src/HOL/Tools/record.ML
author wenzelm
Sat Mar 27 21:38:38 2010 +0100 (2010-03-27)
changeset 35994 9cc3df9a606e
parent 35989 3418cdf1855e
child 36137 0be811a98d3a
permissions -rw-r--r--
Typedef.info: separate global and local part, only the latter is transformed by morphisms;
     1 (*  Title:      HOL/Tools/record.ML
     2     Author:     Wolfgang Naraschewski, TU Muenchen
     3     Author:     Markus Wenzel, TU Muenchen
     4     Author:     Norbert Schirmer, TU Muenchen
     5     Author:     Thomas Sewell, NICTA
     6 
     7 Extensible records with structural subtyping.
     8 *)
     9 
    10 signature BASIC_RECORD =
    11 sig
    12   type record_info =
    13    {args: (string * sort) list,
    14     parent: (typ list * string) option,
    15     fields: (string * typ) list,
    16     extension: (string * typ list),
    17     ext_induct: thm, ext_inject: thm, ext_surjective: thm, ext_split: thm, ext_def: thm,
    18     select_convs: thm list, update_convs: thm list, select_defs: thm list, update_defs: thm list,
    19     fold_congs: thm list, unfold_congs: thm list, splits: thm list, defs: thm list,
    20     surjective: thm, equality: thm, induct_scheme: thm, induct: thm, cases_scheme: thm,
    21     cases: thm, simps: thm list, iffs: thm list}
    22   val get_record: theory -> string -> record_info option
    23   val the_record: theory -> string -> record_info
    24   val record_simproc: simproc
    25   val record_eq_simproc: simproc
    26   val record_upd_simproc: simproc
    27   val record_split_simproc: (term -> int) -> simproc
    28   val record_ex_sel_eq_simproc: simproc
    29   val record_split_tac: int -> tactic
    30   val record_split_simp_tac: thm list -> (term -> int) -> int -> tactic
    31   val record_split_name: string
    32   val record_split_wrapper: string * wrapper
    33   val print_record_type_abbr: bool Unsynchronized.ref
    34   val print_record_type_as_fields: bool Unsynchronized.ref
    35 end;
    36 
    37 signature RECORD =
    38 sig
    39   include BASIC_RECORD
    40   val timing: bool Unsynchronized.ref
    41   val updateN: string
    42   val ext_typeN: string
    43   val extN: string
    44   val makeN: string
    45   val moreN: string
    46   val last_extT: typ -> (string * typ list) option
    47   val dest_recTs: typ -> (string * typ list) list
    48   val get_extT_fields: theory -> typ -> (string * typ) list * (string * typ)
    49   val get_recT_fields: theory -> typ -> (string * typ) list * (string * typ)
    50   val get_parent: theory -> string -> (typ list * string) option
    51   val get_extension: theory -> string -> (string * typ list) option
    52   val get_extinjects: theory -> thm list
    53   val get_simpset: theory -> simpset
    54   val print_records: theory -> unit
    55   val read_typ: Proof.context -> string -> (string * sort) list -> typ * (string * sort) list
    56   val cert_typ: Proof.context -> typ -> (string * sort) list -> typ * (string * sort) list
    57   val add_record: bool -> string list * binding -> (typ list * string) option ->
    58     (binding * typ * mixfix) list -> theory -> theory
    59   val add_record_cmd: bool -> string list * binding -> string option ->
    60     (binding * string * mixfix) list -> theory -> theory
    61   val setup: theory -> theory
    62 end;
    63 
    64 
    65 signature ISO_TUPLE_SUPPORT =
    66 sig
    67   val add_iso_tuple_type: bstring * string list -> typ * typ -> theory -> (term * term) * theory
    68   val mk_cons_tuple: term * term -> term
    69   val dest_cons_tuple: term -> term * term
    70   val iso_tuple_intros_tac: int -> tactic
    71   val named_cterm_instantiate: (string * cterm) list -> thm -> thm
    72 end;
    73 
    74 structure Iso_Tuple_Support: ISO_TUPLE_SUPPORT =
    75 struct
    76 
    77 val isoN = "_Tuple_Iso";
    78 
    79 val iso_tuple_intro = @{thm isomorphic_tuple_intro};
    80 val iso_tuple_intros = Tactic.build_net @{thms isomorphic_tuple.intros};
    81 
    82 val tuple_iso_tuple = (@{const_name tuple_iso_tuple}, @{thm tuple_iso_tuple});
    83 
    84 fun named_cterm_instantiate values thm =
    85   let
    86     fun match name ((name', _), _) = name = name';
    87     fun getvar name =
    88       (case find_first (match name) (Term.add_vars (prop_of thm) []) of
    89         SOME var => cterm_of (theory_of_thm thm) (Var var)
    90       | NONE => raise THM ("named_cterm_instantiate: " ^ name, 0, [thm]));
    91   in
    92     cterm_instantiate (map (apfst getvar) values) thm
    93   end;
    94 
    95 structure Iso_Tuple_Thms = Theory_Data
    96 (
    97   type T = thm Symtab.table;
    98   val empty = Symtab.make [tuple_iso_tuple];
    99   val extend = I;
   100   fun merge data = Symtab.merge Thm.eq_thm_prop data;   (* FIXME handle Symtab.DUP ?? *)
   101 );
   102 
   103 fun do_typedef name repT alphas thy =
   104   let
   105     fun get_thms thy name =
   106       let
   107         val [({Abs_name, abs_type = absT, ...}, {Rep_inject, Abs_inverse, ...})] =
   108           Typedef.get_info_global thy name;
   109         val rewrite_rule =
   110           MetaSimplifier.rewrite_rule [@{thm iso_tuple_UNIV_I}, @{thm iso_tuple_True_simp}];
   111       in
   112         (map rewrite_rule [Rep_inject, Abs_inverse], Const (Abs_name, repT --> absT), absT)
   113       end;
   114   in
   115     thy
   116     |> Typecopy.typecopy (Binding.name name, alphas) repT NONE
   117     |-> (fn (name, _) => `(fn thy => get_thms thy name))
   118   end;
   119 
   120 fun mk_cons_tuple (left, right) =
   121   let
   122     val (leftT, rightT) = (fastype_of left, fastype_of right);
   123     val prodT = HOLogic.mk_prodT (leftT, rightT);
   124     val isomT = Type (@{type_name tuple_isomorphism}, [prodT, leftT, rightT]);
   125   in
   126     Const (@{const_name iso_tuple_cons}, isomT --> leftT --> rightT --> prodT) $
   127       Const (fst tuple_iso_tuple, isomT) $ left $ right
   128   end;
   129 
   130 fun dest_cons_tuple (Const (@{const_name iso_tuple_cons}, _) $ Const _ $ t $ u) = (t, u)
   131   | dest_cons_tuple t = raise TERM ("dest_cons_tuple", [t]);
   132 
   133 fun add_iso_tuple_type (name, alphas) (leftT, rightT) thy =
   134   let
   135     val repT = HOLogic.mk_prodT (leftT, rightT);
   136 
   137     val (([rep_inject, abs_inverse], absC, absT), typ_thy) =
   138       thy
   139       |> do_typedef name repT alphas
   140       ||> Sign.add_path name;
   141 
   142     (*construct a type and body for the isomorphism constant by
   143       instantiating the theorem to which the definition will be applied*)
   144     val intro_inst =
   145       rep_inject RS named_cterm_instantiate [("abst", cterm_of typ_thy absC)] iso_tuple_intro;
   146     val (_, body) = Logic.dest_equals (List.last (prems_of intro_inst));
   147     val isomT = fastype_of body;
   148     val isom_binding = Binding.name (name ^ isoN);
   149     val isom_name = Sign.full_name typ_thy isom_binding;
   150     val isom = Const (isom_name, isomT);
   151 
   152     val ([isom_def], cdef_thy) =
   153       typ_thy
   154       |> Sign.declare_const ((isom_binding, isomT), NoSyn) |> snd
   155       |> PureThy.add_defs false
   156         [((Binding.conceal (Thm.def_binding isom_binding), Logic.mk_equals (isom, body)), [])];
   157 
   158     val iso_tuple = isom_def RS (abs_inverse RS (rep_inject RS iso_tuple_intro));
   159     val cons = Const (@{const_name iso_tuple_cons}, isomT --> leftT --> rightT --> absT);
   160 
   161     val thm_thy =
   162       cdef_thy
   163       |> Iso_Tuple_Thms.map (Symtab.insert Thm.eq_thm_prop (isom_name, iso_tuple))
   164       |> Sign.restore_naming thy
   165       |> Code.add_default_eqn isom_def;
   166   in
   167     ((isom, cons $ isom), thm_thy)
   168   end;
   169 
   170 val iso_tuple_intros_tac =
   171   resolve_from_net_tac iso_tuple_intros THEN'
   172   CSUBGOAL (fn (cgoal, i) =>
   173     let
   174       val thy = Thm.theory_of_cterm cgoal;
   175       val goal = Thm.term_of cgoal;
   176 
   177       val isthms = Iso_Tuple_Thms.get thy;
   178       fun err s t = raise TERM ("iso_tuple_intros_tac: " ^ s, [t]);
   179 
   180       val goal' = Envir.beta_eta_contract goal;
   181       val is =
   182         (case goal' of
   183           Const (@{const_name Trueprop}, _) $
   184             (Const (@{const_name isomorphic_tuple}, _) $ Const is) => is
   185         | _ => err "unexpected goal format" goal');
   186       val isthm =
   187         (case Symtab.lookup isthms (#1 is) of
   188           SOME isthm => isthm
   189         | NONE => err "no thm found for constant" (Const is));
   190     in rtac isthm i end);
   191 
   192 end;
   193 
   194 
   195 structure Record: RECORD =
   196 struct
   197 
   198 val eq_reflection = @{thm eq_reflection};
   199 val atomize_all = @{thm HOL.atomize_all};
   200 val atomize_imp = @{thm HOL.atomize_imp};
   201 val meta_allE = @{thm Pure.meta_allE};
   202 val prop_subst = @{thm prop_subst};
   203 val K_record_comp = @{thm K_record_comp};
   204 val K_comp_convs = [@{thm o_apply}, K_record_comp];
   205 val o_assoc = @{thm o_assoc};
   206 val id_apply = @{thm id_apply};
   207 val id_o_apps = [@{thm id_apply}, @{thm id_o}, @{thm o_id}];
   208 val Not_eq_iff = @{thm Not_eq_iff};
   209 
   210 val refl_conj_eq = @{thm refl_conj_eq};
   211 
   212 val surject_assistI = @{thm iso_tuple_surjective_proof_assistI};
   213 val surject_assist_idE = @{thm iso_tuple_surjective_proof_assist_idE};
   214 
   215 val updacc_accessor_eqE = @{thm update_accessor_accessor_eqE};
   216 val updacc_updator_eqE = @{thm update_accessor_updator_eqE};
   217 val updacc_eq_idI = @{thm iso_tuple_update_accessor_eq_assist_idI};
   218 val updacc_eq_triv = @{thm iso_tuple_update_accessor_eq_assist_triv};
   219 
   220 val updacc_foldE = @{thm update_accessor_congruence_foldE};
   221 val updacc_unfoldE = @{thm update_accessor_congruence_unfoldE};
   222 val updacc_noopE = @{thm update_accessor_noopE};
   223 val updacc_noop_compE = @{thm update_accessor_noop_compE};
   224 val updacc_cong_idI = @{thm update_accessor_cong_assist_idI};
   225 val updacc_cong_triv = @{thm update_accessor_cong_assist_triv};
   226 val updacc_cong_from_eq = @{thm iso_tuple_update_accessor_cong_from_eq};
   227 
   228 val o_eq_dest = @{thm o_eq_dest};
   229 val o_eq_id_dest = @{thm o_eq_id_dest};
   230 val o_eq_dest_lhs = @{thm o_eq_dest_lhs};
   231 
   232 
   233 
   234 (** name components **)
   235 
   236 val rN = "r";
   237 val wN = "w";
   238 val moreN = "more";
   239 val schemeN = "_scheme";
   240 val ext_typeN = "_ext_type";
   241 val inner_typeN = "_inner_type";
   242 val extN ="_ext";
   243 val updateN = "_update";
   244 val makeN = "make";
   245 val fields_selN = "fields";
   246 val extendN = "extend";
   247 val truncateN = "truncate";
   248 
   249 
   250 
   251 (*** utilities ***)
   252 
   253 fun but_last xs = fst (split_last xs);
   254 
   255 fun varifyT midx =
   256   let fun varify (a, S) = TVar ((a, midx + 1), S);
   257   in map_type_tfree varify end;
   258 
   259 
   260 (* timing *)
   261 
   262 val timing = Unsynchronized.ref false;
   263 fun timeit_msg s x = if ! timing then (warning s; timeit x) else x ();
   264 fun timing_msg s = if ! timing then warning s else ();
   265 
   266 
   267 (* syntax *)
   268 
   269 val Trueprop = HOLogic.mk_Trueprop;
   270 fun All xs t = Term.list_all_free (xs, t);
   271 
   272 infix 0 :== ===;
   273 infixr 0 ==>;
   274 
   275 val op :== = OldGoals.mk_defpair;
   276 val op === = Trueprop o HOLogic.mk_eq;
   277 val op ==> = Logic.mk_implies;
   278 
   279 
   280 (* constructor *)
   281 
   282 fun mk_ext (name, T) ts =
   283   let val Ts = map fastype_of ts
   284   in list_comb (Const (suffix extN name, Ts ---> T), ts) end;
   285 
   286 
   287 (* selector *)
   288 
   289 fun mk_selC sT (c, T) = (c, sT --> T);
   290 
   291 fun mk_sel s (c, T) =
   292   let val sT = fastype_of s
   293   in Const (mk_selC sT (c, T)) $ s end;
   294 
   295 
   296 (* updates *)
   297 
   298 fun mk_updC sfx sT (c, T) = (suffix sfx c, (T --> T) --> sT --> sT);
   299 
   300 fun mk_upd' sfx c v sT =
   301   let val vT = domain_type (fastype_of v);
   302   in Const (mk_updC sfx sT (c, vT)) $ v end;
   303 
   304 fun mk_upd sfx c v s = mk_upd' sfx c v (fastype_of s) $ s;
   305 
   306 
   307 (* types *)
   308 
   309 fun dest_recT (typ as Type (c_ext_type, Ts as (_ :: _))) =
   310       (case try (unsuffix ext_typeN) c_ext_type of
   311         NONE => raise TYPE ("Record.dest_recT", [typ], [])
   312       | SOME c => ((c, Ts), List.last Ts))
   313   | dest_recT typ = raise TYPE ("Record.dest_recT", [typ], []);
   314 
   315 val is_recT = can dest_recT;
   316 
   317 fun dest_recTs T =
   318   let val ((c, Ts), U) = dest_recT T
   319   in (c, Ts) :: dest_recTs U
   320   end handle TYPE _ => [];
   321 
   322 fun last_extT T =
   323   let val ((c, Ts), U) = dest_recT T in
   324     (case last_extT U of
   325       NONE => SOME (c, Ts)
   326     | SOME l => SOME l)
   327   end handle TYPE _ => NONE;
   328 
   329 fun rec_id i T =
   330   let
   331     val rTs = dest_recTs T;
   332     val rTs' = if i < 0 then rTs else take i rTs;
   333   in implode (map #1 rTs') end;
   334 
   335 
   336 
   337 (*** extend theory by record definition ***)
   338 
   339 (** record info **)
   340 
   341 (* type record_info and parent_info *)
   342 
   343 type record_info =
   344  {args: (string * sort) list,
   345   parent: (typ list * string) option,
   346   fields: (string * typ) list,
   347   extension: (string * typ list),
   348 
   349   ext_induct: thm,
   350   ext_inject: thm,
   351   ext_surjective: thm,
   352   ext_split: thm,
   353   ext_def: thm,
   354 
   355   select_convs: thm list,
   356   update_convs: thm list,
   357   select_defs: thm list,
   358   update_defs: thm list,
   359   fold_congs: thm list,
   360   unfold_congs: thm list,
   361   splits: thm list,
   362   defs: thm list,
   363 
   364   surjective: thm,
   365   equality: thm,
   366   induct_scheme: thm,
   367   induct: thm,
   368   cases_scheme: thm,
   369   cases: thm,
   370 
   371   simps: thm list,
   372   iffs: thm list};
   373 
   374 fun make_record_info args parent fields extension
   375     ext_induct ext_inject ext_surjective ext_split ext_def
   376     select_convs update_convs select_defs update_defs fold_congs unfold_congs splits defs
   377     surjective equality induct_scheme induct cases_scheme cases
   378     simps iffs : record_info =
   379  {args = args, parent = parent, fields = fields, extension = extension,
   380   ext_induct = ext_induct, ext_inject = ext_inject, ext_surjective = ext_surjective,
   381   ext_split = ext_split, ext_def = ext_def, select_convs = select_convs,
