = m(xs [\<mapsto>] ys)(x \<mapsto> ys!size xs)"
396 apply (clarsimp simp add: neq_Nil_conv)
402 lemma map_upds_list_update2_drop [simp]:
403 "\<lbrakk>size xs \<le> i; i < size ys\<rbrakk>
404 \<Longrightarrow> m(xs[\<mapsto>]ys[i:=y]) = m(xs[\<mapsto>]ys)"
405 apply (induct xs arbitrary: m ys i)
409 apply (simp split: nat.split)
412 lemma map_upd_upds_conv_if:
413 "(f(x|->y))(xs [|->] ys) =
414 (if x : set(take (length ys) xs) then f(xs [|->] ys)
415 else (f(xs [|->] ys))(x|->y))"
416 apply (induct xs arbitrary: x y ys f)
419 apply (auto split: split_if simp: fun_upd_twist)
422 lemma map_upds_twist [simp]:
423 "a ~: set as ==> m(a|->b)(as[|->]bs) = m(as[|->]bs)(a|->b)"
424 using set_take_subset by (fastsimp simp add: map_upd_upds_conv_if)
426 lemma map_upds_apply_nontin [simp]:
427 "x ~: set xs ==> (f(xs[|->]ys)) x = f x"
428 apply (induct xs arbitrary: ys)
431 apply (auto simp: map_upd_upds_conv_if)
434 lemma fun_upds_append_drop [simp]:
435 "size xs = size ys \<Longrightarrow> m(xs@zs[\<mapsto>]ys) = m(xs[\<mapsto>]ys)"
436 apply (induct xs arbitrary: m ys)
442 lemma fun_upds_append2_drop [simp]:
443 "size xs = size ys \<Longrightarrow> m(xs[\<mapsto>]ys@zs) = m(xs[\<mapsto>]ys)"
444 apply (induct xs arbitrary: m ys)
451 lemma restrict_map_upds[simp]:
452 "\<lbrakk> length xs = length ys; set xs \<subseteq> D \<rbrakk>
453 \<Longrightarrow> m(xs [\<mapsto>] ys)|`D = (m|`(D - set xs))(xs [\<mapsto>] ys)"
454 apply (induct xs arbitrary: m ys)
458 apply (simp add: Diff_insert [symmetric] insert_absorb)
459 apply (simp add: map_upd_upds_conv_if)
463 subsection {* @{term [source] dom} *}
465 lemma dom_eq_empty_conv [simp]: "dom f = {} \<longleftrightarrow> f = empty"
466 by(auto intro!:ext simp: dom_def)
468 lemma domI: "m a = Some b ==> a : dom m"
470 (* declare domI [intro]? *)
472 lemma domD: "a : dom m ==> \<exists>b. m a = Some b"
473 by (cases "m a") (auto simp add: dom_def)
475 lemma domIff [iff, simp del]: "(a : dom m) = (m a ~= None)"
478 lemma dom_empty [simp]: "dom empty = {}"
481 lemma dom_fun_upd [simp]:
482 "dom(f(x := y)) = (if y=None then dom f - {x} else insert x (dom f))"
483 by(auto simp add:dom_def)
485 lemma dom_map_of: "dom(map_of xys) = {x. \<exists>y. (x,y) : set xys}"
486 by (induct xys) (auto simp del: fun_upd_apply)
488 lemma dom_map_of_conv_image_fst:
489 "dom(map_of xys) = fst ` (set xys)"
490 by(force simp: dom_map_of)
492 lemma dom_map_of_zip [simp]: "[| length xs = length ys; distinct xs |] ==>
493 dom(map_of(zip xs ys)) = set xs"
494 by (induct rule: list_induct2) simp_all
496 lemma finite_dom_map_of: "finite (dom (map_of l))"
497 by (induct l) (auto simp add: dom_def insert_Collect [symmetric])
499 lemma dom_map_upds [simp]:
500 "dom(m(xs[|->]ys)) = set(take (length ys) xs) Un dom m"
501 apply (induct xs arbitrary: m ys)
507 lemma dom_map_add [simp]: "dom(m++n) = dom n Un dom m"
508 by(auto simp:dom_def)
510 lemma dom_override_on [simp]:
511 "dom(override_on f g A) =
512 (dom f - {a. a : A - dom g}) Un {a. a : A Int dom g}"
513 by(auto simp: dom_def override_on_def)
515 lemma map_add_comm: "dom m1 \<inter> dom m2 = {} \<Longrightarrow> m1++m2 = m2++m1"
516 by (rule ext) (force simp: map_add_def dom_def split: option.split)
518 lemma map_add_dom_app_simps:
519 "\<lbrakk> m\<in>dom l2 \<rbrakk> \<Longrightarrow> (l1++l2) m = l2 m"
520 "\<lbrakk> m\<notin>dom l1 \<rbrakk> \<Longrightarrow> (l1++l2) m = l2 m"
521 "\<lbrakk> m\<notin>dom l2 \<rbrakk> \<Longrightarrow> (l1++l2) m = l1 m"
522 by (auto simp add: map_add_def split: option.split_asm)
524 lemma dom_const [simp]:
