renamed former datatype.ML to datatype_data.ML; datatype.ML provides uniform view on datatype.ML and datatype_rep_proofs.ML
1 (* Title: HOL/Power.thy
2 Author: Lawrence C Paulson, Cambridge University Computer Laboratory
3 Copyright 1997 University of Cambridge
6 header {* Exponentiation *}
12 subsection {* Powers for Arbitrary Monoids *}
14 class power = one + times
17 primrec power :: "'a \<Rightarrow> nat \<Rightarrow> 'a" (infixr "^" 80) where
19 | power_Suc: "a ^ Suc n = a * a ^ n"
21 notation (latex output)
22 power ("(_\<^bsup>_\<^esup>)" [1000] 1000)
24 notation (HTML output)
25 power ("(_\<^bsup>_\<^esup>)" [1000] 1000)
34 lemma power_one [simp]:
36 by (induct n) simp_all
38 lemma power_one_right [simp]:
43 "a ^ n * a = a * a ^ n"
44 by (induct n) (simp_all add: mult_assoc)
47 "a ^ Suc n = a ^ n * a"
48 by (simp add: power_commutes)
51 "a ^ (m + n) = a ^ m * a ^ n"
52 by (induct m) (simp_all add: algebra_simps)
55 "a ^ (m * n) = (a ^ m) ^ n"
56 by (induct n) (simp_all add: power_add)
60 context comm_monoid_mult
63 lemma power_mult_distrib:
64 "(a * b) ^ n = (a ^ n) * (b ^ n)"
65 by (induct n) (simp_all add: mult_ac)
73 "of_nat (m ^ n) = of_nat m ^ n"
74 by (induct n) (simp_all add: of_nat_mult)
78 context comm_semiring_1
81 text {* The divides relation *}
83 lemma le_imp_power_dvd:
84 assumes "m \<le> n" shows "a ^ m dvd a ^ n"
86 have "a ^ n = a ^ (m + (n - m))"
87 using `m \<le> n` by simp
88 also have "\<dots> = a ^ m * a ^ (n - m)"
90 finally show "a ^ n = a ^ m * a ^ (n - m)" .
94 "a ^ n dvd b \<Longrightarrow> m \<le> n \<Longrightarrow> a ^ m dvd b"
95 by (rule dvd_trans [OF le_imp_power_dvd])
98 "x dvd y \<Longrightarrow> x ^ n dvd y ^ n"
99 by (induct n) (auto simp add: mult_dvd_mono)
102 "x dvd y \<Longrightarrow> m \<ge> n \<Longrightarrow> x ^ n dvd y ^ m"
103 by (rule power_le_dvd [OF dvd_power_same])
105 lemma dvd_power [simp]:
106 assumes "n > (0::nat) \<or> x = 1"
107 shows "x dvd (x ^ n)"
110 then have "x ^ n = x ^ Suc (n - 1)" by simp
111 then show "x dvd (x ^ n)" by simp
114 then show "x dvd (x ^ n)" by simp
123 "(- a) ^ n = (- 1) ^ n * a ^ n"
125 case 0 show ?case by simp
127 case (Suc n) then show ?case
128 by (simp del: power_Suc add: power_Suc2 mult_assoc)
133 context ordered_semidom
136 lemma zero_less_power [simp]:
137 "0 < a \<Longrightarrow> 0 < a ^ n"
138 by (induct n) (simp_all add: mult_pos_pos)
140 lemma zero_le_power [simp]:
141 "0 \<le> a \<Longrightarrow> 0 \<le> a ^ n"
142 by (induct n) (simp_all add: mult_nonneg_nonneg)
144 lemma one_le_power[simp]:
145 "1 \<le> a \<Longrightarrow> 1 \<le> a ^ n"
148 apply (rule order_trans [OF _ mult_mono [of 1 _ 1]])
149 apply (simp_all add: order_trans [OF zero_le_one])
152 lemma power_gt1_lemma:
154 shows "1 < a * a ^ n"
156 from gt1 have "0 \<le> a"
157 by (fact order_trans [OF zero_le_one less_imp_le])
158 have "1 * 1 < a * 1" using gt1 by simp
159 also have "\<dots> \<le> a * a ^ n" using gt1
160 by (simp only: mult_mono `0 \<le> a` one_le_power order_less_imp_le