   382   update_convs = update_convs, select_defs = select_defs, update_defs = update_defs,
   383   fold_congs = fold_congs, unfold_congs = unfold_congs, splits = splits, defs = defs,
   384   surjective = surjective, equality = equality, induct_scheme = induct_scheme,
   385   induct = induct, cases_scheme = cases_scheme, cases = cases, simps = simps, iffs = iffs};
   386 
   387 type parent_info =
   388  {name: string,
   389   fields: (string * typ) list,
   390   extension: (string * typ list),
   391   induct_scheme: thm,
   392   ext_def: thm};
   393 
   394 fun make_parent_info name fields extension ext_def induct_scheme : parent_info =
   395  {name = name, fields = fields, extension = extension,
   396   ext_def = ext_def, induct_scheme = induct_scheme};
   397 
   398 
   399 (* theory data *)
   400 
   401 type record_data =
   402  {records: record_info Symtab.table,
   403   sel_upd:
   404    {selectors: (int * bool) Symtab.table,
   405     updates: string Symtab.table,
   406     simpset: Simplifier.simpset,
   407     defset: Simplifier.simpset,
   408     foldcong: Simplifier.simpset,
   409     unfoldcong: Simplifier.simpset},
   410   equalities: thm Symtab.table,
   411   extinjects: thm list,
   412   extsplit: thm Symtab.table,  (*maps extension name to split rule*)
   413   splits: (thm * thm * thm * thm) Symtab.table,  (*!!, ALL, EX - split-equalities, induct rule*)
   414   extfields: (string * typ) list Symtab.table,  (*maps extension to its fields*)
   415   fieldext: (string * typ list) Symtab.table};  (*maps field to its extension*)
   416 
   417 fun make_record_data
   418     records sel_upd equalities extinjects extsplit splits extfields fieldext =
   419  {records = records, sel_upd = sel_upd,
   420   equalities = equalities, extinjects=extinjects, extsplit = extsplit, splits = splits,
   421   extfields = extfields, fieldext = fieldext }: record_data;
   422 
   423 structure Records_Data = Theory_Data
   424 (
   425   type T = record_data;
   426   val empty =
   427     make_record_data Symtab.empty
   428       {selectors = Symtab.empty, updates = Symtab.empty,
   429           simpset = HOL_basic_ss, defset = HOL_basic_ss,
   430           foldcong = HOL_basic_ss, unfoldcong = HOL_basic_ss}
   431        Symtab.empty [] Symtab.empty Symtab.empty Symtab.empty Symtab.empty;
   432   val extend = I;
   433   fun merge
   434    ({records = recs1,
   435      sel_upd =
   436       {selectors = sels1, updates = upds1,
   437        simpset = ss1, defset = ds1,
   438        foldcong = fc1, unfoldcong = uc1},
   439      equalities = equalities1,
   440      extinjects = extinjects1,
   441      extsplit = extsplit1,
   442      splits = splits1,
   443      extfields = extfields1,
   444      fieldext = fieldext1},
   445     {records = recs2,
   446      sel_upd =
   447       {selectors = sels2, updates = upds2,
   448        simpset = ss2, defset = ds2,
   449        foldcong = fc2, unfoldcong = uc2},
   450      equalities = equalities2,
   451      extinjects = extinjects2,
   452      extsplit = extsplit2,
   453      splits = splits2,
   454      extfields = extfields2,
   455      fieldext = fieldext2}) =
   456     make_record_data
   457       (Symtab.merge (K true) (recs1, recs2))
   458       {selectors = Symtab.merge (K true) (sels1, sels2),
   459         updates = Symtab.merge (K true) (upds1, upds2),
   460         simpset = Simplifier.merge_ss (ss1, ss2),
   461         defset = Simplifier.merge_ss (ds1, ds2),
   462         foldcong = Simplifier.merge_ss (fc1, fc2),
   463         unfoldcong = Simplifier.merge_ss (uc1, uc2)}
   464       (Symtab.merge Thm.eq_thm_prop (equalities1, equalities2))
   465       (Thm.merge_thms (extinjects1, extinjects2))
   466       (Symtab.merge Thm.eq_thm_prop (extsplit1, extsplit2))
   467       (Symtab.merge (fn ((a, b, c, d), (w, x, y, z)) =>
   468           Thm.eq_thm (a, w) andalso Thm.eq_thm (b, x) andalso
   469           Thm.eq_thm (c, y) andalso Thm.eq_thm (d, z)) (splits1, splits2))
   470       (Symtab.merge (K true) (extfields1, extfields2))
   471       (Symtab.merge (K true) (fieldext1, fieldext2));
   472 );
   473 
   474 fun print_records thy =
   475   let
   476     val {records = recs, ...} = Records_Data.get thy;
   477     val prt_typ = Syntax.pretty_typ_global thy;
   478 
   479     fun pretty_parent NONE = []
   480       | pretty_parent (SOME (Ts, name)) =
   481           [Pretty.block [prt_typ (Type (name, Ts)), Pretty.str " +"]];
   482 
   483     fun pretty_field (c, T) = Pretty.block
   484       [Pretty.str (Sign.extern_const thy c), Pretty.str " ::",
   485         Pretty.brk 1, Pretty.quote (prt_typ T)];
   486 
   487     fun pretty_record (name, {args, parent, fields, ...}: record_info) =
   488       Pretty.block (Pretty.fbreaks (Pretty.block
   489         [prt_typ (Type (name, map TFree args)), Pretty.str " = "] ::
   490         pretty_parent parent @ map pretty_field fields));
   491   in map pretty_record (Symtab.dest recs) |> Pretty.chunks |> Pretty.writeln end;
   492 
   493 
   494 (* access 'records' *)
   495 
   496 val get_record = Symtab.lookup o #records o Records_Data.get;
   497 
   498 fun the_record thy name =
   499   (case get_record thy name of
   500     SOME info => info
   501   | NONE => error ("Unknown record type " ^ quote name));
   502 
   503 fun put_record name info thy =
   504   let
   505     val {records, sel_upd, equalities, extinjects, extsplit, splits, extfields, fieldext} =
   506       Records_Data.get thy;
   507     val data = make_record_data (Symtab.update (name, info) records)
   508       sel_upd equalities extinjects extsplit splits extfields fieldext;
   509   in Records_Data.put data thy end;
   510 
   511 
   512 (* access 'sel_upd' *)
   513 
   514 val get_sel_upd = #sel_upd o Records_Data.get;
   515 
   516 val is_selector = Symtab.defined o #selectors o get_sel_upd;
   517 val get_updates = Symtab.lookup o #updates o get_sel_upd;
   518 fun get_ss_with_context getss thy = Simplifier.global_context thy (getss (get_sel_upd thy));
   519 
   520 val get_simpset = get_ss_with_context #simpset;
   521 val get_sel_upd_defs = get_ss_with_context #defset;
   522 
   523 fun get_update_details u thy =
   524   let val sel_upd = get_sel_upd thy in
   525     (case Symtab.lookup (#updates sel_upd) u of
   526       SOME s =>
   527         let val SOME (dep, ismore) = Symtab.lookup (#selectors sel_upd) s
   528         in SOME (s, dep, ismore) end
   529     | NONE => NONE)
   530   end;
   531 
   532 fun put_sel_upd names more depth simps defs (folds, unfolds) thy =
   533   let
   534     val all = names @ [more];
   535     val sels = map (rpair (depth, false)) names @ [(more, (depth, true))];
   536     val upds = map (suffix updateN) all ~~ all;
   537 
   538     val {records, sel_upd = {selectors, updates, simpset, defset, foldcong, unfoldcong},
   539       equalities, extinjects, extsplit, splits, extfields, fieldext} = Records_Data.get thy;
   540     val data = make_record_data records
   541       {selectors = fold Symtab.update_new sels selectors,
   542         updates = fold Symtab.update_new upds updates,
   543         simpset = Simplifier.addsimps (simpset, simps),
   544         defset = Simplifier.addsimps (defset, defs),
   545         foldcong = foldcong addcongs folds,
   546         unfoldcong = unfoldcong addcongs unfolds}
   547        equalities extinjects extsplit splits extfields fieldext;
   548   in Records_Data.put data thy end;
   549 
   550 
   551 (* access 'equalities' *)
   552 
   553 fun add_record_equalities name thm thy =
   554   let
   555     val {records, sel_upd, equalities, extinjects, extsplit, splits, extfields, fieldext} =
   556       Records_Data.get thy;
   557     val data = make_record_data records sel_upd
   558       (Symtab.update_new (name, thm) equalities) extinjects extsplit splits extfields fieldext;
   559   in Records_Data.put data thy end;
   560 
   561 val get_equalities = Symtab.lookup o #equalities o Records_Data.get;
   562 
   563 
   564 (* access 'extinjects' *)
   565 
   566 fun add_extinjects thm thy =
   567   let
   568     val {records, sel_upd, equalities, extinjects, extsplit, splits, extfields, fieldext} =
   569       Records_Data.get thy;
   570     val data =
   571       make_record_data records sel_upd equalities (insert Thm.eq_thm_prop thm extinjects)
   572         extsplit splits extfields fieldext;
   573   in Records_Data.put data thy end;
   574 
   575 val get_extinjects = rev o #extinjects o Records_Data.get;
   576 
   577 
   578 (* access 'extsplit' *)
   579 
   580 fun add_extsplit name thm thy =
   581   let
   582     val {records, sel_upd, equalities, extinjects, extsplit, splits, extfields, fieldext} =
   583       Records_Data.get thy;
   584     val data =
   585       make_record_data records sel_upd equalities extinjects
   586         (Symtab.update_new (name, thm) extsplit) splits extfields fieldext;
   587   in Records_Data.put data thy end;
   588 
   589 
   590 (* access 'splits' *)
   591 
   592 fun add_record_splits name thmP thy =
   593   let
   594     val {records, sel_upd, equalities, extinjects, extsplit, splits, extfields, fieldext} =
   595       Records_Data.get thy;
   596     val data =
   597       make_record_data records sel_upd equalities extinjects extsplit
   598         (Symtab.update_new (name, thmP) splits) extfields fieldext;
   599   in Records_Data.put data thy end;
   600 
   601 val get_splits = Symtab.lookup o #splits o Records_Data.get;
   602 
   603 
   604 (* parent/extension of named record *)
   605 
   606 val get_parent = (Option.join o Option.map #parent) oo (Symtab.lookup o #records o Records_Data.get);
   607 val get_extension = Option.map #extension oo (Symtab.lookup o #records o Records_Data.get);
   608 
   609 
   610 (* access 'extfields' *)
   611 
   612 fun add_extfields name fields thy =
   613   let
   614     val {records, sel_upd, equalities, extinjects, extsplit, splits, extfields, fieldext} =
   615       Records_Data.get thy;
   616     val data =
   617       make_record_data records sel_upd equalities extinjects extsplit splits
   618         (Symtab.update_new (name, fields) extfields) fieldext;
   619   in Records_Data.put data thy end;
   620 
   621 val get_extfields = Symtab.lookup o #extfields o Records_Data.get;
   622 
   623 fun get_extT_fields thy T =
   624   let
   625     val ((name, Ts), moreT) = dest_recT T;
   626     val recname =
   627       let val (nm :: _ :: rst) = rev (Long_Name.explode name)   (* FIXME !? *)
   628       in Long_Name.implode (rev (nm :: rst)) end;
   629     val midx = maxidx_of_typs (moreT :: Ts);
   630     val varifyT = varifyT midx;
   631     val {records, extfields, ...} = Records_Data.get thy;
   632     val (fields, (more, _)) = split_last (Symtab.lookup_list extfields name);
   633     val args = map varifyT (snd (#extension (the (Symtab.lookup records recname))));
   634 
   635     val subst = fold (Sign.typ_match thy) (but_last args ~~ but_last Ts) Vartab.empty;
   636     val fields' = map (apsnd (Envir.norm_type subst o varifyT)) fields;
   637   in (fields', (more, moreT)) end;
   638 
   639 fun get_recT_fields thy T =
   640   let
   641     val (root_fields, (root_more, root_moreT)) = get_extT_fields thy T;
   642     val (rest_fields, rest_more) =
   643       if is_recT root_moreT then get_recT_fields thy root_moreT
   644       else ([], (root_more, root_moreT));
   645   in (root_fields @ rest_fields, rest_more) end;
   646 
   647 
   648 (* access 'fieldext' *)
   649 
   650 fun add_fieldext extname_types fields thy =
   651   let
   652     val {records, sel_upd, equalities, extinjects, extsplit, splits, extfields, fieldext} =
   653       Records_Data.get thy;
   654     val fieldext' =
   655       fold (fn field => Symtab.update_new (field, extname_types)) fields fieldext;
   656     val data =
   657       make_record_data records sel_upd equalities extinjects
   658         extsplit splits extfields fieldext';
   659   in Records_Data.put data thy end;
   660 
   661 val get_fieldext = Symtab.lookup o #fieldext o Records_Data.get;
   662 
   663 
   664 (* parent records *)
   665 
   666 fun add_parents _ NONE parents = parents
   667   | add_parents thy (SOME (types, name)) parents =
   668       let
   669         fun err msg = error (msg ^ " parent record " ^ quote name);
   670 
   671         val {args, parent, fields, extension, induct_scheme, ext_def, ...} =
   672           (case get_record thy name of SOME info => info | NONE => err "Unknown");
   673         val _ = if length types <> length args then err "Bad number of arguments for" else ();
   674 
   675         fun bad_inst ((x, S), T) =
   676           if Sign.of_sort thy (T, S) then NONE else SOME x
   677         val bads = map_filter bad_inst (args ~~ types);
   678         val _ = null bads orelse err ("Ill-sorted instantiation of " ^ commas bads ^ " in");
   679 
   680         val inst = map fst args ~~ types;
   681         val subst = Term.map_type_tfree (the o AList.lookup (op =) inst o fst);
   682         val parent' = Option.map (apfst (map subst)) parent;
   683         val fields' = map (apsnd subst) fields;
   684         val extension' = apsnd (map subst) extension;
   685       in
   686         add_parents thy parent'
   687           (make_parent_info name fields' extension' ext_def induct_scheme :: parents)
   688       end;
   689 
   690 
   691 
   692 (** concrete syntax for records **)
   693 
   694 (* decode type *)
   695 
   696 fun decode_type thy t =
   697   let
   698     fun get_sort env xi =
   699       the_default (Sign.defaultS thy) (AList.lookup (op =) env (xi: indexname));
   700   in
   701     Syntax.typ_of_term (get_sort (Syntax.term_sorts t)) t
   702   end;
   703 
   704 
   705 (* parse translations *)
   706 
   707 local
   708 
   709 fun field_type_tr ((Const (@{syntax_const "_field_type"}, _) $ Const (name, _) $ arg)) =
   710       (name, arg)
   711   | field_type_tr t = raise TERM ("field_type_tr", [t]);
   712 
   713 fun field_types_tr (Const (@{syntax_const "_field_types"}, _) $ t $ u) =
   714       field_type_tr t :: field_types_tr u
   715   | field_types_tr t = [field_type_tr t];
   716 
   717 fun record_field_types_tr more ctxt t =
   718   let
   719     val thy = ProofContext.theory_of ctxt;
   720     fun err msg = raise TERM ("Error in record-type input: " ^ msg, [t]);
   721 
   722     fun split_args (field :: fields) ((name, arg) :: fargs) =
   723           if can (unsuffix name) field then
   724             let val (args, rest) = split_args fields fargs
   725             in (arg :: args, rest) end
   726           else err ("expecting field " ^ field ^ " but got " ^ name)