525 "dom (\<lambda>x. Some y) = UNIV"
529 "dom (\<lambda>x. if P x then f x else g x) = dom f \<inter> {x. P x} \<union> dom g \<inter> {x. \<not> P x}"
530 by (auto split: if_splits)
533 (* Due to John Matthews - could be rephrased with dom *)
534 lemma finite_map_freshness:
535 "finite (dom (f :: 'a \<rightharpoonup> 'b)) \<Longrightarrow> \<not> finite (UNIV :: 'a set) \<Longrightarrow>
536 \<exists>x. f x = None"
537 by(bestsimp dest:ex_new_if_finite)
540 "f x = None \<Longrightarrow> dom f - insert x A = dom f - A"
541 unfolding dom_def by simp
544 "f x = Some y \<Longrightarrow> insert x (dom f) = dom f"
545 unfolding dom_def by auto
548 subsection {* @{term [source] ran} *}
550 lemma ranI: "m a = Some b ==> b : ran m"
551 by(auto simp: ran_def)
552 (* declare ranI [intro]? *)
554 lemma ran_empty [simp]: "ran empty = {}"
555 by(auto simp: ran_def)
557 lemma ran_map_upd [simp]: "m a = None ==> ran(m(a|->b)) = insert b (ran m)"
560 apply (subgoal_tac "aa ~= a")
565 subsection {* @{text "map_le"} *}
567 lemma map_le_empty [simp]: "empty \<subseteq>\<^sub>m g"
568 by (simp add: map_le_def)
570 lemma upd_None_map_le [simp]: "f(x := None) \<subseteq>\<^sub>m f"
571 by (force simp add: map_le_def)
573 lemma map_le_upd[simp]: "f \<subseteq>\<^sub>m g ==> f(a := b) \<subseteq>\<^sub>m g(a := b)"
574 by (fastsimp simp add: map_le_def)
576 lemma map_le_imp_upd_le [simp]: "m1 \<subseteq>\<^sub>m m2 \<Longrightarrow> m1(x := None) \<subseteq>\<^sub>m m2(x \<mapsto> y)"
577 by (force simp add: map_le_def)
579 lemma map_le_upds [simp]:
580 "f \<subseteq>\<^sub>m g ==> f(as [|->] bs) \<subseteq>\<^sub>m g(as [|->] bs)"
581 apply (induct as arbitrary: f g bs)
587 lemma map_le_implies_dom_le: "(f \<subseteq>\<^sub>m g) \<Longrightarrow> (dom f \<subseteq> dom g)"
588 by (fastsimp simp add: map_le_def dom_def)
590 lemma map_le_refl [simp]: "f \<subseteq>\<^sub>m f"
591 by (simp add: map_le_def)
593 lemma map_le_trans[trans]: "\<lbrakk> m1 \<subseteq>\<^sub>m m2; m2 \<subseteq>\<^sub>m m3\<rbrakk> \<Longrightarrow> m1 \<subseteq>\<^sub>m m3"
594 by (auto simp add: map_le_def dom_def)
596 lemma map_le_antisym: "\<lbrakk> f \<subseteq>\<^sub>m g; g \<subseteq>\<^sub>m f \<rbrakk> \<Longrightarrow> f = g"
599 apply (case_tac "x \<in> dom f", simp)
600 apply (case_tac "x \<in> dom g", simp, fastsimp)
603 lemma map_le_map_add [simp]: "f \<subseteq>\<^sub>m (g ++ f)"
604 by (fastsimp simp add: map_le_def)
606 lemma map_le_iff_map_add_commute: "(f \<subseteq>\<^sub>m f ++ g) = (f++g = g++f)"
607 by(fastsimp simp: map_add_def map_le_def expand_fun_eq split: option.splits)
609 lemma map_add_le_mapE: "f++g \<subseteq>\<^sub>m h \<Longrightarrow> g \<subseteq>\<^sub>m h"
610 by (fastsimp simp add: map_le_def map_add_def dom_def)
612 lemma map_add_le_mapI: "\<lbrakk> f \<subseteq>\<^sub>m h; g \<subseteq>\<^sub>m h; f \<subseteq>\<^sub>m f++g \<rbrakk> \<Longrightarrow> f++g \<subseteq>\<^sub>m h"
613 by (clarsimp simp add: map_le_def map_add_def dom_def split: option.splits)
616 lemma dom_eq_singleton_conv: "dom f = {x} \<longleftrightarrow> (\<exists>v. f = [x \<mapsto> v])"
618 assume "\<exists>v. f = [x \<mapsto> v]"
619 thus "dom f = {x}" by(auto split: split_if_asm)
622 then obtain v where "f x = Some v" by auto
623 hence "[x \<mapsto> v] \<subseteq>\<^sub>m f" by(auto simp add: map_le_def)
624 moreover have "f \<subseteq>\<^sub>m [x \<mapsto> v]" using `dom f = {x}` `f x = Some v`
625 by(auto simp add: map_le_def)
626 ultimately have "f = [x \<mapsto> v]" by-(rule map_le_antisym)
627 thus "\<exists>v. f = [x \<mapsto> v]" by blast