161 zero_le_one order_refl)
162 finally show ?thesis by simp
166 "1 < a \<Longrightarrow> 1 < a ^ Suc n"
167 by (simp add: power_gt1_lemma)
169 lemma one_less_power [simp]:
170 "1 < a \<Longrightarrow> 0 < n \<Longrightarrow> 1 < a ^ n"
171 by (cases n) (simp_all add: power_gt1_lemma)
173 lemma power_le_imp_le_exp:
175 shows "a ^ m \<le> a ^ n \<Longrightarrow> m \<le> n"
176 proof (induct m arbitrary: n)
184 with Suc.prems Suc.hyps have "a * a ^ m \<le> 1" by simp
185 with gt1 show ?thesis
186 by (force simp only: power_gt1_lemma
187 not_less [symmetric])
190 with Suc.prems Suc.hyps show ?thesis
191 by (force dest: mult_left_le_imp_le
192 simp add: less_trans [OF zero_less_one gt1])
196 text{*Surely we can strengthen this? It holds for @{text "0<a<1"} too.*}
197 lemma power_inject_exp [simp]:
198 "1 < a \<Longrightarrow> a ^ m = a ^ n \<longleftrightarrow> m = n"
199 by (force simp add: order_antisym power_le_imp_le_exp)
201 text{*Can relax the first premise to @{term "0<a"} in the case of the
203 lemma power_less_imp_less_exp:
204 "1 < a \<Longrightarrow> a ^ m < a ^ n \<Longrightarrow> m < n"
205 by (simp add: order_less_le [of m n] less_le [of "a^m" "a^n"]
209 "a \<le> b \<Longrightarrow> 0 \<le> a \<Longrightarrow> a ^ n \<le> b ^ n"
211 (auto intro: mult_mono order_trans [of 0 a b])
213 lemma power_strict_mono [rule_format]:
214 "a < b \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 < n \<longrightarrow> a ^ n < b ^ n"
216 (auto simp add: mult_strict_mono le_less_trans [of 0 a b])
218 text{*Lemma for @{text power_strict_decreasing}*}
219 lemma power_Suc_less:
220 "0 < a \<Longrightarrow> a < 1 \<Longrightarrow> a * a ^ n < a ^ n"
222 (auto simp add: mult_strict_left_mono)
224 lemma power_strict_decreasing [rule_format]:
225 "n < N \<Longrightarrow> 0 < a \<Longrightarrow> a < 1 \<longrightarrow> a ^ N < a ^ n"
227 case 0 then show ?case by simp
229 case (Suc N) then show ?case
230 apply (auto simp add: power_Suc_less less_Suc_eq)
231 apply (subgoal_tac "a * a^N < 1 * a^n")
233 apply (rule mult_strict_mono) apply auto
237 text{*Proof resembles that of @{text power_strict_decreasing}*}
238 lemma power_decreasing [rule_format]:
239 "n \<le> N \<Longrightarrow> 0 \<le> a \<Longrightarrow> a \<le> 1 \<longrightarrow> a ^ N \<le> a ^ n"
241 case 0 then show ?case by simp
243 case (Suc N) then show ?case
244 apply (auto simp add: le_Suc_eq)
245 apply (subgoal_tac "a * a^N \<le> 1 * a^n", simp)
246 apply (rule mult_mono) apply auto
250 lemma power_Suc_less_one:
251 "0 < a \<Longrightarrow> a < 1 \<Longrightarrow> a ^ Suc n < 1"
252 using power_strict_decreasing [of 0 "Suc n" a] by simp
254 text{*Proof again resembles that of @{text power_strict_decreasing}*}
255 lemma power_increasing [rule_format]:
256 "n \<le> N \<Longrightarrow> 1 \<le> a \<Longrightarrow> a ^ n \<le> a ^ N"
258 case 0 then show ?case by simp
260 case (Suc N) then show ?case
261 apply (auto simp add: le_Suc_eq)