   727       | split_args [] (fargs as (_ :: _)) = ([], fargs)
   728       | split_args (_ :: _) [] = err "expecting more fields"
   729       | split_args _ _ = ([], []);
   730 
   731     fun mk_ext (fargs as (name, _) :: _) =
   732           (case get_fieldext thy (Sign.intern_const thy name) of
   733             SOME (ext, alphas) =>
   734               (case get_extfields thy ext of
   735                 SOME fields =>
   736                   let
   737                     val fields' = but_last fields;
   738                     val types = map snd fields';
   739                     val (args, rest) = split_args (map fst fields') fargs;
   740                     val argtypes = map (Sign.certify_typ thy o decode_type thy) args;
   741                     val midx = fold Term.maxidx_typ argtypes 0;
   742                     val varifyT = varifyT midx;
   743                     val vartypes = map varifyT types;
   744 
   745                     val subst = fold (Sign.typ_match thy) (vartypes ~~ argtypes) Vartab.empty
   746                       handle Type.TYPE_MATCH => err "type is no proper record (extension)";
   747                     val alphas' =
   748                       map (Syntax.term_of_typ (! Syntax.show_sorts) o Envir.norm_type subst o varifyT)
   749                         (but_last alphas);
   750 
   751                     val more' = mk_ext rest;
   752                   in
   753                     list_comb
   754                       (Syntax.const (Syntax.mark_type (suffix ext_typeN ext)), alphas' @ [more'])
   755                   end
   756               | NONE => err ("no fields defined for " ^ ext))
   757           | NONE => err (name ^ " is no proper field"))
   758       | mk_ext [] = more;
   759   in
   760     mk_ext (field_types_tr t)
   761   end;
   762 
   763 fun record_type_tr ctxt [t] = record_field_types_tr (Syntax.const @{type_syntax unit}) ctxt t
   764   | record_type_tr _ ts = raise TERM ("record_type_tr", ts);
   765 
   766 fun record_type_scheme_tr ctxt [t, more] = record_field_types_tr more ctxt t
   767   | record_type_scheme_tr _ ts = raise TERM ("record_type_scheme_tr", ts);
   768 
   769 
   770 fun field_tr ((Const (@{syntax_const "_field"}, _) $ Const (name, _) $ arg)) = (name, arg)
   771   | field_tr t = raise TERM ("field_tr", [t]);
   772 
   773 fun fields_tr (Const (@{syntax_const "_fields"}, _) $ t $ u) = field_tr t :: fields_tr u
   774   | fields_tr t = [field_tr t];
   775 
   776 fun record_fields_tr more ctxt t =
   777   let
   778     val thy = ProofContext.theory_of ctxt;
   779     fun err msg = raise TERM ("Error in record input: " ^ msg, [t]);
   780 
   781     fun split_args (field :: fields) ((name, arg) :: fargs) =
   782           if can (unsuffix name) field
   783           then
   784             let val (args, rest) = split_args fields fargs
   785             in (arg :: args, rest) end
   786           else err ("expecting field " ^ field ^ " but got " ^ name)
   787       | split_args [] (fargs as (_ :: _)) = ([], fargs)
   788       | split_args (_ :: _) [] = err "expecting more fields"
   789       | split_args _ _ = ([], []);
   790 
   791     fun mk_ext (fargs as (name, _) :: _) =
   792           (case get_fieldext thy (Sign.intern_const thy name) of
   793             SOME (ext, _) =>
   794               (case get_extfields thy ext of
   795                 SOME fields =>
   796                   let
   797                     val (args, rest) = split_args (map fst (but_last fields)) fargs;
   798                     val more' = mk_ext rest;
   799                   in list_comb (Syntax.const (Syntax.mark_const (ext ^ extN)), args @ [more']) end
   800               | NONE => err ("no fields defined for " ^ ext))
   801           | NONE => err (name ^ " is no proper field"))
   802       | mk_ext [] = more;
   803   in mk_ext (fields_tr t) end;
   804 
   805 fun record_tr ctxt [t] = record_fields_tr (Syntax.const @{const_syntax Unity}) ctxt t
   806   | record_tr _ ts = raise TERM ("record_tr", ts);
   807 
   808 fun record_scheme_tr ctxt [t, more] = record_fields_tr more ctxt t
   809   | record_scheme_tr _ ts = raise TERM ("record_scheme_tr", ts);
   810 
   811 
   812 fun field_update_tr (Const (@{syntax_const "_field_update"}, _) $ Const (name, _) $ arg) =
   813       Syntax.const (suffix updateN name) $ Abs ("_", dummyT, arg)
   814   | field_update_tr t = raise TERM ("field_update_tr", [t]);
   815 
   816 fun field_updates_tr (Const (@{syntax_const "_field_updates"}, _) $ t $ u) =
   817       field_update_tr t :: field_updates_tr u
   818   | field_updates_tr t = [field_update_tr t];
   819 
   820 fun record_update_tr [t, u] = fold (curry op $) (field_updates_tr u) t
   821   | record_update_tr ts = raise TERM ("record_update_tr", ts);
   822 
   823 in
   824 
   825 val parse_translation =
   826  [(@{syntax_const "_record_update"}, record_update_tr)];
   827 
   828 val advanced_parse_translation =
   829  [(@{syntax_const "_record"}, record_tr),
   830   (@{syntax_const "_record_scheme"}, record_scheme_tr),
   831   (@{syntax_const "_record_type"}, record_type_tr),
   832   (@{syntax_const "_record_type_scheme"}, record_type_scheme_tr)];
   833 
   834 end;
   835 
   836 
   837 (* print translations *)
   838 
   839 val print_record_type_abbr = Unsynchronized.ref true;
   840 val print_record_type_as_fields = Unsynchronized.ref true;
   841 
   842 
   843 local
   844 
   845 (* FIXME early extern (!??) *)
   846 (* FIXME Syntax.free (??) *)
   847 fun field_type_tr' (c, t) = Syntax.const @{syntax_const "_field_type"} $ Syntax.const c $ t;
   848 
   849 fun field_types_tr' (t, u) = Syntax.const @{syntax_const "_field_types"} $ t $ u;
   850 
   851 fun record_type_tr' ctxt t =
   852   let
   853     val thy = ProofContext.theory_of ctxt;
   854 
   855     val T = decode_type thy t;
   856     val varifyT = varifyT (Term.maxidx_of_typ T);
   857 
   858     val term_of_type = Syntax.term_of_typ (! Syntax.show_sorts);
   859 
   860     fun strip_fields T =
   861       (case T of
   862         Type (ext, args as _ :: _) =>
   863           (case try (unsuffix ext_typeN) ext of
   864             SOME ext' =>
   865               (case get_extfields thy ext' of
   866                 SOME (fields as (x, _) :: _) =>
   867                   (case get_fieldext thy x of
   868                     SOME (_, alphas) =>
   869                      (let
   870                         val f :: fs = but_last fields;
   871                         val fields' =
   872                           apfst (Sign.extern_const thy) f :: map (apfst Long_Name.base_name) fs;
   873                         val (args', more) = split_last args;
   874                         val alphavars = map varifyT (but_last alphas);
   875                         val subst = fold (Sign.typ_match thy) (alphavars ~~ args') Vartab.empty;
   876                         val fields'' = (map o apsnd) (Envir.norm_type subst o varifyT) fields';
   877                       in fields'' @ strip_fields more end
   878                       handle Type.TYPE_MATCH => [("", T)]
   879                         | Library.UnequalLengths => [("", T)])
   880                   | _ => [("", T)])
   881               | _ => [("", T)])
   882           | _ => [("", T)])
   883       | _ => [("", T)]);
   884 
   885     val (fields, (_, moreT)) = split_last (strip_fields T);
   886     val _ = null fields andalso raise Match;
   887     val u = foldr1 field_types_tr' (map (field_type_tr' o apsnd term_of_type) fields);
   888   in
   889     if not (! print_record_type_as_fields) orelse null fields then raise Match
   890     else if moreT = HOLogic.unitT then Syntax.const @{syntax_const "_record_type"} $ u
   891     else Syntax.const @{syntax_const "_record_type_scheme"} $ u $ term_of_type moreT
   892   end;
   893 
   894 (*try to reconstruct the record name type abbreviation from
   895   the (nested) extension types*)
   896 fun record_type_abbr_tr' abbr alphas zeta last_ext schemeT ctxt tm =
   897   let
   898     val thy = ProofContext.theory_of ctxt;
   899     val T = decode_type thy tm;
   900     val midx = maxidx_of_typ T;
   901     val varifyT = varifyT midx;
   902 
   903     fun mk_type_abbr subst name alphas =
   904       let val abbrT = Type (name, map (fn a => varifyT (TFree (a, Sign.defaultS thy))) alphas) in
   905         Syntax.term_of_typ (! Syntax.show_sorts) (Envir.norm_type subst abbrT)
   906       end;
   907 
   908     fun match rT T = Sign.typ_match thy (varifyT rT, T) Vartab.empty;
   909   in
   910     if ! print_record_type_abbr then
   911       (case last_extT T of
   912         SOME (name, _) =>
   913           if name = last_ext then
   914             let val subst = match schemeT T in
   915               if HOLogic.is_unitT (Envir.norm_type subst (varifyT (TFree (zeta, Sign.defaultS thy))))
   916               then mk_type_abbr subst abbr alphas
   917               else mk_type_abbr subst (suffix schemeN abbr) (alphas @ [zeta])
   918             end handle Type.TYPE_MATCH => record_type_tr' ctxt tm
   919           else raise Match (*give print translation of specialised record a chance*)
   920       | _ => raise Match)
   921     else record_type_tr' ctxt tm
   922   end;
   923 
   924 in
   925 
   926 fun record_ext_type_tr' name =
   927   let
   928     val ext_type_name = Syntax.mark_type (suffix ext_typeN name);
   929     fun tr' ctxt ts =
   930       record_type_tr' ctxt (list_comb (Syntax.const ext_type_name, ts));
   931   in (ext_type_name, tr') end;
   932 
   933 fun record_ext_type_abbr_tr' abbr alphas zeta last_ext schemeT name =
   934   let
   935     val ext_type_name = Syntax.mark_type (suffix ext_typeN name);
   936     fun tr' ctxt ts =
   937       record_type_abbr_tr' abbr alphas zeta last_ext schemeT ctxt
   938         (list_comb (Syntax.const ext_type_name, ts));
   939   in (ext_type_name, tr') end;
   940 
   941 end;
   942 
   943 
   944 local
   945 
   946 (* FIXME Syntax.free (??) *)
   947 fun field_tr' (c, t) = Syntax.const @{syntax_const "_field"} $ Syntax.const c $ t;
   948 fun fields_tr' (t, u) = Syntax.const @{syntax_const "_fields"} $ t $ u;
   949 
   950 fun record_tr' ctxt t =
   951   let
   952     val thy = ProofContext.theory_of ctxt;
   953     val extern = Consts.extern (ProofContext.consts_of ctxt);
   954 
   955     fun strip_fields t =
   956       (case strip_comb t of
   957         (Const (ext, _), args as (_ :: _)) =>
   958           (case try (Syntax.unmark_const o unsuffix extN) ext of
   959             SOME ext' =>
   960               (case get_extfields thy ext' of
   961                 SOME fields =>
   962                  (let
   963                     val f :: fs = but_last (map fst fields);
   964                     val fields' = extern f :: map Long_Name.base_name fs;
   965                     val (args', more) = split_last args;
   966                   in (fields' ~~ args') @ strip_fields more end
   967                   handle Library.UnequalLengths => [("", t)])
   968               | NONE => [("", t)])
   969           | NONE => [("", t)])
   970        | _ => [("", t)]);
   971 
   972     val (fields, (_, more)) = split_last (strip_fields t);
   973     val _ = null fields andalso raise Match;
   974     val u = foldr1 fields_tr' (map field_tr' fields);
   975   in
   976     case more of
   977       Const (@{const_syntax Unity}, _) => Syntax.const @{syntax_const "_record"} $ u
   978     | _ => Syntax.const @{syntax_const "_record_scheme"} $ u $ more
   979   end;
   980 
   981 in
   982 
   983 fun record_ext_tr' name =
   984   let
   985     val ext_name = Syntax.mark_const (name ^ extN);
   986     fun tr' ctxt ts = record_tr' ctxt (list_comb (Syntax.const ext_name, ts));
   987   in (ext_name, tr') end;
   988 
   989 end;
   990 
   991 
   992 local
   993 
   994 fun field_updates_tr' ctxt (tm as Const (c, _) $ k $ u) =
   995       let
   996         val extern = Consts.extern (ProofContext.consts_of ctxt);
   997         val t =
   998           (case k of
   999             Abs (_, _, Abs (_, _, t) $ Bound 0) =>
  1000               if null (loose_bnos t) then t else raise Match
  1001           | Abs (_, _, t) =>
  1002               if null (loose_bnos t) then t else raise Match
  1003           | _ => raise Match);
  1004       in
  1005         (case Option.map extern (try Syntax.unmark_const c) of
  1006           SOME update_name =>
  1007             (case try (unsuffix updateN) update_name of
  1008               SOME name =>
  1009                 apfst (cons (Syntax.const @{syntax_const "_field_update"} $ Syntax.free name $ t))
  1010                   (field_updates_tr' ctxt u)
  1011             | NONE => ([], tm))
  1012         | NONE => ([], tm))
  1013       end
  1014   | field_updates_tr' _ tm = ([], tm);
  1015 
  1016 fun record_update_tr' ctxt tm =
  1017   (case field_updates_tr' ctxt tm of
  1018     ([], _) => raise Match
  1019   | (ts, u) =>
  1020       Syntax.const @{syntax_const "_record_update"} $ u $
  1021         foldr1 (fn (v, w) => Syntax.const @{syntax_const "_field_updates"} $ v $ w) (rev ts));
  1022 
  1023 in
  1024 
  1025 fun field_update_tr' name =
  1026   let
  1027     val update_name = Syntax.mark_const (name ^ updateN);
  1028     fun tr' ctxt [t, u] = record_update_tr' ctxt (Syntax.const update_name $ t $ u)
  1029       | tr' _ _ = raise Match;
  1030   in (update_name, tr') end;
  1031 
  1032 end;
  1033 
  1034 
  1035 
  1036 (** record simprocs **)
  1037 
  1038 fun future_forward_prf_standard thy prf prop () =
  1039   let val thm =
  1040     if ! quick_and_dirty then Skip_Proof.make_thm thy prop
  1041     else if Goal.future_enabled () then
  1042       Goal.future_result (ProofContext.init thy) (Future.fork_pri ~1 prf) prop
  1043     else prf ()
  1044   in Drule.export_without_context thm end;
  1045 
  1046 fun prove_common immediate stndrd thy asms prop tac =
  1047   let
  1048     val prv =
  1049       if ! quick_and_dirty then Skip_Proof.prove
  1050       else if immediate orelse not (Goal.future_enabled ()) then Goal.prove
  1051       else Goal.prove_future;
  1052     val prf = prv (ProofContext.init thy) [] asms prop tac;
  1053   in if stndrd then Drule.export_without_context prf else prf end;
  1054 
  1055 val prove_future_global = prove_common false;
  1056 val prove_global = prove_common true;
  1057 
  1058 fun is_sel_upd_pair thy (Const (s, _)) (Const (u, t')) =
  1059   (case get_updates thy u of
  1060     SOME u_name => u_name = s
  1061   | NONE => raise TERM ("is_sel_upd_pair: not update", [Const (u, t')]));
  1062 
  1063 fun mk_comp f g =
  1064   let
  1065     val X = fastype_of g;
  1066     val A = domain_type X;
  1067     val B = range_type X;
  1068     val C = range_type (fastype_of f);
