src/HOL/Auth/NS_Shared.ML
author paulson
Fri, 11 Jul 1997 13:26:15 +0200
changeset 3512 9dcb4daa15e8
parent 3466 30791e5a69c4
child 3516 470626799511
permissions -rw-r--r--
Moving common declarations and proofs from theories "Shared" and "Public" to "Event". NB the original "Event" theory was later renamed "Shared". Addition of the Notes constructor to datatype "event".

(*  Title:      HOL/Auth/NS_Shared
    ID:         $Id$
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1996  University of Cambridge

Inductive relation "ns_shared" for Needham-Schroeder Shared-Key protocol.

From page 247 of
  Burrows, Abadi and Needham.  A Logic of Authentication.
  Proc. Royal Soc. 426 (1989)
*)

open NS_Shared;

proof_timing:=true;
HOL_quantifiers := false;

(*Replacing the variable by a constant improves search speed by 50%!*)
val Says_imp_sees_Spy' = read_instantiate [("lost","lost")] Says_imp_sees_Spy;


(*A "possibility property": there are traces that reach the end*)
goal thy 
 "!!A B. [| A ~= B; A ~= Server; B ~= Server |]       \
\        ==> EX N K. EX evs: ns_shared lost.          \
\               Says A B (Crypt K {|Nonce N, Nonce N|}) : set evs";
by (REPEAT (resolve_tac [exI,bexI] 1));
by (rtac (ns_shared.Nil RS ns_shared.NS1 RS ns_shared.NS2 RS 
          ns_shared.NS3 RS ns_shared.NS4 RS ns_shared.NS5) 2);
by possibility_tac;
result();


(**** Inductive proofs about ns_shared ****)

(*Monotonicity*)
goal thy "!!evs. lost' <= lost ==> ns_shared lost' <= ns_shared lost";
by (rtac subsetI 1);
by (etac ns_shared.induct 1);
by (REPEAT_FIRST
    (blast_tac (!claset addIs (impOfSubs(sees_mono RS analz_mono RS synth_mono)
                              :: ns_shared.intrs))));
qed "ns_shared_mono";


(*Nobody sends themselves messages*)
goal thy "!!evs. evs : ns_shared lost ==> ALL A X. Says A A X ~: set evs";
by (etac ns_shared.induct 1);
by (Auto_tac());
qed_spec_mp "not_Says_to_self";
Addsimps [not_Says_to_self];
AddSEs   [not_Says_to_self RSN (2, rev_notE)];

(*For reasoning about the encrypted portion of message NS3*)
goal thy "!!evs. Says S A (Crypt KA {|N, B, K, X|}) : set evs \
\                ==> X : parts (sees lost Spy evs)";
by (blast_tac (!claset addSEs sees_Spy_partsEs) 1);
qed "NS3_msg_in_parts_sees_Spy";
                              
goal thy
    "!!evs. Says Server A (Crypt (shrK A) {|NA, B, K, X|}) : set evs \
\           ==> K : parts (sees lost Spy evs)";
by (blast_tac (!claset addSEs sees_Spy_partsEs) 1);
qed "Oops_parts_sees_Spy";

(*For proving the easier theorems about X ~: parts (sees lost Spy evs).
  We instantiate the variable to "lost" since leaving it as a Var would
  interfere with simplification.*)
val parts_induct_tac = 
    etac ns_shared.induct 1  THEN 
    dres_inst_tac [("lost","lost")] NS3_msg_in_parts_sees_Spy 5  THEN
    forw_inst_tac [("lost","lost")] Oops_parts_sees_Spy 8  THEN
    prove_simple_subgoals_tac 1;


(** Theorems of the form X ~: parts (sees lost Spy evs) imply that NOBODY
    sends messages containing X! **)

(*Spy never sees another agent's shared key! (unless it's lost at start)*)
goal thy 
 "!!evs. evs : ns_shared lost \
\        ==> (Key (shrK A) : parts (sees lost Spy evs)) = (A : lost)";
by parts_induct_tac;
by (Fake_parts_insert_tac 1);
by (Blast_tac 1);
qed "Spy_see_shrK";
Addsimps [Spy_see_shrK];

goal thy 
 "!!evs. evs : ns_shared lost \
\        ==> (Key (shrK A) : analz (sees lost Spy evs)) = (A : lost)";
by (auto_tac(!claset addDs [impOfSubs analz_subset_parts], !simpset));
qed "Spy_analz_shrK";
Addsimps [Spy_analz_shrK];

goal thy  "!!A. [| Key (shrK A) : parts (sees lost Spy evs);       \
\                  evs : ns_shared lost |] ==> A:lost";
by (blast_tac (!claset addDs [Spy_see_shrK]) 1);
qed "Spy_see_shrK_D";

bind_thm ("Spy_analz_shrK_D", analz_subset_parts RS subsetD RS Spy_see_shrK_D);
AddSDs [Spy_see_shrK_D, Spy_analz_shrK_D];