262 apply (subgoal_tac "1 * a^n \<le> a * a^N", simp)
263 apply (rule mult_mono) apply (auto simp add: order_trans [OF zero_le_one])
267 text{*Lemma for @{text power_strict_increasing}*}
268 lemma power_less_power_Suc:
269 "1 < a \<Longrightarrow> a ^ n < a * a ^ n"
270 by (induct n) (auto simp add: mult_strict_left_mono less_trans [OF zero_less_one])
272 lemma power_strict_increasing [rule_format]:
273 "n < N \<Longrightarrow> 1 < a \<longrightarrow> a ^ n < a ^ N"
275 case 0 then show ?case by simp
277 case (Suc N) then show ?case
278 apply (auto simp add: power_less_power_Suc less_Suc_eq)
279 apply (subgoal_tac "1 * a^n < a * a^N", simp)
280 apply (rule mult_strict_mono) apply (auto simp add: less_trans [OF zero_less_one] less_imp_le)
284 lemma power_increasing_iff [simp]:
285 "1 < b \<Longrightarrow> b ^ x \<le> b ^ y \<longleftrightarrow> x \<le> y"
286 by (blast intro: power_le_imp_le_exp power_increasing less_imp_le)
288 lemma power_strict_increasing_iff [simp]:
289 "1 < b \<Longrightarrow> b ^ x < b ^ y \<longleftrightarrow> x < y"
290 by (blast intro: power_less_imp_less_exp power_strict_increasing)
292 lemma power_le_imp_le_base:
293 assumes le: "a ^ Suc n \<le> b ^ Suc n"
294 and ynonneg: "0 \<le> b"
298 then have "b < a" by (simp only: linorder_not_le)
299 then have "b ^ Suc n < a ^ Suc n"
300 by (simp only: prems power_strict_mono)
301 from le and this show False
302 by (simp add: linorder_not_less [symmetric])
305 lemma power_less_imp_less_base:
306 assumes less: "a ^ n < b ^ n"
307 assumes nonneg: "0 \<le> b"
309 proof (rule contrapos_pp [OF less])
311 hence "b \<le> a" by (simp only: linorder_not_less)
312 hence "b ^ n \<le> a ^ n" using nonneg by (rule power_mono)
313 thus "\<not> a ^ n < b ^ n" by (simp only: linorder_not_less)
316 lemma power_inject_base:
317 "a ^ Suc n = b ^ Suc n \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> a = b"
318 by (blast intro: power_le_imp_le_base antisym eq_refl sym)
320 lemma power_eq_imp_eq_base:
321 "a ^ n = b ^ n \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 < n \<Longrightarrow> a = b"
322 by (cases n) (simp_all del: power_Suc, rule power_inject_base)
330 "abs (a ^ n) = abs a ^ n"
331 by (induct n) (auto simp add: abs_mult)
333 lemma abs_power_minus [simp]:
334 "abs ((-a) ^ n) = abs (a ^ n)"
335 by (simp add: abs_minus_cancel power_abs)
337 lemma zero_less_power_abs_iff [simp, noatp]:
338 "0 < abs a ^ n \<longleftrightarrow> a \<noteq> 0 \<or> n = 0"
340 case 0 show ?case by simp
342 case (Suc n) show ?case by (auto simp add: Suc zero_less_mult_iff)
345 lemma zero_le_power_abs [simp]:
347 by (rule zero_le_power [OF abs_ge_zero])
351 context ring_1_no_zero_divisors
354 lemma field_power_not_zero:
355 "a \<noteq> 0 \<Longrightarrow> a ^ n \<noteq> 0"
360 context division_ring
363 text {* FIXME reorient or rename to @{text nonzero_inverse_power} *}
364 lemma nonzero_power_inverse:
365 "a \<noteq> 0 \<Longrightarrow> inverse (a ^ n) = (inverse a) ^ n"