  1069     val T = (B --> C) --> (A --> B) --> A --> C;
  1070   in Const (@{const_name Fun.comp}, T) $ f $ g end;
  1071 
  1072 fun mk_comp_id f =
  1073   let val T = range_type (fastype_of f)
  1074   in mk_comp (Const (@{const_name Fun.id}, T --> T)) f end;
  1075 
  1076 fun get_upd_funs (upd $ _ $ t) = upd :: get_upd_funs t
  1077   | get_upd_funs _ = [];
  1078 
  1079 fun get_accupd_simps thy term defset =
  1080   let
  1081     val (acc, [body]) = strip_comb term;
  1082     val upd_funs = sort_distinct Term_Ord.fast_term_ord (get_upd_funs body);
  1083     fun get_simp upd =
  1084       let
  1085         (* FIXME fresh "f" (!?) *)
  1086         val T = domain_type (fastype_of upd);
  1087         val lhs = mk_comp acc (upd $ Free ("f", T));
  1088         val rhs =
  1089           if is_sel_upd_pair thy acc upd
  1090           then mk_comp (Free ("f", T)) acc
  1091           else mk_comp_id acc;
  1092         val prop = lhs === rhs;
  1093         val othm =
  1094           Goal.prove (ProofContext.init thy) [] [] prop
  1095             (fn _ =>
  1096               simp_tac defset 1 THEN
  1097               REPEAT_DETERM (Iso_Tuple_Support.iso_tuple_intros_tac 1) THEN
  1098               TRY (simp_tac (HOL_ss addsimps id_o_apps) 1));
  1099         val dest =
  1100           if is_sel_upd_pair thy acc upd
  1101           then o_eq_dest
  1102           else o_eq_id_dest;
  1103       in Drule.export_without_context (othm RS dest) end;
  1104   in map get_simp upd_funs end;
  1105 
  1106 fun get_updupd_simp thy defset u u' comp =
  1107   let
  1108     (* FIXME fresh "f" (!?) *)
  1109     val f = Free ("f", domain_type (fastype_of u));
  1110     val f' = Free ("f'", domain_type (fastype_of u'));
  1111     val lhs = mk_comp (u $ f) (u' $ f');
  1112     val rhs =
  1113       if comp
  1114       then u $ mk_comp f f'
  1115       else mk_comp (u' $ f') (u $ f);
  1116     val prop = lhs === rhs;
  1117     val othm =
  1118       Goal.prove (ProofContext.init thy) [] [] prop
  1119         (fn _ =>
  1120           simp_tac defset 1 THEN
  1121           REPEAT_DETERM (Iso_Tuple_Support.iso_tuple_intros_tac 1) THEN
  1122           TRY (simp_tac (HOL_ss addsimps [id_apply]) 1));
  1123     val dest = if comp then o_eq_dest_lhs else o_eq_dest;
  1124   in Drule.export_without_context (othm RS dest) end;
  1125 
  1126 fun get_updupd_simps thy term defset =
  1127   let
  1128     val upd_funs = get_upd_funs term;
  1129     val cname = fst o dest_Const;
  1130     fun getswap u u' = get_updupd_simp thy defset u u' (cname u = cname u');
  1131     fun build_swaps_to_eq _ [] swaps = swaps
  1132       | build_swaps_to_eq upd (u :: us) swaps =
  1133           let
  1134             val key = (cname u, cname upd);
  1135             val newswaps =
  1136               if Symreltab.defined swaps key then swaps
  1137               else Symreltab.insert (K true) (key, getswap u upd) swaps;
  1138           in
  1139             if cname u = cname upd then newswaps
  1140             else build_swaps_to_eq upd us newswaps
  1141           end;
  1142     fun swaps_needed [] _ _ swaps = map snd (Symreltab.dest swaps)
  1143       | swaps_needed (u :: us) prev seen swaps =
  1144           if Symtab.defined seen (cname u)
  1145           then swaps_needed us prev seen (build_swaps_to_eq u prev swaps)
  1146           else swaps_needed us (u :: prev) (Symtab.insert (K true) (cname u, ()) seen) swaps;
  1147   in swaps_needed upd_funs [] Symtab.empty Symreltab.empty end;
  1148 
  1149 val named_cterm_instantiate = Iso_Tuple_Support.named_cterm_instantiate;
  1150 
  1151 fun prove_unfold_defs thy ex_simps ex_simprs prop =
  1152   let
  1153     val defset = get_sel_upd_defs thy;
  1154     val prop' = Envir.beta_eta_contract prop;
  1155     val (lhs, _) = Logic.dest_equals (Logic.strip_assums_concl prop');
  1156     val (_, args) = strip_comb lhs;
  1157     val simps = (if length args = 1 then get_accupd_simps else get_updupd_simps) thy lhs defset;
  1158   in
  1159     Goal.prove (ProofContext.init thy) [] [] prop'
  1160       (fn _ =>
  1161         simp_tac (HOL_basic_ss addsimps (simps @ [K_record_comp])) 1 THEN
  1162         TRY (simp_tac (HOL_basic_ss addsimps ex_simps addsimprocs ex_simprs) 1))
  1163   end;
  1164 
  1165 
  1166 local
  1167 
  1168 fun eq (s1: string) (s2: string) = (s1 = s2);
  1169 
  1170 fun has_field extfields f T =
  1171   exists (fn (eN, _) => exists (eq f o fst) (Symtab.lookup_list extfields eN)) (dest_recTs T);
  1172 
  1173 fun K_skeleton n (T as Type (_, [_, kT])) (b as Bound i) (Abs (x, xT, t)) =
  1174       if null (loose_bnos t) then ((n, kT), (Abs (x, xT, Bound (i + 1)))) else ((n, T), b)
  1175   | K_skeleton n T b _ = ((n, T), b);
  1176 
  1177 in
  1178 
  1179 (* record_simproc *)
  1180 
  1181 (*
  1182   Simplify selections of an record update:
  1183     (1)  S (S_update k r) = k (S r)
  1184     (2)  S (X_update k r) = S r
  1185 
  1186   The simproc skips multiple updates at once, eg:
  1187    S (X_update x (Y_update y (S_update k r))) = k (S r)
  1188 
  1189   But be careful in (2) because of the extensibility of records.
  1190   - If S is a more-selector we have to make sure that the update on component
  1191     X does not affect the selected subrecord.
  1192   - If X is a more-selector we have to make sure that S is not in the updated
  1193     subrecord.
  1194 *)
  1195 val record_simproc =
  1196   Simplifier.simproc @{theory HOL} "record_simp" ["x"]
  1197     (fn thy => fn _ => fn t =>
  1198       (case t of
  1199         (sel as Const (s, Type (_, [_, rangeS]))) $
  1200             ((upd as Const (u, Type (_, [_, Type (_, [rT, _])]))) $ k $ r) =>
  1201           if is_selector thy s andalso is_some (get_updates thy u) then
  1202             let
  1203               val {sel_upd = {updates, ...}, extfields, ...} = Records_Data.get thy;
  1204 
  1205               fun mk_eq_terms ((upd as Const (u, Type(_, [kT, _]))) $ k $ r) =
  1206                     (case Symtab.lookup updates u of
  1207                       NONE => NONE
  1208                     | SOME u_name =>
  1209                         if u_name = s then
  1210                           (case mk_eq_terms r of
  1211                             NONE =>
  1212                               let
  1213                                 val rv = ("r", rT);
  1214                                 val rb = Bound 0;
  1215                                 val (kv, kb) = K_skeleton "k" kT (Bound 1) k;
  1216                               in SOME (upd $ kb $ rb, kb $ (sel $ rb), [kv, rv]) end
  1217                           | SOME (trm, trm', vars) =>
  1218                               let
  1219                                 val (kv, kb) = K_skeleton "k" kT (Bound (length vars)) k;
  1220                               in SOME (upd $ kb $ trm, kb $ trm', kv :: vars) end)
  1221                         else if has_field extfields u_name rangeS orelse
  1222                           has_field extfields s (domain_type kT) then NONE
  1223                         else
  1224                           (case mk_eq_terms r of
  1225                             SOME (trm, trm', vars) =>
  1226                               let val (kv, kb) = K_skeleton "k" kT (Bound (length vars)) k
  1227                               in SOME (upd $ kb $ trm, trm', kv :: vars) end
  1228                           | NONE =>
  1229                               let
  1230                                 val rv = ("r", rT);
  1231                                 val rb = Bound 0;
  1232                                 val (kv, kb) = K_skeleton "k" kT (Bound 1) k;
  1233                               in SOME (upd $ kb $ rb, sel $ rb, [kv, rv]) end))
  1234                 | mk_eq_terms _ = NONE;
  1235             in
  1236               (case mk_eq_terms (upd $ k $ r) of
  1237                 SOME (trm, trm', vars) =>
  1238                   SOME
  1239                     (prove_unfold_defs thy [] []
  1240                       (list_all (vars, Logic.mk_equals (sel $ trm, trm'))))
  1241               | NONE => NONE)
  1242             end
  1243           else NONE
  1244       | _ => NONE));
  1245 
  1246 fun get_upd_acc_cong_thm upd acc thy simpset =
  1247   let
  1248     val insts = [("upd", cterm_of thy upd), ("acc", cterm_of thy acc)];
  1249     val prop = Thm.concl_of (named_cterm_instantiate insts updacc_cong_triv);
  1250   in
  1251     Goal.prove (ProofContext.init thy) [] [] prop
  1252       (fn _ =>
  1253         simp_tac simpset 1 THEN
  1254         REPEAT_DETERM (Iso_Tuple_Support.iso_tuple_intros_tac 1) THEN
  1255         TRY (resolve_tac [updacc_cong_idI] 1))
  1256   end;
  1257 
  1258 
  1259 (* record_upd_simproc *)
  1260 
  1261 (*Simplify multiple updates:
  1262     (1) "N_update y (M_update g (N_update x (M_update f r))) =
  1263           (N_update (y o x) (M_update (g o f) r))"
  1264     (2)  "r(|M:= M r|) = r"
  1265 
  1266   In both cases "more" updates complicate matters: for this reason
  1267   we omit considering further updates if doing so would introduce
  1268   both a more update and an update to a field within it.*)
  1269 val record_upd_simproc =
  1270   Simplifier.simproc @{theory HOL} "record_upd_simp" ["x"]
  1271     (fn thy => fn _ => fn t =>
  1272       let
  1273         (*We can use more-updators with other updators as long
  1274           as none of the other updators go deeper than any more
  1275           updator. min here is the depth of the deepest other
  1276           updator, max the depth of the shallowest more updator.*)
  1277         fun include_depth (dep, true) (min, max) =
  1278               if min <= dep
  1279               then SOME (min, if dep <= max orelse max = ~1 then dep else max)
  1280               else NONE
  1281           | include_depth (dep, false) (min, max) =
  1282               if dep <= max orelse max = ~1
  1283               then SOME (if min <= dep then dep else min, max)
  1284               else NONE;
  1285 
  1286         fun getupdseq (term as (upd as Const (u, _)) $ f $ tm) min max =
  1287               (case get_update_details u thy of
  1288                 SOME (s, dep, ismore) =>
  1289                   (case include_depth (dep, ismore) (min, max) of
  1290                     SOME (min', max') =>
  1291                       let val (us, bs, _) = getupdseq tm min' max'
  1292                       in ((upd, s, f) :: us, bs, fastype_of term) end
  1293                   | NONE => ([], term, HOLogic.unitT))
  1294               | NONE => ([], term, HOLogic.unitT))
  1295           | getupdseq term _ _ = ([], term, HOLogic.unitT);
  1296 
  1297         val (upds, base, baseT) = getupdseq t 0 ~1;
  1298 
  1299         fun is_upd_noop s (Abs (n, T, Const (s', T') $ tm')) tm =
  1300               if s = s' andalso null (loose_bnos tm')
  1301                 andalso subst_bound (HOLogic.unit, tm') = tm
  1302               then (true, Abs (n, T, Const (s', T') $ Bound 1))
  1303               else (false, HOLogic.unit)
  1304           | is_upd_noop _ _ _ = (false, HOLogic.unit);
  1305 
  1306         fun get_noop_simps (upd as Const _) (Abs (_, _, (acc as Const _) $ _)) =
  1307           let
  1308             val ss = get_sel_upd_defs thy;
  1309             val uathm = get_upd_acc_cong_thm upd acc thy ss;
  1310           in
  1311            [Drule.export_without_context (uathm RS updacc_noopE),
  1312             Drule.export_without_context (uathm RS updacc_noop_compE)]
  1313           end;
  1314 
  1315         (*If f is constant then (f o g) = f.  We know that K_skeleton
  1316           only returns constant abstractions thus when we see an
  1317           abstraction we can discard inner updates.*)
  1318         fun add_upd (f as Abs _) fs = [f]
  1319           | add_upd f fs = (f :: fs);
  1320 
  1321         (*mk_updterm returns
  1322           (orig-term-skeleton, simplified-skeleton,
  1323             variables, duplicate-updates, simp-flag, noop-simps)
  1324 
  1325           where duplicate-updates is a table used to pass upward
  1326           the list of update functions which can be composed
  1327           into an update above them, simp-flag indicates whether
  1328           any simplification was achieved, and noop-simps are
  1329           used for eliminating case (2) defined above*)
  1330         fun mk_updterm ((upd as Const (u, T), s, f) :: upds) above term =
  1331               let
  1332                 val (lhs, rhs, vars, dups, simp, noops) =
  1333                   mk_updterm upds (Symtab.update (u, ()) above) term;
  1334                 val (fvar, skelf) =
  1335                   K_skeleton (Long_Name.base_name s) (domain_type T) (Bound (length vars)) f;
  1336                 val (isnoop, skelf') = is_upd_noop s f term;
  1337                 val funT = domain_type T;
  1338                 fun mk_comp_local (f, f') =
  1339                   Const (@{const_name Fun.comp}, funT --> funT --> funT) $ f $ f';
  1340               in
  1341                 if isnoop then
  1342                   (upd $ skelf' $ lhs, rhs, vars,
  1343                     Symtab.update (u, []) dups, true,
  1344                     if Symtab.defined noops u then noops
  1345                     else Symtab.update (u, get_noop_simps upd skelf') noops)
  1346                 else if Symtab.defined above u then
  1347                   (upd $ skelf $ lhs, rhs, fvar :: vars,
  1348                     Symtab.map_default (u, []) (add_upd skelf) dups,
  1349                     true, noops)
  1350                 else
  1351                   (case Symtab.lookup dups u of
  1352                     SOME fs =>
  1353                      (upd $ skelf $ lhs,
  1354                       upd $ foldr1 mk_comp_local (add_upd skelf fs) $ rhs,
  1355                       fvar :: vars, dups, true, noops)
  1356                   | NONE => (upd $ skelf $ lhs, upd $ skelf $ rhs, fvar :: vars, dups, simp, noops))
  1357               end
  1358           | mk_updterm [] _ _ =
  1359               (Bound 0, Bound 0, [("r", baseT)], Symtab.empty, false, Symtab.empty)
  1360           | mk_updterm us _ _ = raise TERM ("mk_updterm match", map (fn (x, _, _) => x) us);
  1361 
  1362         val (lhs, rhs, vars, _, simp, noops) = mk_updterm upds Symtab.empty base;
  1363         val noops' = maps snd (Symtab.dest noops);
  1364       in
  1365         if simp then
  1366           SOME
  1367             (prove_unfold_defs thy noops' [record_simproc]
  1368               (list_all (vars, Logic.mk_equals (lhs, rhs))))
  1369         else NONE
  1370       end);
  1371 
  1372 end;
  1373 
  1374 
  1375 (* record_eq_simproc *)
  1376 
  1377 (*Look up the most specific record-equality.