(*Nobody can have used non-existent keys!*)
goal thy "!!evs. evs : ns_shared lost ==>      \
\         Key K ~: used evs --> K ~: keysFor (parts (sees lost Spy evs))";
by parts_induct_tac;
(*Fake*)
by (best_tac
      (!claset addIs [impOfSubs analz_subset_parts]
               addDs [impOfSubs (analz_subset_parts RS keysFor_mono),
                      impOfSubs (parts_insert_subset_Un RS keysFor_mono)]
               addss (!simpset)) 1);
(*NS2, NS4, NS5*)
by (ALLGOALS (blast_tac (!claset addSEs sees_Spy_partsEs)));
qed_spec_mp "new_keys_not_used";

bind_thm ("new_keys_not_analzd",
          [analz_subset_parts RS keysFor_mono,
           new_keys_not_used] MRS contra_subsetD);

Addsimps [new_keys_not_used, new_keys_not_analzd];


(** Lemmas concerning the form of items passed in messages **)

(*Describes the form of K, X and K' when the Server sends this message.*)
goal thy 
 "!!evs. [| Says Server A (Crypt K' {|N, Agent B, Key K, X|}) \
\             : set evs;                                      \
\           evs : ns_shared lost |]                           \
\        ==> K ~: range shrK &                                \
\            X = (Crypt (shrK B) {|Key K, Agent A|}) &        \
\            K' = shrK A";
by (etac rev_mp 1);
by (etac ns_shared.induct 1);
by (Auto_tac());
qed "Says_Server_message_form";


(*If the encrypted message appears then it originated with the Server*)
goal thy
 "!!evs. [| Crypt (shrK A) {|NA, Agent B, Key K, X|}                   \
\            : parts (sees lost Spy evs);                              \
\           A ~: lost;  evs : ns_shared lost |]                        \
\         ==> X = (Crypt (shrK B) {|Key K, Agent A|}) &                \
\             Says Server A                                            \
\              (Crypt (shrK A) {|NA, Agent B, Key K,                   \
\                                Crypt (shrK B) {|Key K, Agent A|}|})  \
\             : set evs";
by (etac rev_mp 1);
by parts_induct_tac;
by (Fake_parts_insert_tac 1);
by (Auto_tac());
qed "A_trusts_NS2";


(*EITHER describes the form of X when the following message is sent, 
  OR     reduces it to the Fake case.
  Use Says_Server_message_form if applicable.*)
goal thy 
 "!!evs. [| Says S A (Crypt (shrK A) {|Nonce NA, Agent B, Key K, X|})      \
\            : set evs;          evs : ns_shared lost |]                   \
\        ==> (K ~: range shrK & X = (Crypt (shrK B) {|Key K, Agent A|}))   \
\            | X : analz (sees lost Spy evs)";
by (case_tac "A : lost" 1);
by (fast_tac (!claset addSDs [Says_imp_sees_Spy' RS analz.Inj]
                      addss (!simpset)) 1);
by (forward_tac [Says_imp_sees_Spy RS parts.Inj] 1);
by (blast_tac (!claset addEs  partsEs
                      addSDs [A_trusts_NS2, Says_Server_message_form]) 1);
qed "Says_S_message_form";


(*For proofs involving analz.  We again instantiate the variable to "lost".*)
val analz_sees_tac = 
    forw_inst_tac [("lost","lost")] Says_Server_message_form 8 THEN
    forw_inst_tac [("lost","lost")] Says_S_message_form 5 THEN 
    REPEAT_FIRST (eresolve_tac [asm_rl, conjE, disjE] ORELSE' hyp_subst_tac);


(****
 The following is to prove theorems of the form

  Key K : analz (insert (Key KAB) (sees lost Spy evs)) ==>
  Key K : analz (sees lost Spy evs)

 A more general formula must be proved inductively.

****)


(*NOT useful in this form, but it says that session keys are not used
  to encrypt messages containing other keys, in the actual protocol.
  We require that agents should behave like this subsequently also.*)
goal thy 
 "!!evs. [| evs : ns_shared lost;  Kab ~: range shrK |] ==>  \
\           (Crypt KAB X) : parts (sees lost Spy evs) &      \
\           Key K : parts {X} --> Key K : parts (sees lost Spy evs)";
by parts_induct_tac;
(*Deals with Faked messages*)
by (blast_tac (!claset addSEs partsEs
                       addDs [impOfSubs parts_insert_subset_Un]) 1);
(*Base, NS4 and NS5*)
by (Auto_tac());
result();


(** Session keys are not used to encrypt other session keys **)