367 (simp_all add: nonzero_inverse_mult_distrib power_commutes field_power_not_zero)
374 lemma nonzero_power_divide:
375 "b \<noteq> 0 \<Longrightarrow> (a / b) ^ n = a ^ n / b ^ n"
376 by (simp add: divide_inverse power_mult_distrib nonzero_power_inverse)
380 lemma power_0_Suc [simp]:
381 "(0::'a::{power, semiring_0}) ^ Suc n = 0"
384 text{*It looks plausible as a simprule, but its effect can be strange.*}
386 "0 ^ n = (if n = 0 then 1 else (0::'a::{power, semiring_0}))"
387 by (induct n) simp_all
389 lemma power_eq_0_iff [simp]:
390 "a ^ n = 0 \<longleftrightarrow>
391 a = (0::'a::{mult_zero,zero_neq_one,no_zero_divisors,power}) \<and> n \<noteq> 0"
393 (auto simp add: no_zero_divisors elim: contrapos_pp)
396 fixes a :: "'a::field"
397 assumes nz: "a \<noteq> 0"
398 shows "n \<le> m \<Longrightarrow> a ^ (m - n) = a ^ m / a ^ n"
399 by (induct m n rule: diff_induct) (simp_all add: nz)
401 text{*Perhaps these should be simprules.*}
403 fixes a :: "'a::{division_ring,division_by_zero,power}"
404 shows "inverse (a ^ n) = (inverse a) ^ n"
405 apply (cases "a = 0")
406 apply (simp add: power_0_left)
407 apply (simp add: nonzero_power_inverse)
408 done (* TODO: reorient or rename to inverse_power *)
410 lemma power_one_over:
411 "1 / (a::'a::{field,division_by_zero, power}) ^ n = (1 / a) ^ n"
412 by (simp add: divide_inverse) (rule power_inverse)
415 "(a / b) ^ n = (a::'a::{field,division_by_zero}) ^ n / b ^ n"
416 apply (cases "b = 0")
417 apply (simp add: power_0_left)
418 apply (rule nonzero_power_divide)
423 subsection {* Exponentiation for the Natural Numbers *}
425 lemma nat_one_le_power [simp]:
426 "Suc 0 \<le> i \<Longrightarrow> Suc 0 \<le> i ^ n"
427 by (rule one_le_power [of i n, unfolded One_nat_def])
429 lemma nat_zero_less_power_iff [simp]:
430 "x ^ n > 0 \<longleftrightarrow> x > (0::nat) \<or> n = 0"
433 lemma nat_power_eq_Suc_0_iff [simp]:
434 "x ^ m = Suc 0 \<longleftrightarrow> m = 0 \<or> x = Suc 0"
437 lemma power_Suc_0 [simp]:
441 text{*Valid for the naturals, but what if @{text"0<i<1"}?
442 Premises cannot be weakened: consider the case where @{term "i=0"},
443 @{term "m=1"} and @{term "n=0"}.*}
444 lemma nat_power_less_imp_less:
445 assumes nonneg: "0 < (i\<Colon>nat)"
446 assumes less: "i ^ m < i ^ n"
448 proof (cases "i = 1")
449 case True with less power_one [where 'a = nat] show ?thesis by simp
451 case False with nonneg have "1 < i" by auto
452 from power_strict_increasing_iff [OF this] less show ?thesis ..
455 lemma power_dvd_imp_le:
456 "i ^ m dvd i ^ n \<Longrightarrow> (1::nat) < i \<Longrightarrow> m \<le> n"
457 apply (rule power_le_imp_le_exp, assumption)
458 apply (erule dvd_imp_le, simp)
462 subsection {* Code generator tweak *}
464 lemma power_power_power [code, code_unfold, code_inline del]:
465 "power = power.power (1::'a::{power}) (op *)"
466 unfolding power_def power.power_def ..
468 declare power.power.simps [code]
473 code_modulename OCaml
476 code_modulename Haskell