  1378 
  1379  Note on efficiency:
  1380  Testing equality of records boils down to the test of equality of all components.
  1381  Therefore the complexity is: #components * complexity for single component.
  1382  Especially if a record has a lot of components it may be better to split up
  1383  the record first and do simplification on that (record_split_simp_tac).
  1384  e.g. r(|lots of updates|) = x
  1385 
  1386              record_eq_simproc          record_split_simp_tac
  1387  Complexity: #components * #updates     #updates
  1388 *)
  1389 val record_eq_simproc =
  1390   Simplifier.simproc @{theory HOL} "record_eq_simp" ["r = s"]
  1391     (fn thy => fn _ => fn t =>
  1392       (case t of Const (@{const_name "op ="}, Type (_, [T, _])) $ _ $ _ =>
  1393         (case rec_id ~1 T of
  1394           "" => NONE
  1395         | name =>
  1396             (case get_equalities thy name of
  1397               NONE => NONE
  1398             | SOME thm => SOME (thm RS @{thm Eq_TrueI})))
  1399       | _ => NONE));
  1400 
  1401 
  1402 (* record_split_simproc *)
  1403 
  1404 (*Split quantified occurrences of records, for which P holds.  P can peek on the
  1405   subterm starting at the quantified occurrence of the record (including the quantifier):
  1406     P t = 0: do not split
  1407     P t = ~1: completely split
  1408     P t > 0: split up to given bound of record extensions.*)
  1409 fun record_split_simproc P =
  1410   Simplifier.simproc @{theory HOL} "record_split_simp" ["x"]
  1411     (fn thy => fn _ => fn t =>
  1412       (case t of
  1413         Const (quantifier, Type (_, [Type (_, [T, _]), _])) $ _ =>
  1414           if quantifier = @{const_name all} orelse
  1415             quantifier = @{const_name All} orelse
  1416             quantifier = @{const_name Ex}
  1417           then
  1418             (case rec_id ~1 T of
  1419               "" => NONE
  1420             | _ =>
  1421                 let val split = P t in
  1422                   if split <> 0 then
  1423                     (case get_splits thy (rec_id split T) of
  1424                       NONE => NONE
  1425                     | SOME (all_thm, All_thm, Ex_thm, _) =>
  1426                         SOME
  1427                           (case quantifier of
  1428                             @{const_name all} => all_thm
  1429                           | @{const_name All} => All_thm RS eq_reflection
  1430                           | @{const_name Ex} => Ex_thm RS eq_reflection
  1431                           | _ => error "record_split_simproc"))
  1432                   else NONE
  1433                 end)
  1434           else NONE
  1435       | _ => NONE));
  1436 
  1437 val record_ex_sel_eq_simproc =
  1438   Simplifier.simproc @{theory HOL} "record_ex_sel_eq_simproc" ["Ex t"]
  1439     (fn thy => fn ss => fn t =>
  1440       let
  1441         fun prove prop =
  1442           prove_global true thy [] prop
  1443             (fn _ => simp_tac (Simplifier.inherit_context ss (get_simpset thy)
  1444                 addsimps @{thms simp_thms} addsimprocs [record_split_simproc (K ~1)]) 1);
  1445 
  1446         fun mkeq (lr, Teq, (sel, Tsel), x) i =
  1447           if is_selector thy sel then
  1448             let
  1449               val x' =
  1450                 if not (loose_bvar1 (x, 0))
  1451                 then Free ("x" ^ string_of_int i, range_type Tsel)
  1452                 else raise TERM ("", [x]);
  1453               val sel' = Const (sel, Tsel) $ Bound 0;
  1454               val (l, r) = if lr then (sel', x') else (x', sel');
  1455             in Const (@{const_name "op ="}, Teq) $ l $ r end
  1456           else raise TERM ("", [Const (sel, Tsel)]);
  1457 
  1458         fun dest_sel_eq (Const (@{const_name "op ="}, Teq) $ (Const (sel, Tsel) $ Bound 0) $ X) =
  1459               (true, Teq, (sel, Tsel), X)
  1460           | dest_sel_eq (Const (@{const_name "op ="}, Teq) $ X $ (Const (sel, Tsel) $ Bound 0)) =
  1461               (false, Teq, (sel, Tsel), X)
  1462           | dest_sel_eq _ = raise TERM ("", []);
  1463       in
  1464         (case t of
  1465           Const (@{const_name Ex}, Tex) $ Abs (s, T, t) =>
  1466            (let
  1467              val eq = mkeq (dest_sel_eq t) 0;
  1468              val prop =
  1469                list_all ([("r", T)],
  1470                  Logic.mk_equals
  1471                   (Const (@{const_name Ex}, Tex) $ Abs (s, T, eq), HOLogic.true_const));
  1472             in SOME (prove prop) end
  1473             handle TERM _ => NONE)
  1474         | _ => NONE)
  1475       end);
  1476 
  1477 
  1478 (* record_split_simp_tac *)
  1479 
  1480 (*Split (and simplify) all records in the goal for which P holds.
  1481   For quantified occurrences of a record
  1482   P can peek on the whole subterm (including the quantifier); for free variables P
  1483   can only peek on the variable itself.
  1484   P t = 0: do not split
  1485   P t = ~1: completely split
  1486   P t > 0: split up to given bound of record extensions.*)
  1487 fun record_split_simp_tac thms P = CSUBGOAL (fn (cgoal, i) =>
  1488   let
  1489     val thy = Thm.theory_of_cterm cgoal;
  1490 
  1491     val goal = term_of cgoal;
  1492     val frees = filter (is_recT o #2) (Term.add_frees goal []);
  1493 
  1494     val has_rec = exists_Const
  1495       (fn (s, Type (_, [Type (_, [T, _]), _])) =>
  1496           (s = @{const_name all} orelse s = @{const_name All} orelse s = @{const_name Ex}) andalso
  1497           is_recT T
  1498         | _ => false);
  1499 
  1500     fun mk_split_free_tac free induct_thm i =
  1501       let
  1502         val cfree = cterm_of thy free;
  1503         val _$ (_ $ r) = concl_of induct_thm;
  1504         val crec = cterm_of thy r;
  1505         val thm = cterm_instantiate [(crec, cfree)] induct_thm;
  1506       in
  1507         simp_tac (HOL_basic_ss addsimps @{thms induct_atomize}) i THEN
  1508         rtac thm i THEN
  1509         simp_tac (HOL_basic_ss addsimps @{thms induct_rulify}) i
  1510       end;
  1511 
  1512     val split_frees_tacs =
  1513       frees |> map_filter (fn (x, T) =>
  1514         (case rec_id ~1 T of
  1515           "" => NONE
  1516         | _ =>
  1517             let
  1518               val free = Free (x, T);
  1519               val split = P free;
  1520             in
  1521               if split <> 0 then
  1522                 (case get_splits thy (rec_id split T) of
  1523                   NONE => NONE
  1524                 | SOME (_, _, _, induct_thm) =>
  1525                     SOME (mk_split_free_tac free induct_thm i))
  1526               else NONE
  1527             end));
  1528 
  1529     val simprocs = if has_rec goal then [record_split_simproc P] else [];
  1530     val thms' = K_comp_convs @ thms;
  1531   in
  1532     EVERY split_frees_tacs THEN
  1533     Simplifier.full_simp_tac (get_simpset thy addsimps thms' addsimprocs simprocs) i
  1534   end);
  1535 
  1536 
  1537 (* record_split_tac *)
  1538 
  1539 (*Split all records in the goal, which are quantified by !! or ALL.*)
  1540 val record_split_tac = CSUBGOAL (fn (cgoal, i) =>
  1541   let
  1542     val goal = term_of cgoal;
  1543 
  1544     val has_rec = exists_Const
  1545       (fn (s, Type (_, [Type (_, [T, _]), _])) =>
  1546           (s = @{const_name all} orelse s = @{const_name All}) andalso is_recT T
  1547         | _ => false);
  1548 
  1549     fun is_all (Const (@{const_name all}, _) $ _) = ~1
  1550       | is_all (Const (@{const_name All}, _) $ _) = ~1
  1551       | is_all _ = 0;
  1552   in
  1553     if has_rec goal then
  1554       Simplifier.full_simp_tac (HOL_basic_ss addsimprocs [record_split_simproc is_all]) i
  1555     else no_tac
  1556   end);
  1557 
  1558 
  1559 (* wrapper *)
  1560 
  1561 val record_split_name = "record_split_tac";
  1562 val record_split_wrapper = (record_split_name, fn tac => record_split_tac ORELSE' tac);
  1563 
  1564 
  1565 
  1566 (** theory extender interface **)
  1567 
  1568 (* prepare arguments *)
  1569 
  1570 fun read_raw_parent ctxt raw_T =
  1571   (case ProofContext.read_typ_abbrev ctxt raw_T of
  1572     Type (name, Ts) => (Ts, name)
  1573   | T => error ("Bad parent record specification: " ^ Syntax.string_of_typ ctxt T));
  1574 
  1575 fun read_typ ctxt raw_T env =
  1576   let
  1577     val ctxt' = fold (Variable.declare_typ o TFree) env ctxt;
  1578     val T = Syntax.read_typ ctxt' raw_T;
  1579     val env' = OldTerm.add_typ_tfrees (T, env);
  1580   in (T, env') end;
  1581 
  1582 fun cert_typ ctxt raw_T env =
  1583   let
  1584     val thy = ProofContext.theory_of ctxt;
  1585     val T = Type.no_tvars (Sign.certify_typ thy raw_T)
  1586       handle TYPE (msg, _, _) => error msg;
  1587     val env' = OldTerm.add_typ_tfrees (T, env);
  1588   in (T, env') end;
  1589 
  1590 
  1591 (* attributes *)
  1592 
  1593 fun case_names_fields x = Rule_Cases.case_names ["fields"] x;
  1594 fun induct_type_global name = [case_names_fields, Induct.induct_type name];
  1595 fun cases_type_global name = [case_names_fields, Induct.cases_type name];
  1596 
  1597 
  1598 (* tactics *)
  1599 
  1600 fun simp_all_tac ss simps = ALLGOALS (Simplifier.asm_full_simp_tac (ss addsimps simps));
  1601 
  1602 (*Do case analysis / induction according to rule on last parameter of ith subgoal
  1603   (or on s if there are no parameters).
