src/HOL/Wellfounded.thy
 author haftmann Wed Mar 10 16:53:27 2010 +0100 (2010-03-10) changeset 35719 99b6152aedf5 parent 35216 7641e8d831d2 child 35727 817b8e0f7086 permissions -rw-r--r--
split off theory Big_Operators from theory Finite_Set
1 (*  Title:      HOL/Wellfounded.thy
2     Author:     Tobias Nipkow
3     Author:     Lawrence C Paulson
5     Author:     Alexander Krauss
6 *)
10 theory Wellfounded
11 imports Transitive_Closure Big_Operators
12 uses ("Tools/Function/size.ML")
13 begin
15 subsection {* Basic Definitions *}
17 definition wf :: "('a * 'a) set => bool" where
18   "wf(r) == (!P. (!x. (!y. (y,x):r --> P(y)) --> P(x)) --> (!x. P(x)))"
20 definition wfP :: "('a => 'a => bool) => bool" where
21   "wfP r == wf {(x, y). r x y}"
23 lemma wfP_wf_eq [pred_set_conv]: "wfP (\<lambda>x y. (x, y) \<in> r) = wf r"
26 lemma wfUNIVI:
27    "(!!P x. (ALL x. (ALL y. (y,x) : r --> P(y)) --> P(x)) ==> P(x)) ==> wf(r)"
28   unfolding wf_def by blast
30 lemmas wfPUNIVI = wfUNIVI [to_pred]
32 text{*Restriction to domain @{term A} and range @{term B}.  If @{term r} is
33     well-founded over their intersection, then @{term "wf r"}*}
34 lemma wfI:
35  "[| r \<subseteq> A <*> B;
36      !!x P. [|\<forall>x. (\<forall>y. (y,x) : r --> P y) --> P x;  x : A; x : B |] ==> P x |]
37   ==>  wf r"
38   unfolding wf_def by blast
40 lemma wf_induct:
41     "[| wf(r);
42         !!x.[| ALL y. (y,x): r --> P(y) |] ==> P(x)
43      |]  ==>  P(a)"
44   unfolding wf_def by blast
46 lemmas wfP_induct = wf_induct [to_pred]
48 lemmas wf_induct_rule = wf_induct [rule_format, consumes 1, case_names less, induct set: wf]
50 lemmas wfP_induct_rule = wf_induct_rule [to_pred, induct set: wfP]
52 lemma wf_not_sym: "wf r ==> (a, x) : r ==> (x, a) ~: r"
53   by (induct a arbitrary: x set: wf) blast
55 lemma wf_asym:
56   assumes "wf r" "(a, x) \<in> r"
57   obtains "(x, a) \<notin> r"
58   by (drule wf_not_sym[OF assms])
60 lemma wf_not_refl [simp]: "wf r ==> (a, a) ~: r"
61   by (blast elim: wf_asym)
63 lemma wf_irrefl: assumes "wf r" obtains "(a, a) \<notin> r"
64 by (drule wf_not_refl[OF assms])
66 lemma wf_wellorderI:
67   assumes wf: "wf {(x::'a::ord, y). x < y}"
68   assumes lin: "OFCLASS('a::ord, linorder_class)"
69   shows "OFCLASS('a::ord, wellorder_class)"
70 using lin by (rule wellorder_class.intro)
71   (blast intro: wellorder_axioms.intro wf_induct_rule [OF wf])
73 lemma (in wellorder) wf:
74   "wf {(x, y). x < y}"
75 unfolding wf_def by (blast intro: less_induct)
78 subsection {* Basic Results *}
80 text {* Point-free characterization of well-foundedness *}
82 lemma wfE_pf:
83   assumes wf: "wf R"
84   assumes a: "A \<subseteq> R `` A"
85   shows "A = {}"
86 proof -
87   { fix x
88     from wf have "x \<notin> A"
89     proof induct
90       fix x assume "\<And>y. (y, x) \<in> R \<Longrightarrow> y \<notin> A"
91       then have "x \<notin> R `` A" by blast
92       with a show "x \<notin> A" by blast
93     qed
94   } thus ?thesis by auto
95 qed
97 lemma wfI_pf:
98   assumes a: "\<And>A. A \<subseteq> R `` A \<Longrightarrow> A = {}"
99   shows "wf R"
100 proof (rule wfUNIVI)
101   fix P :: "'a \<Rightarrow> bool" and x
102   let ?A = "{x. \<not> P x}"
103   assume "\<forall>x. (\<forall>y. (y, x) \<in> R \<longrightarrow> P y) \<longrightarrow> P x"
104   then have "?A \<subseteq> R `` ?A" by blast
105   with a show "P x" by blast
106 qed
108 text{*Minimal-element characterization of well-foundedness*}
110 lemma wfE_min:
111   assumes wf: "wf R" and Q: "x \<in> Q"
112   obtains z where "z \<in> Q" "\<And>y. (y, z) \<in> R \<Longrightarrow> y \<notin> Q"
113   using Q wfE_pf[OF wf, of Q] by blast
