src/HOL/ex/Lagrange.thy
 author obua Mon Apr 10 16:00:34 2006 +0200 (2006-04-10) changeset 19404 9bf2cdc9e8e8 parent 17388 495c799df31d child 19736 d8d0f8f51d69 permissions -rw-r--r--
Moved stuff from Ring_and_Field to Matrix
```     1 (*  Title:      HOL/ex/Lagrange.thy
```
```     2     ID:         \$Id\$
```
```     3     Author:     Tobias Nipkow
```
```     4     Copyright   1996 TU Muenchen
```
```     5 *)
```
```     6
```
```     7 header {* A lemma for Lagrange's theorem *}
```
```     8
```
```     9 theory Lagrange imports Main begin
```
```    10
```
```    11 text {* This theory only contains a single theorem, which is a lemma
```
```    12 in Lagrange's proof that every natural number is the sum of 4 squares.
```
```    13 Its sole purpose is to demonstrate ordered rewriting for commutative
```
```    14 rings.
```
```    15
```
```    16 The enterprising reader might consider proving all of Lagrange's
```
```    17 theorem.  *}
```
```    18
```
```    19 constdefs sq :: "'a::times => 'a"
```
```    20          "sq x == x*x"
```
```    21
```
```    22 text {* The following lemma essentially shows that every natural
```
```    23 number is the sum of four squares, provided all prime numbers are.
```
```    24 However, this is an abstract theorem about commutative rings.  It has,
```
```    25 a priori, nothing to do with nat. *}
```
```    26
```
```    27 ML"Delsimprocs[ab_group_add_cancel.sum_conv, ab_group_add_cancel.rel_conv]"
```
```    28
```
```    29 -- {* once a slow step, but now (2001) just three seconds! *}
```
```    30 lemma Lagrange_lemma:
```
```    31  "!!x1::'a::comm_ring.
```
```    32   (sq x1 + sq x2 + sq x3 + sq x4) * (sq y1 + sq y2 + sq y3 + sq y4) =
```
```    33   sq(x1*y1 - x2*y2 - x3*y3 - x4*y4)  +
```
```    34   sq(x1*y2 + x2*y1 + x3*y4 - x4*y3)  +
```
```    35   sq(x1*y3 - x2*y4 + x3*y1 + x4*y2)  +
```
```    36   sq(x1*y4 + x2*y3 - x3*y2 + x4*y1)"
```
```    37 by(simp add: sq_def ring_eq_simps)
```
```    38
```
```    39
```
```    40 text{*A challenge by John Harrison. Takes about 74s on a 2.5GHz Apple G5.*}
```
```    41
```
```    42 lemma "!!p1::'a::comm_ring.
```
```    43  (sq p1 + sq q1 + sq r1 + sq s1 + sq t1 + sq u1 + sq v1 + sq w1) *
```
```    44  (sq p2 + sq q2 + sq r2 + sq s2 + sq t2 + sq u2 + sq v2 + sq w2)
```
```    45   = sq (p1*p2 - q1*q2 - r1*r2 - s1*s2 - t1*t2 - u1*u2 - v1*v2 - w1*w2) +
```
```    46     sq (p1*q2 + q1*p2 + r1*s2 - s1*r2 + t1*u2 - u1*t2 - v1*w2 + w1*v2) +
```
```    47     sq (p1*r2 - q1*s2 + r1*p2 + s1*q2 + t1*v2 + u1*w2 - v1*t2 - w1*u2) +
```
```    48     sq (p1*s2 + q1*r2 - r1*q2 + s1*p2 + t1*w2 - u1*v2 + v1*u2 - w1*t2) +
```
```    49     sq (p1*t2 - q1*u2 - r1*v2 - s1*w2 + t1*p2 + u1*q2 + v1*r2 + w1*s2) +
```
```    50     sq (p1*u2 + q1*t2 - r1*w2 + s1*v2 - t1*q2 + u1*p2 - v1*s2 + w1*r2) +
```
```    51     sq (p1*v2 + q1*w2 + r1*t2 - s1*u2 - t1*r2 + u1*s2 + v1*p2 - w1*q2) +
```
```    52     sq (p1*w2 - q1*v2 + r1*u2 + s1*t2 - t1*s2 - u1*r2 + v1*q2 + w1*p2)"
```
```    53 oops
```
```    54 (*
```
```    55 by(simp add: sq_def ring_eq_simps)
```
```    56 *)
```
```    57
```
```    58 end
```