  1604   Instatiation of record variable (and predicate) in rule is calculated to
  1605   avoid problems with higher order unification.*)
  1606 fun try_param_tac s rule = CSUBGOAL (fn (cgoal, i) =>
  1607   let
  1608     val cert = Thm.cterm_of (Thm.theory_of_cterm cgoal);
  1609 
  1610     val g = Thm.term_of cgoal;
  1611     val params = Logic.strip_params g;
  1612     val concl = HOLogic.dest_Trueprop (Logic.strip_assums_concl g);
  1613     val rule' = Thm.lift_rule cgoal rule;
  1614     val (P, ys) = strip_comb (HOLogic.dest_Trueprop
  1615       (Logic.strip_assums_concl (prop_of rule')));
  1616     (*ca indicates if rule is a case analysis or induction rule*)
  1617     val (x, ca) =
  1618       (case rev (drop (length params) ys) of
  1619         [] => (head_of (fst (HOLogic.dest_eq (HOLogic.dest_Trueprop
  1620           (hd (rev (Logic.strip_assums_hyp (hd (prems_of rule')))))))), true)
  1621       | [x] => (head_of x, false));
  1622     val rule'' = cterm_instantiate (map (pairself cert)
  1623       (case rev params of
  1624         [] =>
  1625           (case AList.lookup (op =) (Term.add_frees g []) s of
  1626             NONE => sys_error "try_param_tac: no such variable"
  1627           | SOME T => [(P, if ca then concl else lambda (Free (s, T)) concl), (x, Free (s, T))])
  1628       | (_, T) :: _ =>
  1629           [(P, list_abs (params, if ca then concl else incr_boundvars 1 (Abs (s, T, concl)))),
  1630             (x, list_abs (params, Bound 0))])) rule';
  1631   in compose_tac (false, rule'', nprems_of rule) i end);
  1632 
  1633 
  1634 fun extension_definition name fields alphas zeta moreT more vars thy =
  1635   let
  1636     val base_name = Long_Name.base_name name;
  1637 
  1638     val fieldTs = map snd fields;
  1639     val fields_moreTs = fieldTs @ [moreT];
  1640 
  1641     val alphas_zeta = alphas @ [zeta];
  1642     val alphas_zetaTs = map (fn a => TFree (a, HOLogic.typeS)) alphas_zeta;
  1643 
  1644     val ext_binding = Binding.name (suffix extN base_name);
  1645     val ext_name = suffix extN name;
  1646     val extT = Type (suffix ext_typeN name, alphas_zetaTs);
  1647     val ext_type = fields_moreTs ---> extT;
  1648 
  1649 
  1650     (* the tree of new types that will back the record extension *)
  1651 
  1652     val mktreeV = Balanced_Tree.make Iso_Tuple_Support.mk_cons_tuple;
  1653 
  1654     fun mk_iso_tuple (left, right) (thy, i) =
  1655       let
  1656         val suff = if i = 0 then ext_typeN else inner_typeN ^ string_of_int i;
  1657         val ((_, cons), thy') = thy
  1658           |> Iso_Tuple_Support.add_iso_tuple_type
  1659             (suffix suff base_name, alphas_zeta) (fastype_of left, fastype_of right);
  1660       in
  1661         (cons $ left $ right, (thy', i + 1))
  1662       end;
  1663 
  1664     (*trying to create a 1-element iso_tuple will fail, and is pointless anyway*)
  1665     fun mk_even_iso_tuple [arg] = pair arg
  1666       | mk_even_iso_tuple args = mk_iso_tuple (Iso_Tuple_Support.dest_cons_tuple (mktreeV args));
  1667 
  1668     fun build_meta_tree_type i thy vars more =
  1669       let val len = length vars in
  1670         if len < 1 then raise TYPE ("meta_tree_type args too short", [], vars)
  1671         else if len > 16 then
  1672           let
  1673             fun group16 [] = []
  1674               | group16 xs = take 16 xs :: group16 (drop 16 xs);
  1675             val vars' = group16 vars;
  1676             val (composites, (thy', i')) = fold_map mk_even_iso_tuple vars' (thy, i);
  1677           in
  1678             build_meta_tree_type i' thy' composites more
  1679           end
  1680         else
  1681           let val (term, (thy', _)) = mk_iso_tuple (mktreeV vars, more) (thy, 0)
  1682           in (term, thy') end
  1683       end;
  1684 
  1685     val _ = timing_msg "record extension preparing definitions";
  1686 
  1687 
  1688     (* 1st stage part 1: introduce the tree of new types *)
  1689 
  1690     fun get_meta_tree () = build_meta_tree_type 1 thy vars more;
  1691     val (ext_body, typ_thy) =
  1692       timeit_msg "record extension nested type def:" get_meta_tree;
  1693 
  1694 
  1695     (* prepare declarations and definitions *)
  1696 
  1697     (* 1st stage part 2: define the ext constant *)
  1698 
  1699     fun mk_ext args = list_comb (Const (ext_name, ext_type), args);
  1700     val ext_spec = Logic.mk_equals (mk_ext (vars @ [more]), ext_body);
  1701 
  1702     fun mk_defs () =
  1703       typ_thy
  1704       |> Sign.declare_const ((ext_binding, ext_type), NoSyn) |> snd
  1705       |> PureThy.add_defs false [((Thm.def_binding ext_binding, ext_spec), [])]
  1706       ||> Theory.checkpoint
  1707     val ([ext_def], defs_thy) =
  1708       timeit_msg "record extension constructor def:" mk_defs;
  1709 
  1710 
  1711     (* prepare propositions *)
  1712 
  1713     val _ = timing_msg "record extension preparing propositions";
  1714     val vars_more = vars @ [more];
  1715     val variants = map (fn Free (x, _) => x) vars_more;
  1716     val ext = mk_ext vars_more;
  1717     val s = Free (rN, extT);
  1718     val P = Free (Name.variant variants "P", extT --> HOLogic.boolT);
  1719 
  1720     val inject_prop =
  1721       let val vars_more' = map (fn (Free (x, T)) => Free (x ^ "'", T)) vars_more in
  1722         HOLogic.mk_conj (HOLogic.eq_const extT $
  1723           mk_ext vars_more $ mk_ext vars_more', HOLogic.true_const)
  1724         ===
  1725         foldr1 HOLogic.mk_conj
  1726           (map HOLogic.mk_eq (vars_more ~~ vars_more') @ [HOLogic.true_const])
  1727       end;
  1728 
  1729     val induct_prop =
  1730       (All (map dest_Free vars_more) (Trueprop (P $ ext)), Trueprop (P $ s));
  1731 
  1732     val split_meta_prop =
  1733       let val P = Free (Name.variant variants "P", extT --> Term.propT) in
  1734         Logic.mk_equals
  1735          (All [dest_Free s] (P $ s), All (map dest_Free vars_more) (P $ ext))
  1736       end;
  1737 
  1738     val prove_standard = prove_future_global true defs_thy;
  1739 
  1740     fun inject_prf () =
  1741       simplify HOL_ss
  1742         (prove_standard [] inject_prop
  1743           (fn _ =>
  1744             simp_tac (HOL_basic_ss addsimps [ext_def]) 1 THEN
  1745             REPEAT_DETERM
  1746               (rtac refl_conj_eq 1 ORELSE
  1747                 Iso_Tuple_Support.iso_tuple_intros_tac 1 ORELSE
  1748                 rtac refl 1)));
  1749 
  1750     val inject = timeit_msg "record extension inject proof:" inject_prf;
  1751 
  1752     (*We need a surjection property r = (| f = f r, g = g r ... |)
  1753       to prove other theorems. We haven't given names to the accessors
  1754       f, g etc yet however, so we generate an ext structure with
  1755       free variables as all arguments and allow the introduction tactic to
  1756       operate on it as far as it can. We then use Drule.export_without_context
  1757       to convert the free variables into unifiable variables and unify them with
  1758       (roughly) the definition of the accessor.*)
  1759     fun surject_prf () =
  1760       let
  1761         val cterm_ext = cterm_of defs_thy ext;
  1762         val start = named_cterm_instantiate [("y", cterm_ext)] surject_assist_idE;
  1763         val tactic1 =
  1764           simp_tac (HOL_basic_ss addsimps [ext_def]) 1 THEN
  1765           REPEAT_ALL_NEW Iso_Tuple_Support.iso_tuple_intros_tac 1;
  1766         val tactic2 = REPEAT (rtac surject_assistI 1 THEN rtac refl 1);
  1767         val [halfway] = Seq.list_of (tactic1 start);
  1768         val [surject] = Seq.list_of (tactic2 (Drule.export_without_context halfway));
  1769       in
  1770         surject
  1771       end;
  1772     val surject = timeit_msg "record extension surjective proof:" surject_prf;
  1773 
  1774     fun split_meta_prf () =
  1775       prove_standard [] split_meta_prop
  1776         (fn _ =>
  1777           EVERY1
  1778            [rtac equal_intr_rule, Goal.norm_hhf_tac,
  1779             etac meta_allE, atac,
  1780             rtac (prop_subst OF [surject]),
  1781             REPEAT o etac meta_allE, atac]);
  1782     val split_meta = timeit_msg "record extension split_meta proof:" split_meta_prf;
  1783 
  1784     fun induct_prf () =
  1785       let val (assm, concl) = induct_prop in
  1786         prove_standard [assm] concl
  1787           (fn {prems, ...} =>
  1788             cut_rules_tac [split_meta RS Drule.equal_elim_rule2] 1 THEN
  1789             resolve_tac prems 2 THEN
  1790             asm_simp_tac HOL_ss 1)
  1791       end;
  1792     val induct = timeit_msg "record extension induct proof:" induct_prf;
  1793 
  1794     val ([induct', inject', surjective', split_meta'], thm_thy) =
  1795       defs_thy
  1796       |> PureThy.add_thms (map (Thm.no_attributes o apfst Binding.name)
  1797            [("ext_induct", induct),
  1798             ("ext_inject", inject),
  1799             ("ext_surjective", surject),
  1800             ("ext_split", split_meta)])
  1801       ||> Code.add_default_eqn ext_def;
  1802 
  1803   in ((extT, induct', inject', surjective', split_meta', ext_def), thm_thy) end;
  1804 
  1805 fun chunks [] [] = []
  1806   | chunks [] xs = [xs]
  1807   | chunks (l :: ls) xs = take l xs :: chunks ls (drop l xs);
  1808 
  1809 fun chop_last [] = error "chop_last: list should not be empty"
  1810   | chop_last [x] = ([], x)
  1811   | chop_last (x :: xs) = let val (tl, l) = chop_last xs in (x :: tl, l) end;
  1812 
  1813 fun subst_last _ [] = error "subst_last: list should not be empty"
  1814   | subst_last s [_] = [s]
  1815   | subst_last s (x :: xs) = x :: subst_last s xs;
  1816 
  1817 
  1818 (* mk_recordT *)
  1819 
  1820 (*builds up the record type from the current extension tpye extT and a list
  1821   of parent extensions, starting with the root of the record hierarchy*)
  1822 fun mk_recordT extT =
  1823   fold_rev (fn (parent, Ts) => fn T => Type (parent, subst_last T Ts)) extT;
  1824 
  1825 
  1826 fun obj_to_meta_all thm =
  1827   let
  1828     fun E thm =  (* FIXME proper name *)
  1829       (case SOME (spec OF [thm]) handle THM _ => NONE of
  1830         SOME thm' => E thm'
  1831       | NONE => thm);
  1832     val th1 = E thm;
  1833     val th2 = Drule.forall_intr_vars th1;
  1834   in th2 end;
  1835 
  1836 fun meta_to_obj_all thm =
  1837   let
  1838     val thy = Thm.theory_of_thm thm;
  1839     val prop = Thm.prop_of thm;
  1840     val params = Logic.strip_params prop;
  1841     val concl = HOLogic.dest_Trueprop (Logic.strip_assums_concl prop);
  1842     val ct = cterm_of thy (HOLogic.mk_Trueprop (HOLogic.list_all (params, concl)));
  1843     val thm' = Seq.hd (REPEAT (rtac allI 1) (Thm.trivial ct));
  1844   in Thm.implies_elim thm' thm end;
  1845 
  1846 
  1847 (* record_definition *)
  1848 
  1849 fun record_definition (args, binding) parent (parents: parent_info list) raw_fields thy =
  1850   let
  1851     val alphas = map fst args;
  1852 
  1853     val name = Sign.full_name thy binding;
  1854     val full = Sign.full_name_path thy (Binding.name_of binding); (* FIXME Binding.qualified (!?) *)
  1855 
  1856     val bfields = map (fn (x, T, _) => (x, T)) raw_fields;
  1857     val field_syntax = map #3 raw_fields;
  1858 
  1859     val parent_fields = maps #fields parents;
  1860     val parent_chunks = map (length o #fields) parents;
  1861     val parent_names = map fst parent_fields;
  1862     val parent_types = map snd parent_fields;
  1863     val parent_fields_len = length parent_fields;
  1864     val parent_variants =
  1865       Name.variant_list [moreN, rN, rN ^ "'", wN] (map Long_Name.base_name parent_names);
  1866     val parent_vars = ListPair.map Free (parent_variants, parent_types);
  1867     val parent_len = length parents;
  1868 
  1869     val fields = map (apfst full) bfields;
  1870     val names = map fst fields;
  1871     val types = map snd fields;
  1872     val alphas_fields = fold Term.add_tfree_namesT types [];
  1873     val alphas_ext = inter (op =) alphas_fields alphas;
  1874     val len = length fields;
  1875     val variants =
  1876       Name.variant_list (moreN :: rN :: (rN ^ "'") :: wN :: parent_variants)
  1877         (map (Binding.name_of o fst) bfields);
  1878     val vars = ListPair.map Free (variants, types);
  1879     val named_vars = names ~~ vars;
  1880     val idxms = 0 upto len;
  1881 
  1882     val all_fields = parent_fields @ fields;
  1883     val all_types = parent_types @ types;
  1884     val all_variants = parent_variants @ variants;
  1885     val all_vars = parent_vars @ vars;
  1886     val all_named_vars = (parent_names ~~ parent_vars) @ named_vars;
  1887 
  1888 
  1889     val zeta = Name.variant alphas "'z";
  1890     val moreT = TFree (zeta, HOLogic.typeS);
  1891     val more = Free (moreN, moreT);
  1892     val full_moreN = full (Binding.name moreN);
  1893     val bfields_more = bfields @ [(Binding.name moreN, moreT)];
  1894     val fields_more = fields @ [(full_moreN, moreT)];
  1895     val named_vars_more = named_vars @ [(full_moreN, more)];
  1896     val all_vars_more = all_vars @ [more];
  1897     val all_named_vars_more = all_named_vars @ [(full_moreN, more)];
  1898 
  1899 
  1900     (* 1st stage: ext_thy *)
  1901 
  1902     val extension_name = full binding;
  1903 
  1904     val ((extT, ext_induct, ext_inject, ext_surjective, ext_split, ext_def), ext_thy) =
  1905       thy
  1906       |> Sign.qualified_path false binding
  1907       |> extension_definition extension_name fields alphas_ext zeta moreT more vars;
  1908 
  1909     val _ = timing_msg "record preparing definitions";
  1910     val Type extension_scheme = extT;
  1911     val extension_name = unsuffix ext_typeN (fst extension_scheme);
  1912     val extension = let val (n, Ts) = extension_scheme in (n, subst_last HOLogic.unitT Ts) end;
  1913     val extension_names = map (unsuffix ext_typeN o fst o #extension) parents @ [extension_name];
  1914     val extension_id = implode extension_names;
  1915 
  1916     fun rec_schemeT n = mk_recordT (map #extension (drop n parents)) extT;
  1917     val rec_schemeT0 = rec_schemeT 0;
  1918 
  1919     fun recT n =
  1920       let val (c, Ts) = extension in
  1921         mk_recordT (map #extension (drop n parents))
  1922           (Type (c, subst_last HOLogic.unitT Ts))
  1923       end;
  1924     val recT0 = recT 0;
  1925 
  1926     fun mk_rec args n =
  1927       let
  1928         val (args', more) = chop_last args;
  1929         fun mk_ext' ((name, T), args) more = mk_ext (name, T) (args @ [more]);
  1930         fun build Ts =
  1931           fold_rev mk_ext' (drop n ((extension_names ~~ Ts) ~~ chunks parent_chunks args')) more;
  1932       in
  1933         if more = HOLogic.unit
  1934         then build (map_range recT (parent_len + 1))
  1935         else build (map_range rec_schemeT (parent_len + 1))
  1936       end;
  1937 
  1938     val r_rec0 = mk_rec all_vars_more 0;
  1939     val r_rec_unit0 = mk_rec (all_vars @ [HOLogic.unit]) 0;
  1940 
  1941     fun r n = Free (rN, rec_schemeT n);
  1942     val r0 = r 0;
  1943     fun r_unit n = Free (rN, recT n);
  1944     val r_unit0 = r_unit 0;
  1945     val w = Free (wN, rec_schemeT 0);
  1946 
  1947 
  1948     (* print translations *)
  1949 
  1950     val record_ext_type_abbr_tr's =
  1951       let
  1952         val trname = hd extension_names;
  1953         val last_ext = unsuffix ext_typeN (fst extension);
  1954       in [record_ext_type_abbr_tr' name alphas zeta last_ext rec_schemeT0 trname] end;
  1955 
  1956     val record_ext_type_tr's =
  1957       let
  1958         (*avoid conflict with record_type_abbr_tr's*)
  1959         val trnames = if parent_len > 0 then [extension_name] else [];
  1960       in map record_ext_type_tr' trnames end;
  1961 
  1962     val advanced_print_translation =
  1963       map field_update_tr' (full_moreN :: names) @ [record_ext_tr' extension_name] @
  1964       record_ext_type_tr's @ record_ext_type_abbr_tr's;
  1965 
  1966 
  1967     (* prepare declarations *)
  1968 
  1969     val sel_decls = map (mk_selC rec_schemeT0 o apfst Binding.name_of) bfields_more;
  1970     val upd_decls = map (mk_updC updateN rec_schemeT0 o apfst Binding.name_of) bfields_more;
  1971     val make_decl = (makeN, all_types ---> recT0);
  1972     val fields_decl = (fields_selN, types ---> Type extension);
  1973     val extend_decl = (extendN, recT0 --> moreT --> rec_schemeT0);
  1974     val truncate_decl = (truncateN, rec_schemeT0 --> recT0);
  1975 
  1976 
  1977     (* prepare definitions *)
  1978 
  1979     (*record (scheme) type abbreviation*)
  1980     val recordT_specs =
  1981       [(Binding.suffix_name schemeN binding, alphas @ [zeta], rec_schemeT0, NoSyn),
  1982         (binding, alphas, recT0, NoSyn)];
  1983 
  1984     val ext_defs = ext_def :: map #ext_def parents;
  1985 
  1986     (*Theorems from the iso_tuple intros.