115 lemma wfI_min:
116   assumes a: "\<And>x Q. x \<in> Q \<Longrightarrow> \<exists>z\<in>Q. \<forall>y. (y, z) \<in> R \<longrightarrow> y \<notin> Q"
117   shows "wf R"
118 proof (rule wfI_pf)
119   fix A assume b: "A \<subseteq> R `` A"
120   { fix x assume "x \<in> A"
121     from a[OF this] b have "False" by blast
122   }
123   thus "A = {}" by blast
124 qed
126 lemma wf_eq_minimal: "wf r = (\<forall>Q x. x\<in>Q --> (\<exists>z\<in>Q. \<forall>y. (y,z)\<in>r --> y\<notin>Q))"
127 apply auto
128 apply (erule wfE_min, assumption, blast)
129 apply (rule wfI_min, auto)
130 done
132 lemmas wfP_eq_minimal = wf_eq_minimal [to_pred]
134 text{* Well-foundedness of transitive closure *}
136 lemma wf_trancl:
137   assumes "wf r"
138   shows "wf (r^+)"
139 proof -
140   {
141     fix P and x
142     assume induct_step: "!!x. (!!y. (y, x) : r^+ ==> P y) ==> P x"
143     have "P x"
144     proof (rule induct_step)
145       fix y assume "(y, x) : r^+"
146       with `wf r` show "P y"
147       proof (induct x arbitrary: y)
148         case (less x)
149         note hyp = `\<And>x' y'. (x', x) : r ==> (y', x') : r^+ ==> P y'`
150         from `(y, x) : r^+` show "P y"
151         proof cases
152           case base
153           show "P y"
154           proof (rule induct_step)
155             fix y' assume "(y', y) : r^+"
156             with `(y, x) : r` show "P y'" by (rule hyp [of y y'])
157           qed
158         next
159           case step
160           then obtain x' where "(x', x) : r" and "(y, x') : r^+" by simp
161           then show "P y" by (rule hyp [of x' y])
162         qed
163       qed
164     qed
165   } then show ?thesis unfolding wf_def by blast
166 qed
168 lemmas wfP_trancl = wf_trancl [to_pred]
170 lemma wf_converse_trancl: "wf (r^-1) ==> wf ((r^+)^-1)"
171   apply (subst trancl_converse [symmetric])
172   apply (erule wf_trancl)
173   done
175 text {* Well-foundedness of subsets *}
177 lemma wf_subset: "[| wf(r);  p<=r |] ==> wf(p)"
178   apply (simp (no_asm_use) add: wf_eq_minimal)
179   apply fast
180   done
182 lemmas wfP_subset = wf_subset [to_pred]
184 text {* Well-foundedness of the empty relation *}
186 lemma wf_empty [iff]: "wf {}"
189 lemma wfP_empty [iff]:
190   "wfP (\<lambda>x y. False)"
191 proof -
192   have "wfP bot" by (fact wf_empty [to_pred bot_empty_eq2])
193   then show ?thesis by (simp add: bot_fun_eq bot_bool_eq)
194 qed
196 lemma wf_Int1: "wf r ==> wf (r Int r')"
197   apply (erule wf_subset)
198   apply (rule Int_lower1)
199   done
201 lemma wf_Int2: "wf r ==> wf (r' Int r)"
202   apply (erule wf_subset)
203   apply (rule Int_lower2)
204   done
206 text {* Exponentiation *}
208 lemma wf_exp:
209   assumes "wf (R ^^ n)"
210   shows "wf R"
211 proof (rule wfI_pf)
212   fix A assume "A \<subseteq> R `` A"
213   then have "A \<subseteq> (R ^^ n) `` A" by (induct n) force+
214   with `wf (R ^^ n)`
215   show "A = {}" by (rule wfE_pf)
216 qed
218 text {* Well-foundedness of insert *}
220 lemma wf_insert [iff]: "wf(insert (y,x) r) = (wf(r) & (x,y) ~: r^*)"
221 apply (rule iffI)
222  apply (blast elim: wf_trancl [THEN wf_irrefl]
223               intro: rtrancl_into_trancl1 wf_subset
224                      rtrancl_mono [THEN [2] rev_subsetD])
225 apply (simp add: wf_eq_minimal, safe)
226 apply (rule allE, assumption, erule impE, blast)
227 apply (erule bexE)
228 apply (rename_tac "a", case_tac "a = x")
229  prefer 2
230 apply blast
231 apply (case_tac "y:Q")
232  prefer 2 apply blast
233 apply (rule_tac x = "{z. z:Q & (z,y) : r^*}" in allE)
234  apply assumption
235 apply (erule_tac V = "ALL Q. (EX x. x : Q) --> ?P Q" in thin_rl)
