src/HOL/Option.thy
 author haftmann Wed Mar 10 16:53:27 2010 +0100 (2010-03-10) changeset 35719 99b6152aedf5 parent 34886 873c31d9f10d child 36176 3fe7e97ccca8 permissions -rw-r--r--
split off theory Big_Operators from theory Finite_Set
```     1 (*  Title:      HOL/Option.thy
```
```     2     Author:     Folklore
```
```     3 *)
```
```     4
```
```     5 header {* Datatype option *}
```
```     6
```
```     7 theory Option
```
```     8 imports Datatype
```
```     9 begin
```
```    10
```
```    11 datatype 'a option = None | Some 'a
```
```    12
```
```    13 lemma not_None_eq [iff]: "(x ~= None) = (EX y. x = Some y)"
```
```    14   by (induct x) auto
```
```    15
```
```    16 lemma not_Some_eq [iff]: "(ALL y. x ~= Some y) = (x = None)"
```
```    17   by (induct x) auto
```
```    18
```
```    19 text{*Although it may appear that both of these equalities are helpful
```
```    20 only when applied to assumptions, in practice it seems better to give
```
```    21 them the uniform iff attribute. *}
```
```    22
```
```    23 lemma inj_Some [simp]: "inj_on Some A"
```
```    24 by (rule inj_onI) simp
```
```    25
```
```    26 lemma option_caseE:
```
```    27   assumes c: "(case x of None => P | Some y => Q y)"
```
```    28   obtains
```
```    29     (None) "x = None" and P
```
```    30   | (Some) y where "x = Some y" and "Q y"
```
```    31   using c by (cases x) simp_all
```
```    32
```
```    33 lemma UNIV_option_conv: "UNIV = insert None (range Some)"
```
```    34 by(auto intro: classical)
```
```    35
```
```    36
```
```    37 subsubsection {* Operations *}
```
```    38
```
```    39 primrec the :: "'a option => 'a" where
```
```    40 "the (Some x) = x"
```
```    41
```
```    42 primrec set :: "'a option => 'a set" where
```
```    43 "set None = {}" |
```
```    44 "set (Some x) = {x}"
```
```    45
```
```    46 lemma ospec [dest]: "(ALL x:set A. P x) ==> A = Some x ==> P x"
```
```    47   by simp
```
```    48
```
```    49 declaration {* fn _ =>
```
```    50   Classical.map_cs (fn cs => cs addSD2 ("ospec", thm "ospec"))
```
```    51 *}
```
```    52
```
```    53 lemma elem_set [iff]: "(x : set xo) = (xo = Some x)"
```
```    54   by (cases xo) auto
```
```    55
```
```    56 lemma set_empty_eq [simp]: "(set xo = {}) = (xo = None)"
```
```    57   by (cases xo) auto
```
```    58
```
```    59 definition map :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a option \<Rightarrow> 'b option" where
```
```    60   "map = (%f y. case y of None => None | Some x => Some (f x))"
```
```    61
```
```    62 lemma option_map_None [simp, code]: "map f None = None"
```
```    63   by (simp add: map_def)
```
```    64
```
```    65 lemma option_map_Some [simp, code]: "map f (Some x) = Some (f x)"
```
```    66   by (simp add: map_def)
```
```    67
```
```    68 lemma option_map_is_None [iff]:
```
```    69     "(map f opt = None) = (opt = None)"
```
```    70   by (simp add: map_def split add: option.split)
```
```    71
```
```    72 lemma option_map_eq_Some [iff]:
```
```    73     "(map f xo = Some y) = (EX z. xo = Some z & f z = y)"
```
```    74   by (simp add: map_def split add: option.split)
```
```    75
```
```    76 lemma option_map_comp:
```
```    77     "map f (map g opt) = map (f o g) opt"
```
```    78   by (simp add: map_def split add: option.split)
```
```    79
```
```    80 lemma option_map_o_sum_case [simp]:
```
```    81     "map f o sum_case g h = sum_case (map f o g) (map f o h)"
```
```    82   by (rule ext) (simp split: sum.split)
```
```    83
```
```    84
```
```    85 hide (open) const set map
```
```    86
```
```    87 subsubsection {* Code generator setup *}
```
```    88
```
```    89 definition is_none :: "'a option \<Rightarrow> bool" where
```
```    90   [code_post]: "is_none x \<longleftrightarrow> x = None"
```
```    91
```
```    92 lemma is_none_code [code]:
```
```    93   shows "is_none None \<longleftrightarrow> True"
```
```    94     and "is_none (Some x) \<longleftrightarrow> False"
```
```    95   unfolding is_none_def by simp_all
```
```    96
```
```    97 lemma is_none_none:
```
```    98   "is_none x \<longleftrightarrow> x = None"
```
```    99   by (simp add: is_none_def)
```
```   100
```
```   101 lemma [code_unfold]:
```
```   102   "eq_class.eq x None \<longleftrightarrow> is_none x"
```
```   103   by (simp add: eq is_none_none)
```
```   104
```
```   105 hide (open) const is_none
```
```   106
```
```   107 code_type option
```
```   108   (SML "_ option")
```
```   109   (OCaml "_ option")
```
```   110   (Haskell "Maybe _")
```
```   111   (Scala "!Option[(_)]")
```
```   112
```
```   113 code_const None and Some
```
```   114   (SML "NONE" and "SOME")
```
```   115   (OCaml "None" and "Some _")
```
```   116   (Haskell "Nothing" and "Just")
```
```   117   (Scala "None" and "!Some((_))")
```
```   118
```
```   119 code_instance option :: eq
```
```   120   (Haskell -)
```
```   121
```
```   122 code_const "eq_class.eq \<Colon> 'a\<Colon>eq option \<Rightarrow> 'a option \<Rightarrow> bool"
```
```   123   (Haskell infixl 4 "==")
```
```   124
```
```   125 code_reserved SML
```
```   126   option NONE SOME
```
```   127
```
```   128 code_reserved OCaml
```
```   129   option None Some
```
```   130
```
```   131 code_reserved Scala
```
```   132   Option None Some
```
```   133
```
```   134 end
```