  1987       By unfolding ext_defs from r_rec0 we create a tree of constructor
  1988       calls (many of them Pair, but others as well). The introduction
  1989       rules for update_accessor_eq_assist can unify two different ways
  1990       on these constructors. If we take the complete result sequence of
  1991       running a the introduction tactic, we get one theorem for each upd/acc
  1992       pair, from which we can derive the bodies of our selector and
  1993       updator and their convs.*)
  1994     fun get_access_update_thms () =
  1995       let
  1996         val r_rec0_Vars =
  1997           let
  1998             (*pick variable indices of 1 to avoid possible variable
  1999               collisions with existing variables in updacc_eq_triv*)
  2000             fun to_Var (Free (c, T)) = Var ((c, 1), T);
  2001           in mk_rec (map to_Var all_vars_more) 0 end;
  2002 
  2003         val cterm_rec = cterm_of ext_thy r_rec0;
  2004         val cterm_vrs = cterm_of ext_thy r_rec0_Vars;
  2005         val insts = [("v", cterm_rec), ("v'", cterm_vrs)];
  2006         val init_thm = named_cterm_instantiate insts updacc_eq_triv;
  2007         val terminal = rtac updacc_eq_idI 1 THEN rtac refl 1;
  2008         val tactic =
  2009           simp_tac (HOL_basic_ss addsimps ext_defs) 1 THEN
  2010           REPEAT (Iso_Tuple_Support.iso_tuple_intros_tac 1 ORELSE terminal);
  2011         val updaccs = Seq.list_of (tactic init_thm);
  2012       in
  2013         (updaccs RL [updacc_accessor_eqE],
  2014          updaccs RL [updacc_updator_eqE],
  2015          updaccs RL [updacc_cong_from_eq])
  2016       end;
  2017     val (accessor_thms, updator_thms, upd_acc_cong_assists) =
  2018       timeit_msg "record getting tree access/updates:" get_access_update_thms;
  2019 
  2020     fun lastN xs = drop parent_fields_len xs;
  2021 
  2022     (*selectors*)
  2023     fun mk_sel_spec ((c, T), thm) =
  2024       let
  2025         val (acc $ arg, _) =
  2026           HOLogic.dest_eq (HOLogic.dest_Trueprop (Envir.beta_eta_contract (Thm.concl_of thm)));
  2027         val _ =
  2028           if arg aconv r_rec0 then ()
  2029           else raise TERM ("mk_sel_spec: different arg", [arg]);
  2030       in
  2031         Const (mk_selC rec_schemeT0 (c, T)) :== acc
  2032       end;
  2033     val sel_specs = map mk_sel_spec (fields_more ~~ lastN accessor_thms);
  2034 
  2035     (*updates*)
  2036     fun mk_upd_spec ((c, T), thm) =
  2037       let
  2038         val (upd $ _ $ arg, _) =
  2039           HOLogic.dest_eq (HOLogic.dest_Trueprop (Envir.beta_eta_contract (Thm.concl_of thm)));
  2040         val _ =
  2041           if arg aconv r_rec0 then ()
  2042           else raise TERM ("mk_sel_spec: different arg", [arg]);
  2043       in Const (mk_updC updateN rec_schemeT0 (c, T)) :== upd end;
  2044     val upd_specs = map mk_upd_spec (fields_more ~~ lastN updator_thms);
  2045 
  2046     (*derived operations*)
  2047     val make_spec =
  2048       list_comb (Const (full (Binding.name makeN), all_types ---> recT0), all_vars) :==
  2049         mk_rec (all_vars @ [HOLogic.unit]) 0;
  2050     val fields_spec =
  2051       list_comb (Const (full (Binding.name fields_selN), types ---> Type extension), vars) :==
  2052         mk_rec (all_vars @ [HOLogic.unit]) parent_len;
  2053     val extend_spec =
  2054       Const (full (Binding.name extendN), recT0 --> moreT --> rec_schemeT0) $ r_unit0 $ more :==
  2055         mk_rec ((map (mk_sel r_unit0) all_fields) @ [more]) 0;
  2056     val truncate_spec =
  2057       Const (full (Binding.name truncateN), rec_schemeT0 --> recT0) $ r0 :==
  2058         mk_rec ((map (mk_sel r0) all_fields) @ [HOLogic.unit]) 0;
  2059 
  2060 
  2061     (* 2st stage: defs_thy *)
  2062 
  2063     fun mk_defs () =
  2064       ext_thy
  2065       |> Sign.add_advanced_trfuns ([], [], advanced_print_translation, [])
  2066       |> Sign.restore_naming thy
  2067       |> Sign.add_tyabbrs_i recordT_specs
  2068       |> Sign.qualified_path false binding
  2069       |> fold (fn ((x, T), mx) => snd o Sign.declare_const ((Binding.name x, T), mx))
  2070         (sel_decls ~~ (field_syntax @ [NoSyn]))
  2071       |> fold (fn (x, T) => snd o Sign.declare_const ((Binding.name x, T), NoSyn))
  2072         (upd_decls @ [make_decl, fields_decl, extend_decl, truncate_decl])
  2073       |> (PureThy.add_defs false o map (Thm.no_attributes o apfst (Binding.conceal o Binding.name)))
  2074         sel_specs
  2075       ||>> (PureThy.add_defs false o map (Thm.no_attributes o apfst (Binding.conceal o Binding.name)))
  2076         upd_specs
  2077       ||>> (PureThy.add_defs false o map (Thm.no_attributes o apfst (Binding.conceal o Binding.name)))
  2078         [make_spec, fields_spec, extend_spec, truncate_spec]
  2079       |->
  2080         (fn defs as ((sel_defs, upd_defs), derived_defs) =>
  2081           fold Code.add_default_eqn sel_defs
  2082           #> fold Code.add_default_eqn upd_defs
  2083           #> fold Code.add_default_eqn derived_defs
  2084           #> pair defs)
  2085       ||> Theory.checkpoint
  2086     val (((sel_defs, upd_defs), derived_defs), defs_thy) =
  2087       timeit_msg "record trfuns/tyabbrs/selectors/updates/make/fields/extend/truncate defs:"
  2088         mk_defs;
  2089 
  2090     (* prepare propositions *)
  2091     val _ = timing_msg "record preparing propositions";
  2092     val P = Free (Name.variant all_variants "P", rec_schemeT0 --> HOLogic.boolT);
  2093     val C = Free (Name.variant all_variants "C", HOLogic.boolT);
  2094     val P_unit = Free (Name.variant all_variants "P", recT0 --> HOLogic.boolT);
  2095 
  2096     (*selectors*)
  2097     val sel_conv_props =
  2098        map (fn (c, x as Free (_, T)) => mk_sel r_rec0 (c, T) === x) named_vars_more;
  2099 
  2100     (*updates*)
  2101     fun mk_upd_prop (i, (c, T)) =
  2102       let
  2103         val x' = Free (Name.variant all_variants (Long_Name.base_name c ^ "'"), T --> T);
  2104         val n = parent_fields_len + i;
  2105         val args' = nth_map n (K (x' $ nth all_vars_more n)) all_vars_more;
  2106       in mk_upd updateN c x' r_rec0 === mk_rec args' 0 end;
  2107     val upd_conv_props = ListPair.map mk_upd_prop (idxms, fields_more);
  2108 
  2109     (*induct*)
  2110     val induct_scheme_prop =
  2111       All (map dest_Free all_vars_more) (Trueprop (P $ r_rec0)) ==> Trueprop (P $ r0);
  2112     val induct_prop =
  2113       (All (map dest_Free all_vars) (Trueprop (P_unit $ r_rec_unit0)),
  2114         Trueprop (P_unit $ r_unit0));
  2115 
  2116     (*surjective*)
  2117     val surjective_prop =
  2118       let val args = map (fn (c, Free (_, T)) => mk_sel r0 (c, T)) all_named_vars_more
  2119       in r0 === mk_rec args 0 end;
  2120 
  2121     (*cases*)
  2122     val cases_scheme_prop =
  2123       (All (map dest_Free all_vars_more) ((r0 === r_rec0) ==> Trueprop C))
  2124         ==> Trueprop C;
  2125 
  2126     val cases_prop =
  2127       (All (map dest_Free all_vars) ((r_unit0 === r_rec_unit0) ==> Trueprop C))
  2128          ==> Trueprop C;
  2129 
  2130     (*split*)
  2131     val split_meta_prop =
  2132       let val P = Free (Name.variant all_variants "P", rec_schemeT0-->Term.propT) in
  2133         Logic.mk_equals
  2134          (All [dest_Free r0] (P $ r0), All (map dest_Free all_vars_more) (P $ r_rec0))
  2135       end;
  2136 
  2137     val split_object_prop =
  2138       let val ALL = fold_rev (fn (v, T) => fn t => HOLogic.mk_all (v, T, t))
  2139       in ALL [dest_Free r0] (P $ r0) === ALL (map dest_Free all_vars_more) (P $ r_rec0) end;
  2140 
  2141     val split_ex_prop =
  2142       let val EX = fold_rev (fn (v, T) => fn t => HOLogic.mk_exists (v, T, t))
  2143       in EX [dest_Free r0] (P $ r0) === EX (map dest_Free all_vars_more) (P $ r_rec0) end;
  2144 
  2145     (*equality*)
  2146     val equality_prop =
  2147       let
  2148         val s' = Free (rN ^ "'", rec_schemeT0);
  2149         fun mk_sel_eq (c, Free (_, T)) = mk_sel r0 (c, T) === mk_sel s' (c, T);
  2150         val seleqs = map mk_sel_eq all_named_vars_more;
  2151       in All (map dest_Free [r0, s']) (Logic.list_implies (seleqs, r0 === s')) end;
  2152 
  2153 
  2154     (* 3rd stage: thms_thy *)
  2155 
  2156     fun prove stndrd = prove_future_global stndrd defs_thy;
  2157     val prove_standard = prove_future_global true defs_thy;
  2158     val future_forward_prf = future_forward_prf_standard defs_thy;
  2159 
  2160     fun prove_simp stndrd ss simps =
  2161       let val tac = simp_all_tac ss simps
  2162       in fn prop => prove stndrd [] prop (K tac) end;
  2163 
  2164     val ss = get_simpset defs_thy;
  2165 
  2166     fun sel_convs_prf () =
  2167       map (prove_simp false ss (sel_defs @ accessor_thms)) sel_conv_props;
  2168     val sel_convs = timeit_msg "record sel_convs proof:" sel_convs_prf;
  2169     fun sel_convs_standard_prf () = map Drule.export_without_context sel_convs;
  2170     val sel_convs_standard =
  2171       timeit_msg "record sel_convs_standard proof:" sel_convs_standard_prf;
  2172 
  2173     fun upd_convs_prf () =
  2174       map (prove_simp false ss (upd_defs @ updator_thms)) upd_conv_props;
  2175     val upd_convs = timeit_msg "record upd_convs proof:" upd_convs_prf;
  2176     fun upd_convs_standard_prf () = map Drule.export_without_context upd_convs;
  2177     val upd_convs_standard =
  2178       timeit_msg "record upd_convs_standard proof:" upd_convs_standard_prf;
  2179 
  2180     fun get_upd_acc_congs () =
  2181       let
  2182         val symdefs = map symmetric (sel_defs @ upd_defs);
  2183         val fold_ss = HOL_basic_ss addsimps symdefs;
  2184         val ua_congs = map (Drule.export_without_context o simplify fold_ss) upd_acc_cong_assists;
  2185       in (ua_congs RL [updacc_foldE], ua_congs RL [updacc_unfoldE]) end;
  2186     val (fold_congs, unfold_congs) =
  2187       timeit_msg "record upd fold/unfold congs:" get_upd_acc_congs;
  2188 
  2189     val parent_induct = Option.map #induct_scheme (try List.last parents);
  2190 
  2191     fun induct_scheme_prf () =
  2192       prove_standard [] induct_scheme_prop
  2193         (fn _ =>
  2194           EVERY
  2195            [case parent_induct of NONE => all_tac | SOME ind => try_param_tac rN ind 1,
  2196             try_param_tac rN ext_induct 1,
  2197             asm_simp_tac HOL_basic_ss 1]);
  2198     val induct_scheme = timeit_msg "record induct_scheme proof:" induct_scheme_prf;
  2199 
  2200     fun induct_prf () =
  2201       let val (assm, concl) = induct_prop in
  2202         prove_standard [assm] concl (fn {prems, ...} =>
  2203           try_param_tac rN induct_scheme 1
  2204           THEN try_param_tac "more" @{thm unit.induct} 1
  2205           THEN resolve_tac prems 1)
  2206       end;
  2207     val induct = timeit_msg "record induct proof:" induct_prf;
  2208 
  2209     fun cases_scheme_prf () =
  2210       let
  2211         val _ $ (Pvar $ _) = concl_of induct_scheme;
  2212         val ind =
  2213           cterm_instantiate
  2214             [(cterm_of defs_thy Pvar, cterm_of defs_thy
  2215               (lambda w (HOLogic.imp $ HOLogic.mk_eq (r0, w) $ C)))]
  2216             induct_scheme;
  2217         in Object_Logic.rulify (mp OF [ind, refl]) end;
  2218 
  2219     val cases_scheme_prf = future_forward_prf cases_scheme_prf cases_scheme_prop;
  2220     val cases_scheme = timeit_msg "record cases_scheme proof:" cases_scheme_prf;
  2221 
  2222     fun cases_prf () =
  2223       prove_standard [] cases_prop
  2224         (fn _ =>
  2225           try_param_tac rN cases_scheme 1 THEN
  2226           simp_all_tac HOL_basic_ss [unit_all_eq1]);
  2227     val cases = timeit_msg "record cases proof:" cases_prf;
  2228 
  2229     fun surjective_prf () =
  2230       let
  2231         val leaf_ss = get_sel_upd_defs defs_thy addsimps (sel_defs @ (o_assoc :: id_o_apps));
  2232         val init_ss = HOL_basic_ss addsimps ext_defs;
  2233       in
  2234         prove_standard [] surjective_prop
  2235           (fn _ =>
  2236             EVERY
  2237              [rtac surject_assist_idE 1,
  2238               simp_tac init_ss 1,
  2239               REPEAT
  2240                 (Iso_Tuple_Support.iso_tuple_intros_tac 1 ORELSE
  2241                   (rtac surject_assistI 1 THEN simp_tac leaf_ss 1))])
  2242       end;
  2243     val surjective = timeit_msg "record surjective proof:" surjective_prf;
  2244 
  2245     fun split_meta_prf () =
  2246       prove false [] split_meta_prop
  2247         (fn _ =>
  2248           EVERY1
  2249            [rtac equal_intr_rule, Goal.norm_hhf_tac,
  2250             etac meta_allE, atac,
  2251             rtac (prop_subst OF [surjective]),
  2252             REPEAT o etac meta_allE, atac]);
  2253     val split_meta = timeit_msg "record split_meta proof:" split_meta_prf;
  2254     fun split_meta_standardise () = Drule.export_without_context split_meta;
  2255     val split_meta_standard =
  2256       timeit_msg "record split_meta standard:" split_meta_standardise;
  2257 
  2258     fun split_object_prf () =
  2259       let
  2260         val cPI= cterm_of defs_thy (lambda r0 (Trueprop (P $ r0)));
  2261         val _ $ Abs (_, _, P $ _) = fst (Logic.dest_equals (concl_of split_meta_standard));
  2262         val cP = cterm_of defs_thy P;
  2263         val split_meta' = cterm_instantiate [(cP, cPI)] split_meta_standard;
  2264         val (l, r) = HOLogic.dest_eq (HOLogic.dest_Trueprop split_object_prop);
  2265         val cl = cterm_of defs_thy (HOLogic.mk_Trueprop l);
  2266         val cr = cterm_of defs_thy (HOLogic.mk_Trueprop r);
  2267         val thl =
  2268           assume cl                   (*All r. P r*) (* 1 *)
  2269           |> obj_to_meta_all          (*!!r. P r*)
  2270           |> equal_elim split_meta'   (*!!n m more. P (ext n m more)*)
  2271           |> meta_to_obj_all          (*All n m more. P (ext n m more)*) (* 2*)
  2272           |> implies_intr cl          (* 1 ==> 2 *)
  2273         val thr =
  2274           assume cr                             (*All n m more. P (ext n m more)*)
  2275           |> obj_to_meta_all                    (*!!n m more. P (ext n m more)*)
  2276           |> equal_elim (symmetric split_meta') (*!!r. P r*)
  2277           |> meta_to_obj_all                    (*All r. P r*)
  2278           |> implies_intr cr                    (* 2 ==> 1 *)
  2279      in thr COMP (thl COMP iffI) end;
  2280 
  2281 
  2282     val split_object_prf = future_forward_prf split_object_prf split_object_prop;
  2283     val split_object = timeit_msg "record split_object proof:" split_object_prf;
  2284 
  2285 
  2286     fun split_ex_prf () =
  2287       let
  2288         val ss = HOL_basic_ss addsimps [not_ex RS sym, Not_eq_iff];
  2289         val P_nm = fst (dest_Free P);
  2290         val not_P = cterm_of defs_thy (lambda r0 (HOLogic.mk_not (P $ r0)));
  2291         val so' = named_cterm_instantiate ([(P_nm, not_P)]) split_object;
  2292         val so'' = simplify ss so';
  2293       in
  2294         prove_standard [] split_ex_prop (fn _ => resolve_tac [so''] 1)
  2295       end;
  2296     val split_ex = timeit_msg "record split_ex proof:" split_ex_prf;
  2297 
  2298     fun equality_tac thms =
  2299       let
  2300         val s' :: s :: eqs = rev thms;
  2301         val ss' = ss addsimps (s' :: s :: sel_convs_standard);
  2302         val eqs' = map (simplify ss') eqs;
  2303       in simp_tac (HOL_basic_ss addsimps (s' :: s :: eqs')) 1 end;
  2304 
  2305     fun equality_prf () =
  2306       prove_standard [] equality_prop (fn {context, ...} =>
  2307         fn st =>
  2308           let val [s, s'] = map #1 (rev (Tactic.innermost_params 1 st)) in
  2309             st |> (res_inst_tac context [((rN, 0), s)] cases_scheme 1 THEN
  2310               res_inst_tac context [((rN, 0), s')] cases_scheme 1 THEN
  2311               Subgoal.FOCUS (fn {prems, ...} => equality_tac prems) context 1)
  2312              (*simp_all_tac ss (sel_convs) would also work but is less efficient*)
  2313           end);
  2314     val equality = timeit_msg "record equality proof:" equality_prf;
  2315 
  2316     val ((([sel_convs', upd_convs', sel_defs', upd_defs',
  2317             fold_congs', unfold_congs',
  2318           splits' as [split_meta', split_object', split_ex'], derived_defs'],
  2319           [surjective', equality']),
  2320           [induct_scheme', induct', cases_scheme', cases']), thms_thy) =
  2321       defs_thy
  2322       |> (PureThy.add_thmss o map (Thm.no_attributes o apfst Binding.name))
  2323          [("select_convs", sel_convs_standard),
  2324           ("update_convs", upd_convs_standard),
  2325           ("select_defs", sel_defs),
  2326           ("update_defs", upd_defs),
  2327           ("fold_congs", fold_congs),
  2328           ("unfold_congs", unfold_congs),
  2329           ("splits", [split_meta_standard, split_object, split_ex]),
  2330           ("defs", derived_defs)]
  2331       ||>> (PureThy.add_thms o map (Thm.no_attributes o apfst Binding.name))
  2332           [("surjective", surjective),
  2333            ("equality", equality)]
  2334       ||>> (PureThy.add_thms o (map o apfst o apfst) Binding.name)
  2335         [(("induct_scheme", induct_scheme), induct_type_global (suffix schemeN name)),
  2336          (("induct", induct), induct_type_global name),
  2337          (("cases_scheme", cases_scheme), cases_type_global (suffix schemeN name)),
  2338          (("cases", cases), cases_type_global name)];
  2339 
  2340     val sel_upd_simps = sel_convs' @ upd_convs';
  2341     val sel_upd_defs = sel_defs' @ upd_defs';
  2342     val iffs = [ext_inject]
  2343     val depth = parent_len + 1;
  2344 
  2345     val ([simps', iffs'], thms_thy') =
  2346       thms_thy
  2347       |> PureThy.add_thmss
  2348           [((Binding.name "simps", sel_upd_simps), [Simplifier.simp_add]),
  2349            ((Binding.name "iffs", iffs), [iff_add])];
  2350 
  2351     val info =
  2352       make_record_info args parent fields extension
  2353         ext_induct ext_inject ext_surjective ext_split ext_def
  2354         sel_convs' upd_convs' sel_defs' upd_defs' fold_congs' unfold_congs' splits' derived_defs'
  2355         surjective' equality' induct_scheme' induct' cases_scheme' cases' simps' iffs';
  2356 
  2357     val final_thy =
  2358       thms_thy'
  2359       |> put_record name info
  2360       |> put_sel_upd names full_moreN depth sel_upd_simps sel_upd_defs (fold_congs', unfold_congs')
  2361       |> add_record_equalities extension_id equality'
  2362       |> add_extinjects ext_inject
  2363       |> add_extsplit extension_name ext_split
  2364       |> add_record_splits extension_id (split_meta', split_object', split_ex', induct_scheme')
  2365       |> add_extfields extension_name (fields @ [(full_moreN, moreT)])
  2366       |> add_fieldext (extension_name, snd extension) (names @ [full_moreN])
  2367       |> Sign.restore_naming thy;
  2368 
  2369   in final_thy end;
  2370 
  2371 
  2372 (* add_record *)
  2373 
  2374 (*We do all preparations and error checks here, deferring the real
  2375   work to record_definition.*)
  2376 fun gen_add_record prep_typ prep_raw_parent quiet_mode
  2377     (params, binding) raw_parent raw_fields thy =
  2378   let
  2379     val _ = Theory.requires thy "Record" "record definitions";
  2380     val _ =
  2381       if quiet_mode then ()
  2382       else writeln ("Defining record " ^ quote (Binding.str_of binding) ^ " ...");
  2383 
  2384     val ctxt = ProofContext.init thy;
  2385 
  2386 
  2387     (* parents *)
  2388 
  2389     fun prep_inst T = fst (cert_typ ctxt T []);
  2390 
  2391     val parent = Option.map (apfst (map prep_inst) o prep_raw_parent ctxt) raw_parent
  2392       handle ERROR msg => cat_error msg ("The error(s) above in parent record specification");
  2393     val parents = add_parents thy parent [];
  2394 
  2395     val init_env =
  2396       (case parent of
  2397         NONE => []
  2398       | SOME (types, _) => fold Term.add_tfreesT types []);
  2399 
  2400 
  2401     (* fields *)
  2402 
  2403     fun prep_field (x, raw_T, mx) env =
  2404       let
  2405         val (T, env') =
  2406           prep_typ ctxt raw_T env handle ERROR msg =>
  2407             cat_error msg ("The error(s) above occured in record field " ^ quote (Binding.str_of x));
  2408       in ((x, T, mx), env') end;
  2409 
  2410     val (bfields, envir) = fold_map prep_field raw_fields init_env;
  2411     val envir_names = map fst envir;
  2412 
  2413 
  2414     (* args *)
  2415 
  2416     val defaultS = Sign.defaultS thy;
  2417     val args = map (fn x => (x, AList.lookup (op =) envir x |> the_default defaultS)) params;
  2418 
  2419 
  2420     (* errors *)
  2421 
  2422     val name = Sign.full_name thy binding;
  2423     val err_dup_record =
  2424       if is_none (get_record thy name) then []
  2425       else ["Duplicate definition of record " ^ quote name];
  2426 
  2427     val err_dup_parms =
  2428       (case duplicates (op =) params of
  2429         [] => []
  2430       | dups => ["Duplicate parameter(s) " ^ commas dups]);
  2431 
  2432     val err_extra_frees =
  2433       (case subtract (op =) params envir_names of
  2434         [] => []
  2435       | extras => ["Extra free type variable(s) " ^ commas extras]);
  2436 
  2437     val err_no_fields = if null bfields then ["No fields present"] else [];
  2438 
  2439     val err_dup_fields =
  2440       (case duplicates Binding.eq_name (map #1 bfields) of
  2441         [] => []
  2442       | dups => ["Duplicate field(s) " ^ commas_quote (map Binding.str_of dups)]);
  2443 
  2444     val err_bad_fields =
  2445       if forall (not_equal moreN o Binding.name_of o #1) bfields then []
  2446       else ["Illegal field name " ^ quote moreN];
  2447 
  2448     val err_dup_sorts =
  2449       (case duplicates (op =) envir_names of
  2450         [] => []
  2451       | dups => ["Inconsistent sort constraints for " ^ commas dups]);
  2452 
  2453     val errs =
  2454       err_dup_record @ err_dup_parms @ err_extra_frees @ err_no_fields @
  2455       err_dup_fields @ err_bad_fields @ err_dup_sorts;
  2456 
  2457     val _ = if null errs then () else error (cat_lines errs);
  2458   in
  2459     thy |> record_definition (args, binding) parent parents bfields
  2460   end
  2461   handle ERROR msg => cat_error msg ("Failed to define record " ^ quote (Binding.str_of binding));
  2462 
  2463 val add_record = gen_add_record cert_typ (K I);
  2464 val add_record_cmd = gen_add_record read_typ read_raw_parent;
  2465 
  2466 
  2467 (* setup theory *)
  2468 
  2469 val setup =
  2470   Sign.add_trfuns ([], parse_translation, [], []) #>
  2471   Sign.add_advanced_trfuns ([], advanced_parse_translation, [], []) #>
  2472   Simplifier.map_simpset (fn ss =>
  2473     ss addsimprocs [record_simproc, record_upd_simproc, record_eq_simproc]);
  2474 
  2475 
  2476 (* outer syntax *)
  2477 
  2478 local structure P = OuterParse and K = OuterKeyword in
  2479 
  2480 val _ =
  2481   OuterSyntax.command "record" "define extensible record" K.thy_decl
  2482     (P.type_args -- P.binding --
  2483       (P.$$$ "=" |-- Scan.option (P.typ --| P.$$$ "+") -- Scan.repeat1 P.const_binding)
  2484     >> (fn (x, (y, z)) => Toplevel.theory (add_record_cmd false x y z)));
  2485 
  2486 end;
  2487 
  2488 end;
  2489 
  2490 structure Basic_Record: BASIC_RECORD = Record;
  2491 open Basic_Record;