236   --{*essential for speed*}
237 txt{*Blast with new substOccur fails*}
238 apply (fast intro: converse_rtrancl_into_rtrancl)
239 done
241 text{*Well-foundedness of image*}
243 lemma wf_prod_fun_image: "[| wf r; inj f |] ==> wf(prod_fun f f ` r)"
244 apply (simp only: wf_eq_minimal, clarify)
245 apply (case_tac "EX p. f p : Q")
246 apply (erule_tac x = "{p. f p : Q}" in allE)
247 apply (fast dest: inj_onD, blast)
248 done
251 subsection {* Well-Foundedness Results for Unions *}
253 lemma wf_union_compatible:
254   assumes "wf R" "wf S"
255   assumes "R O S \<subseteq> R"
256   shows "wf (R \<union> S)"
257 proof (rule wfI_min)
258   fix x :: 'a and Q
259   let ?Q' = "{x \<in> Q. \<forall>y. (y, x) \<in> R \<longrightarrow> y \<notin> Q}"
260   assume "x \<in> Q"
261   obtain a where "a \<in> ?Q'"
262     by (rule wfE_min [OF `wf R` `x \<in> Q`]) blast
263   with `wf S`
264   obtain z where "z \<in> ?Q'" and zmin: "\<And>y. (y, z) \<in> S \<Longrightarrow> y \<notin> ?Q'" by (erule wfE_min)
265   {
266     fix y assume "(y, z) \<in> S"
267     then have "y \<notin> ?Q'" by (rule zmin)
269     have "y \<notin> Q"
270     proof
271       assume "y \<in> Q"
272       with `y \<notin> ?Q'`
273       obtain w where "(w, y) \<in> R" and "w \<in> Q" by auto
274       from `(w, y) \<in> R` `(y, z) \<in> S` have "(w, z) \<in> R O S" by (rule rel_compI)
275       with `R O S \<subseteq> R` have "(w, z) \<in> R" ..
276       with `z \<in> ?Q'` have "w \<notin> Q" by blast
277       with `w \<in> Q` show False by contradiction
278     qed
279   }
280   with `z \<in> ?Q'` show "\<exists>z\<in>Q. \<forall>y. (y, z) \<in> R \<union> S \<longrightarrow> y \<notin> Q" by blast
281 qed
284 text {* Well-foundedness of indexed union with disjoint domains and ranges *}
286 lemma wf_UN: "[| ALL i:I. wf(r i);
287          ALL i:I. ALL j:I. r i ~= r j --> Domain(r i) Int Range(r j) = {}
288       |] ==> wf(UN i:I. r i)"
289 apply (simp only: wf_eq_minimal, clarify)
290 apply (rename_tac A a, case_tac "EX i:I. EX a:A. EX b:A. (b,a) : r i")
291  prefer 2
292  apply force
293 apply clarify
294 apply (drule bspec, assumption)
295 apply (erule_tac x="{a. a:A & (EX b:A. (b,a) : r i) }" in allE)
296 apply (blast elim!: allE)
297 done
299 lemma wfP_SUP:
300   "\<forall>i. wfP (r i) \<Longrightarrow> \<forall>i j. r i \<noteq> r j \<longrightarrow> inf (DomainP (r i)) (RangeP (r j)) = bot \<Longrightarrow> wfP (SUPR UNIV r)"
301   by (rule wf_UN [where I=UNIV and r="\<lambda>i. {(x, y). r i x y}", to_pred SUP_UN_eq2])
304 lemma wf_Union:
305  "[| ALL r:R. wf r;
306      ALL r:R. ALL s:R. r ~= s --> Domain r Int Range s = {}
307   |] ==> wf(Union R)"
309 apply (blast intro: wf_UN)
310 done
312 (*Intuition: we find an (R u S)-min element of a nonempty subset A
313              by case distinction.
314   1. There is a step a -R-> b with a,b : A.
315      Pick an R-min element z of the (nonempty) set {a:A | EX b:A. a -R-> b}.
316      By definition, there is z':A s.t. z -R-> z'. Because z is R-min in the
317      subset, z' must be R-min in A. Because z' has an R-predecessor, it cannot
318      have an S-successor and is thus S-min in A as well.
319   2. There is no such step.
320      Pick an S-min element of A. In this case it must be an R-min
321      element of A as well.
323 *)
324 lemma wf_Un:
325      "[| wf r; wf s; Domain r Int Range s = {} |] ==> wf(r Un s)"
326   using wf_union_compatible[of s r]
327   by (auto simp: Un_ac)
329 lemma wf_union_merge:
330   "wf (R \<union> S) = wf (R O R \<union> S O R \<union> S)" (is "wf ?A = wf ?B")
331 proof
332   assume "wf ?A"
333   with wf_trancl have wfT: "wf (?A^+)" .