(*The equality makes the induction hypothesis easier to apply*)
goal thy  
 "!!evs. evs : ns_shared lost ==>                                \
\  ALL K KK. KK <= Compl (range shrK) -->                        \
\            (Key K : analz (Key``KK Un (sees lost Spy evs))) =  \
\            (K : KK | Key K : analz (sees lost Spy evs))";
by (etac ns_shared.induct 1);
by analz_sees_tac;
by (REPEAT_FIRST (resolve_tac [allI, impI]));
by (REPEAT_FIRST (rtac analz_image_freshK_lemma ));
(*Takes 24 secs*)
by (ALLGOALS (asm_simp_tac analz_image_freshK_ss));
(*Fake*) 
by (spy_analz_tac 2);
(*Base*)
by (Blast_tac 1);
qed_spec_mp "analz_image_freshK";


goal thy
 "!!evs. [| evs : ns_shared lost;  KAB ~: range shrK |] ==>     \
\        Key K : analz (insert (Key KAB) (sees lost Spy evs)) = \
\        (K = KAB | Key K : analz (sees lost Spy evs))";
by (asm_simp_tac (analz_image_freshK_ss addsimps [analz_image_freshK]) 1);
qed "analz_insert_freshK";


(** The session key K uniquely identifies the message **)

goal thy 
 "!!evs. evs : ns_shared lost ==>                                        \
\      EX A' NA' B' X'. ALL A NA B X.                                    \
\       Says Server A (Crypt (shrK A) {|NA, Agent B, Key K, X|})         \
\       : set evs -->         A=A' & NA=NA' & B=B' & X=X'";
by (etac ns_shared.induct 1);
by (ALLGOALS (asm_simp_tac (!simpset addsimps [all_conj_distrib])));
by (Step_tac 1);
(*NS3*)
by (ex_strip_tac 2);
by (Blast_tac 2);
(*NS2: it can't be a new key*)
by (expand_case_tac "K = ?y" 1);
by (REPEAT (ares_tac [refl,exI,impI,conjI] 2));
by (blast_tac (!claset delrules [conjI]    (*prevent split-up into 4 subgoals*)
                      addSEs sees_Spy_partsEs) 1);
val lemma = result();

(*In messages of this form, the session key uniquely identifies the rest*)
goal thy 
 "!!evs. [| Says Server A                                    \
\             (Crypt (shrK A) {|NA, Agent B, Key K, X|})     \
\                  : set evs;                                \ 
\           Says Server A'                                   \
\             (Crypt (shrK A') {|NA', Agent B', Key K, X'|}) \
\                  : set evs;                                \
\           evs : ns_shared lost |] ==> A=A' & NA=NA' & B=B' & X = X'";
by (prove_unique_tac lemma 1);
qed "unique_session_keys";


(** Crucial secrecy property: Spy does not see the keys sent in msg NS2 **)

goal thy 
 "!!evs. [| A ~: lost;  B ~: lost;  evs : ns_shared lost |]            \
\        ==> Says Server A                                             \
\              (Crypt (shrK A) {|NA, Agent B, Key K,                   \
\                                Crypt (shrK B) {|Key K, Agent A|}|})  \
\             : set evs -->                                            \
\        (ALL NB. Says A Spy {|NA, NB, Key K|} ~: set evs) -->         \
\        Key K ~: analz (sees lost Spy evs)";
by (etac ns_shared.induct 1);
by analz_sees_tac;
by (ALLGOALS 
    (asm_simp_tac 
     (!simpset addsimps ([analz_insert_eq, not_parts_not_analz, 
			  analz_insert_freshK] @ pushes)
               setloop split_tac [expand_if])));
(*Oops*)
by (blast_tac (!claset addDs [unique_session_keys]) 5);
(*NS4*) 
by (Blast_tac 4);
(*NS2*)
by (blast_tac (!claset addSEs sees_Spy_partsEs
                       addIs [parts_insertI, impOfSubs analz_subset_parts]) 2);
(*Fake*) 
by (spy_analz_tac 1);
(*NS3*) (**LEVEL 6 **)
by (step_tac (!claset delrules [impCE]) 1);
by (forward_tac [Says_imp_sees_Spy' RS parts.Inj RS A_trusts_NS2] 1);
by (assume_tac 2);
by (blast_tac (!claset addDs [Says_imp_sees_Spy RS analz.Inj RS
			      Crypt_Spy_analz_lost]) 1);
by (blast_tac (!claset addDs [unique_session_keys]) 1);
val lemma = result() RS mp RS mp RSN(2,rev_notE);


(*Final version: Server's message in the most abstract form*)
goal thy 
 "!!evs. [| Says Server A                                               \
\            (Crypt K' {|NA, Agent B, Key K, X|}) : set evs;            \
\           (ALL NB. Says A Spy {|NA, NB, Key K|} ~: set evs);          \
\           A ~: lost;  B ~: lost;  evs : ns_shared lost                \
\        |] ==> Key K ~: analz (sees lost Spy evs)";
by (forward_tac [Says_Server_message_form] 1 THEN assume_tac 1);
by (blast_tac (!claset addSDs [lemma]) 1);
qed "Spy_not_see_encrypted_key";


goal thy 
 "!!evs. [| C ~: {A,B,Server};                                          \
\           Says Server A                                               \
\            (Crypt K' {|NA, Agent B, