renamed former datatype.ML to datatype_data.ML; datatype.ML provides uniform view on datatype.ML and datatype_rep_proofs.ML
1 (* Title: HOL/Option.thy
5 header {* Datatype option *}
8 imports Datatype Finite_Set
11 datatype 'a option = None | Some 'a
13 lemma not_None_eq [iff]: "(x ~= None) = (EX y. x = Some y)"
16 lemma not_Some_eq [iff]: "(ALL y. x ~= Some y) = (x = None)"
19 text{*Although it may appear that both of these equalities are helpful
20 only when applied to assumptions, in practice it seems better to give
21 them the uniform iff attribute. *}
23 lemma inj_Some [simp]: "inj_on Some A"
24 by (rule inj_onI) simp
27 assumes c: "(case x of None => P | Some y => Q y)"
29 (None) "x = None" and P
30 | (Some) y where "x = Some y" and "Q y"
31 using c by (cases x) simp_all
33 lemma UNIV_option_conv: "UNIV = insert None (range Some)"
34 by(auto intro: classical)
36 lemma finite_option_UNIV[simp]:
37 "finite (UNIV :: 'a option set) = finite (UNIV :: 'a set)"
38 by(auto simp add: UNIV_option_conv elim: finite_imageD intro: inj_Some)
40 instance option :: (finite) finite proof
41 qed (simp add: UNIV_option_conv)
44 subsubsection {* Operations *}
46 primrec the :: "'a option => 'a" where
49 primrec set :: "'a option => 'a set" where
53 lemma ospec [dest]: "(ALL x:set A. P x) ==> A = Some x ==> P x"
56 declaration {* fn _ =>
57 Classical.map_cs (fn cs => cs addSD2 ("ospec", thm "ospec"))
60 lemma elem_set [iff]: "(x : set xo) = (xo = Some x)"
63 lemma set_empty_eq [simp]: "(set xo = {}) = (xo = None)"
66 definition map :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a option \<Rightarrow> 'b option" where
67 "map = (%f y. case y of None => None | Some x => Some (f x))"
69 lemma option_map_None [simp, code]: "map f None = None"
70 by (simp add: map_def)
72 lemma option_map_Some [simp, code]: "map f (Some x) = Some (f x)"
73 by (simp add: map_def)
75 lemma option_map_is_None [iff]:
76 "(map f opt = None) = (opt = None)"
77 by (simp add: map_def split add: option.split)
79 lemma option_map_eq_Some [iff]:
80 "(map f xo = Some y) = (EX z. xo = Some z & f z = y)"
81 by (simp add: map_def split add: option.split)
83 lemma option_map_comp:
84 "map f (map g opt) = map (f o g) opt"
85 by (simp add: map_def split add: option.split)
87 lemma option_map_o_sum_case [simp]:
88 "map f o sum_case g h = sum_case (map f o g) (map f o h)"
89 by (rule ext) (simp split: sum.split)
92 hide (open) const set map
94 subsubsection {* Code generator setup *}
96 definition is_none :: "'a option \<Rightarrow> bool" where
97 [code_post]: "is_none x \<longleftrightarrow> x = None"
99 lemma is_none_code [code]:
100 shows "is_none None \<longleftrightarrow> True"
101 and "is_none (Some x) \<longleftrightarrow> False"
102 unfolding is_none_def by simp_all
105 "is_none x \<longleftrightarrow> x = None"
106 by (simp add: is_none_def)
109 "eq_class.eq x None \<longleftrightarrow> is_none x"
110 by (simp add: eq is_none_none)
112 hide (open) const is_none
119 code_const None and Some
120 (SML "NONE" and "SOME")
121 (OCaml "None" and "Some _")
122 (Haskell "Nothing" and "Just")
124 code_instance option :: eq
127 code_const "eq_class.eq \<Colon> 'a\<Colon>eq option \<Rightarrow> 'a option \<Rightarrow> bool"
128 (Haskell infixl 4 "==")