334   moreover have "?B \<subseteq> ?A^+"
335     by (subst trancl_unfold, subst trancl_unfold) blast
336   ultimately show "wf ?B" by (rule wf_subset)
337 next
338   assume "wf ?B"
340   show "wf ?A"
341   proof (rule wfI_min)
342     fix Q :: "'a set" and x
343     assume "x \<in> Q"
345     with `wf ?B`
346     obtain z where "z \<in> Q" and "\<And>y. (y, z) \<in> ?B \<Longrightarrow> y \<notin> Q"
347       by (erule wfE_min)
348     then have A1: "\<And>y. (y, z) \<in> R O R \<Longrightarrow> y \<notin> Q"
349       and A2: "\<And>y. (y, z) \<in> S O R \<Longrightarrow> y \<notin> Q"
350       and A3: "\<And>y. (y, z) \<in> S \<Longrightarrow> y \<notin> Q"
351       by auto
353     show "\<exists>z\<in>Q. \<forall>y. (y, z) \<in> ?A \<longrightarrow> y \<notin> Q"
354     proof (cases "\<forall>y. (y, z) \<in> R \<longrightarrow> y \<notin> Q")
355       case True
356       with `z \<in> Q` A3 show ?thesis by blast
357     next
358       case False
359       then obtain z' where "z'\<in>Q" "(z', z) \<in> R" by blast
361       have "\<forall>y. (y, z') \<in> ?A \<longrightarrow> y \<notin> Q"
362       proof (intro allI impI)
363         fix y assume "(y, z') \<in> ?A"
364         then show "y \<notin> Q"
365         proof
366           assume "(y, z') \<in> R"
367           then have "(y, z) \<in> R O R" using `(z', z) \<in> R` ..
368           with A1 show "y \<notin> Q" .
369         next
370           assume "(y, z') \<in> S"
371           then have "(y, z) \<in> S O R" using  `(z', z) \<in> R` ..
372           with A2 show "y \<notin> Q" .
373         qed
374       qed
375       with `z' \<in> Q` show ?thesis ..
376     qed
377   qed
378 qed
380 lemma wf_comp_self: "wf R = wf (R O R)"  -- {* special case *}
381   by (rule wf_union_merge [where S = "{}", simplified])
384 subsection {* Acyclic relations *}
386 definition acyclic :: "('a * 'a) set => bool" where
387   "acyclic r == !x. (x,x) ~: r^+"
389 abbreviation acyclicP :: "('a => 'a => bool) => bool" where
390   "acyclicP r == acyclic {(x, y). r x y}"
392 lemma acyclicI: "ALL x. (x, x) ~: r^+ ==> acyclic r"
395 lemma wf_acyclic: "wf r ==> acyclic r"
397 apply (blast elim: wf_trancl [THEN wf_irrefl])
398 done
400 lemmas wfP_acyclicP = wf_acyclic [to_pred]
402 lemma acyclic_insert [iff]:
403      "acyclic(insert (y,x) r) = (acyclic r & (x,y) ~: r^*)"
404 apply (simp add: acyclic_def trancl_insert)
405 apply (blast intro: rtrancl_trans)
406 done
408 lemma acyclic_converse [iff]: "acyclic(r^-1) = acyclic r"
409 by (simp add: acyclic_def trancl_converse)
411 lemmas acyclicP_converse [iff] = acyclic_converse [to_pred]
413 lemma acyclic_impl_antisym_rtrancl: "acyclic r ==> antisym(r^*)"
414 apply (simp add: acyclic_def antisym_def)
415 apply (blast elim: rtranclE intro: rtrancl_into_trancl1 rtrancl_trancl_trancl)
416 done
418 (* Other direction:
419 acyclic = no loops
420 antisym = only self loops
421 Goalw [acyclic_def,antisym_def] "antisym( r^* ) ==> acyclic(r - Id)
422 ==> antisym( r^* ) = acyclic(r - Id)";
423 *)
425 lemma acyclic_subset: "[| acyclic s; r <= s |] ==> acyclic r"
427 apply (blast intro: trancl_mono)
428 done
430 text{* Wellfoundedness of finite acyclic relations*}
432 lemma finite_acyclic_wf [rule_format]: "finite r ==> acyclic r --> wf r"
433 apply (erule finite_induct, blast)
434 apply (simp (no_asm_simp) only: split_tupled_all)
435 apply simp
436 done
438 lemma finite_acyclic_wf_converse: "[|finite r; acyclic r|] ==> wf (r^-1)"
439 apply (erule finite_converse [THEN iffD2, THEN finite_acyclic_wf])
440 apply (erule acyclic_converse [THEN iffD2])
441 done
443 lemma wf_iff_acyclic_if_finite: "finite r ==> wf r = acyclic r"
444 by (blast intro: finite_acyclic_wf wf_acyclic)
447 subsection {* @{typ nat} is well-founded *}
449 lemma less_nat_rel: "op < = (\<lambda>m n. n = Suc m)^++"
450 proof (rule ext, rule ext, rule iffI)
451   fix n m :: nat
452   assume "m < n"
453   then show "(\<lambda>m n. n = Suc m)^++ m n"
454   proof (induct n)
455     case 0 then show ?case by auto
456   next
457     case (Suc n) then show ?case
458       by (auto simp add: less_Suc_eq_le le_less intro: tranclp.trancl_into_trancl)
459   qed
460 next
461   fix n m :: nat
462   assume "(\<lambda>m n. n = Suc m)^++ m n"
463   then show "m < n"
464     by (induct n)
465       (simp_all add: less_Suc_eq_le reflexive le_less)
466 qed
468 definition
469   pred_nat :: "(nat * nat) set" where
470   "pred_nat = {(m, n). n = Suc m}"
472 definition
473   less_than :: "(nat * nat) set" where
474   "less_than = pred_nat^+"
476 lemma less_eq: "(m, n) \<in> pred_nat^+ \<longleftrightarrow> m < n"
477   unfolding less_nat_rel pred_nat_def trancl_def by simp
479 lemma pred_nat_trancl_eq_le:
480   "(m, n) \<in> pred_nat^* \<longleftrightarrow> m \<le> n"
481   unfolding less_eq rtrancl_eq_or_trancl by auto
483 lemma wf_pred_nat: "wf pred_nat"
484   apply (unfold wf_def pred_nat_def, clarify)
485   apply (induct_tac x, blast+)
486   done
488 lemma wf_less_than [iff]: "wf less_than"
489   by (simp add: less_than_def wf_pred_nat [THEN wf_trancl])
491 lemma trans_less_than [iff]: "trans less_than"
494 lemma less_than_iff [iff]: "((x,y): less_than) = (x<y)"
495   by (simp add: less_than_def less_eq)
497 lemma wf_less: "wf {(x, y::nat). x < y}"
498   using wf_less_than by (simp add: less_than_def less_eq [symmetric])
501 subsection {* Accessible Part *}
503 text {*
504  Inductive definition of the accessible part @{term "acc r"} of a
506 *}
508 inductive_set
509   acc :: "('a * 'a) set => 'a set"
510   for r :: "('a * 'a) set"
511   where
512     accI: "(!!y. (y, x) : r ==> y : acc r) ==> x : acc r"
514 abbreviation
515   termip :: "('a => 'a => bool) => 'a => bool" where
516   "termip r == accp (r\<inverse>\<inverse>)"
518 abbreviation
519   termi :: "('a * 'a) set => 'a set" where
520   "termi r == acc (r\<inverse>)"
522 lemmas accpI = accp.accI
524 text {* Induction rules *}
526 theorem accp_induct:
527   assumes major: "accp r a"
528   assumes hyp: "!!x. accp r x ==> \<forall>y. r y x --> P y ==> P x"
529   shows "P a"
530   apply (rule major [THEN accp.induct])
531   apply (rule hyp)
532    apply (rule accp.accI)
533    apply fast
534   apply fast
535   done
537 theorems accp_induct_rule = accp_induct [rule_format, induct set: accp]
539 theorem accp_downward: "accp r b ==> r a b ==> accp r a"
540   apply (erule accp.cases)
541   apply fast
542   done
544 lemma not_accp_down:
545   assumes na: "\<not> accp R x"
546   obtains z where "R z x" and "\<not> accp R z"
547 proof -
548   assume a: "\<And>z. \<lbrakk>R z x; \<not> accp R z\<rbrakk> \<Longrightarrow> thesis"
550   show thesis
551   proof (cases "\<forall>z. R z x \<longrightarrow> accp R z")
552     case True
553     hence "\<And>z. R z x \<Longrightarrow> accp R z" by auto
554     hence "accp R x"
555       by (rule accp.accI)
556     with na show thesis ..
557   next
558     case False then obtain z where "R z x" and "\<not> accp R z"
559       by auto
560     with a show thesis .
561   qed
562 qed
564 lemma accp_downwards_aux: "r\<^sup>*\<^sup>* b a ==> accp r a --> accp r b"
565   apply (erule rtranclp_induct)
566    apply blast
567   apply (blast dest: accp_downward)
568   done
570 theorem accp_downwards: "accp r a ==> r\<^sup>*\<^sup>* b a ==> accp r b"
571   apply (blast dest: accp_downwards_aux)
572   done
574 theorem accp_wfPI: "\<forall>x. accp r x ==> wfP r"
575   apply (rule wfPUNIVI)
576   apply (induct_tac P x rule: accp_induct)
577    apply blast
578   apply blast
579   done
581 theorem accp_wfPD: "wfP r ==> accp r x"
582   apply (erule wfP_induct_rule)
583   apply (rule accp.accI)
584   apply blast
585   done
587 theorem wfP_accp_iff: "wfP r = (\<forall>x. accp r x)"
588   apply (blast intro: accp_wfPI dest: accp_wfPD)
589   done
592 text {* Smaller relations have bigger accessible parts: *}
594 lemma accp_subset:
595   assumes sub: "R1 \<le> R2"
596   shows "accp R2 \<le> accp R1"
597 proof (rule predicate1I)
598   fix x assume "accp R2 x"
599   then show "accp R1 x"
600   proof (induct x)
601     fix x
602     assume ih: "\<And>y. R2 y x \<Longrightarrow> accp R1 y"
603     with sub show "accp R1 x"
604       by (blast intro: accp.accI)
605   qed
606 qed
609 text {* This is a generalized induction theorem that works on
610   subsets of the accessible part. *}
612 lemma accp_subset_induct:
613   assumes subset: "D \<le> accp R"
614     and dcl: "\<And>x z. \<lbrakk>D x; R z x\<rbrakk> \<Longrightarrow> D z"
615     and "D x"
616     and istep: "\<And>x. \<lbrakk>D x; (\<And>z. R z x \<Longrightarrow> P z)\<rbrakk> \<Longrightarrow> P x"
617   shows "P x"
618 proof -
619   from subset and `D x`
620   have "accp R x" ..
621   then show "P x" using `D x`
622   proof (induct x)
623     fix x
624     assume "D x"
625       and "\<And>y. R y x \<Longrightarrow> D y \<Longrightarrow> P y"
626     with dcl and istep show "P x" by blast
627   qed
628 qed
631 text {* Set versions of the above theorems *}
633 lemmas acc_induct = accp_induct [to_set]
635 lemmas acc_induct_rule = acc_induct [rule_format, induct set: acc]
637 lemmas acc_downward = accp_downward [to_set]
639 lemmas not_acc_down = not_accp_down [to_set]
641 lemmas acc_downwards_aux = accp_downwards_aux [to_set]
643 lemmas acc_downwards = accp_downwards [to_set]
645 lemmas acc_wfI = accp_wfPI [to_set]
647 lemmas acc_wfD = accp_wfPD [to_set]
649 lemmas wf_acc_iff = wfP_accp_iff [to_set]
651 lemmas acc_subset = accp_subset [to_set pred_subset_eq]
653 lemmas acc_subset_induct = accp_subset_induct [to_set pred_subset_eq]
656 subsection {* Tools for building wellfounded relations *}
658 text {* Inverse Image *}
660 lemma wf_inv_image [simp,intro!]: "wf(r) ==> wf(inv_image r (f::'a=>'b))"
661 apply (simp (no_asm_use) add: inv_image_def wf_eq_minimal)
662 apply clarify
663 apply (subgoal_tac "EX (w::'b) . w : {w. EX (x::'a) . x: Q & (f x = w) }")
664 prefer 2 apply (blast del: allE)
665 apply (erule allE)
666 apply (erule (1) notE impE)
667 apply blast
668 done
670 text {* Measure Datatypes into @{typ nat} *}
672 definition measure :: "('a => nat) => ('a * 'a)set"
673 where "measure == inv_image less_than"
675 lemma in_measure[simp]: "((x,y) : measure f) = (f x < f y)"
678 lemma wf_measure [iff]: "wf (measure f)"
679 apply (unfold measure_def)
680 apply (rule wf_less_than [THEN wf_inv_image])
681 done
683 text{* Lexicographic combinations *}
685 definition
686  lex_prod  :: "[('a*'a)set, ('b*'b)set] => (('a*'b)*('a*'b))set"
687                (infixr "<*lex*>" 80)
688 where
689     "ra <*lex*> rb == {((a,b),(a',b')). (a,a') : ra | a=a' & (b,b') : rb}"
691 lemma wf_lex_prod [intro!]: "[| wf(ra); wf(rb) |] ==> wf(ra <*lex*> rb)"
692 apply (unfold wf_def lex_prod_def)
693 apply (rule allI, rule impI)
694 apply (simp (no_asm_use) only: split_paired_All)
695 apply (drule spec, erule mp)
696 apply (rule allI, rule impI)
697 apply (drule spec, erule mp, blast)
698 done
700 lemma in_lex_prod[simp]:
701   "(((a,b),(a',b')): r <*lex*> s) = ((a,a'): r \<or> (a = a' \<and> (b, b') : s))"
702   by (auto simp:lex_prod_def)
704 text{* @{term "op <*lex*>"} preserves transitivity *}
706 lemma trans_lex_prod [intro!]:
707     "[| trans R1; trans R2 |] ==> trans (R1 <*lex*> R2)"
708 by (unfold trans_def lex_prod_def, blast)
710 text {* lexicographic combinations with measure Datatypes *}
712 definition
713   mlex_prod :: "('a \<Rightarrow> nat) \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set" (infixr "<*mlex*>" 80)
714 where
715   "f <*mlex*> R = inv_image (less_than <*lex*> R) (%x. (f x, x))"
717 lemma wf_mlex: "wf R \<Longrightarrow> wf (f <*mlex*> R)"
718 unfolding mlex_prod_def
719 by auto
721 lemma mlex_less: "f x < f y \<Longrightarrow> (x, y) \<in> f <*mlex*> R"
722 unfolding mlex_prod_def by simp
724 lemma mlex_leq: "f x \<le> f y \<Longrightarrow> (x, y) \<in> R \<Longrightarrow> (x, y) \<in> f <*mlex*> R"
725 unfolding mlex_prod_def by auto
727 text {* proper subset relation on finite sets *}
729 definition finite_psubset  :: "('a set * 'a set) set"
730 where "finite_psubset == {(A,B). A < B & finite B}"
732 lemma wf_finite_psubset[simp]: "wf(finite_psubset)"
733 apply (unfold finite_psubset_def)
734 apply (rule wf_measure [THEN wf_subset])
735 apply (simp add: measure_def inv_image_def less_than_def less_eq)
736 apply (fast elim!: psubset_card_mono)
737 done
739 lemma trans_finite_psubset: "trans finite_psubset"
740 by (simp add: finite_psubset_def less_le trans_def, blast)
742 lemma in_finite_psubset[simp]: "(A, B) \<in> finite_psubset = (A < B & finite B)"
743 unfolding finite_psubset_def by auto
745 text {* max- and min-extension of order to finite sets *}
747 inductive_set max_ext :: "('a \<times> 'a) set \<Rightarrow> ('a set \<times> 'a set) set"
748 for R :: "('a \<times> 'a) set"
749 where
750   max_extI[intro]: "finite X \<Longrightarrow> finite Y \<Longrightarrow> Y \<noteq> {} \<Longrightarrow> (\<And>x. x \<in> X \<Longrightarrow> \<exists>y\<in>Y. (x, y) \<in> R) \<Longrightarrow> (X, Y) \<in> max_ext R"
752 lemma max_ext_wf:
753   assumes wf: "wf r"
754   shows "wf (max_ext r)"
755 proof (rule acc_wfI, intro allI)
756   fix M show "M \<in> acc (max_ext r)" (is "_ \<in> ?W")
757   proof cases
758     assume "finite M"
759     thus ?thesis
760     proof (induct M)
761       show "{} \<in> ?W"
762         by (rule accI) (auto elim: max_ext.cases)
763     next
764       fix M a assume "M \<in> ?W" "finite M"
765       with wf show "insert a M \<in> ?W"
766       proof (induct arbitrary: M)
767         fix M a
768         assume "M \<in> ?W"  and  [intro]: "finite M"
769         assume hyp: "\<And>b M. (b, a) \<in> r \<Longrightarrow> M \<in> ?W \<Longrightarrow> finite M \<Longrightarrow> insert b M \<in> ?W"
770         {
771           fix N M :: "'a set"
772           assume "finite N" "finite M"
773           then
774           have "\<lbrakk>M \<in> ?W ; (\<And>y. y \<in> N \<Longrightarrow> (y, a) \<in> r)\<rbrakk> \<Longrightarrow>  N \<union> M \<in> ?W"
775             by (induct N arbitrary: M) (auto simp: hyp)
776         }
779         show "insert a M \<in> ?W"
780         proof (rule accI)
781           fix N assume Nless: "(N, insert a M) \<in> max_ext r"
782           hence asm1: "\<And>x. x \<in> N \<Longrightarrow> (x, a) \<in> r \<or> (\<exists>y \<in> M. (x, y) \<in> r)"
783             by (auto elim!: max_ext.cases)
785           let ?N1 = "{ n \<in> N. (n, a) \<in> r }"
786           let ?N2 = "{ n \<in> N. (n, a) \<notin> r }"
787           have N: "?N1 \<union> ?N2 = N" by (rule set_ext) auto
788           from Nless have "finite N" by (auto elim: max_ext.cases)
789           then have finites: "finite ?N1" "finite ?N2" by auto
791           have "?N2 \<in> ?W"
792           proof cases
793             assume [simp]: "M = {}"
794             have Mw: "{} \<in> ?W" by (rule accI) (auto elim: max_ext.cases)
796             from asm1 have "?N2 = {}" by auto
797             with Mw show "?N2 \<in> ?W" by (simp only:)
798           next
799             assume "M \<noteq> {}"
800             have N2: "(?N2, M) \<in> max_ext r"
801               by (rule max_extI[OF _ _ `M \<noteq> {}`]) (insert asm1, auto intro: finites)
803             with `M \<in> ?W` show "?N2 \<in> ?W" by (rule acc_downward)
804           qed
805           with finites have "?N1 \<union> ?N2 \<in> ?W"
807           then show "N \<in> ?W" by (simp only: N)
808         qed
809       qed
810     qed
811   next
812     assume [simp]: "\<not> finite M"
813     show ?thesis
814       by (rule accI) (auto elim: max_ext.cases)
815   qed
816 qed
819  "(A, B) \<in> max_ext R \<Longrightarrow> (C, D) \<in> max_ext R \<Longrightarrow>
820   (A \<union> C, B \<union> D) \<in> max_ext R"
821 by (force elim!: max_ext.cases)
824 definition
825   min_ext :: "('a \<times> 'a) set \<Rightarrow> ('a set \<times> 'a set) set"
826 where
827   [code del]: "min_ext r = {(X, Y) | X Y. X \<noteq> {} \<and> (\<forall>y \<in> Y. (\<exists>x \<in> X. (x, y) \<in> r))}"
829 lemma min_ext_wf:
830   assumes "wf r"
831   shows "wf (min_ext r)"
832 proof (rule wfI_min)
833   fix Q :: "'a set set"
834   fix x
835   assume nonempty: "x \<in> Q"
836   show "\<exists>m \<in> Q. (\<forall> n. (n, m) \<in> min_ext r \<longrightarrow> n \<notin> Q)"
837   proof cases
838     assume "Q = {{}}" thus ?thesis by (simp add: min_ext_def)
839   next
840     assume "Q \<noteq> {{}}"
841     with nonempty
842     obtain e x where "x \<in> Q" "e \<in> x" by force
843     then have eU: "e \<in> \<Union>Q" by auto
844     with `wf r`
845     obtain z where z: "z \<in> \<Union>Q" "\<And>y. (y, z) \<in> r \<Longrightarrow> y \<notin> \<Union>Q"
846       by (erule wfE_min)
847     from z obtain m where "m \<in> Q" "z \<in> m" by auto
848     from `m \<in> Q`
849     show ?thesis
850     proof (rule, intro bexI allI impI)
851       fix n
852       assume smaller: "(n, m) \<in> min_ext r"
853       with `z \<in> m` obtain y where y: "y \<in> n" "(y, z) \<in> r" by (auto simp: min_ext_def)
854       then show "n \<notin> Q" using z(2) by auto
855     qed
856   qed
857 qed
860 subsection{*Weakly decreasing sequences (w.r.t. some well-founded order)
861    stabilize.*}
863 text{*This material does not appear to be used any longer.*}
865 lemma sequence_trans: "[| ALL i. (f (Suc i), f i) : r^* |] ==> (f (i+k), f i) : r^*"
866 by (induct k) (auto intro: rtrancl_trans)
868 lemma wf_weak_decr_stable:
869   assumes as: "ALL i. (f (Suc i), f i) : r^*" "wf (r^+)"
870   shows "EX i. ALL k. f (i+k) = f i"
871 proof -
872   have lem: "!!x. [| ALL i. (f (Suc i), f i) : r^*; wf (r^+) |]
873       ==> ALL m. f m = x --> (EX i. ALL k. f (m+i+k) = f (m+i))"
874   apply (erule wf_induct, clarify)
875   apply (case_tac "EX j. (f (m+j), f m) : r^+")
876    apply clarify
877    apply (subgoal_tac "EX i. ALL k. f ((m+j) +i+k) = f ( (m+j) +i) ")
878     apply clarify
879     apply (rule_tac x = "j+i" in exI)
881   apply (rule_tac x = 0 in exI, clarsimp)
882   apply (drule_tac i = m and k = k in sequence_trans)
883   apply (blast elim: rtranclE dest: rtrancl_into_trancl1)
884   done
886   from lem[OF as, THEN spec, of 0, simplified]
887   show ?thesis by auto
888 qed
890 (* special case of the theorem above: <= *)
891 lemma weak_decr_stable:
892      "ALL i. f (Suc i) <= ((f i)::nat) ==> EX i. ALL k. f (i+k) = f i"
893 apply (rule_tac r = pred_nat in wf_weak_decr_stable)
895 apply (intro wf_trancl wf_pred_nat)
896 done
899 subsection {* size of a datatype value *}
901 use "Tools/Function/size.ML"
903 setup Size.setup
905 lemma size_bool [code]:
906   "size (b\<Colon>bool) = 0" by (cases b) auto
908 lemma nat_size [simp, code]: "size (n\<Colon>nat) = n"
909   by (induct n) simp_all
911 declare "prod.size" [noatp]
913 lemma [code]:
914   "size (P :: 'a Predicate.pred) = 0" by (cases P) simp
916 lemma [code]:
917   "pred_size f P = 0" by (cases P) simp
919 end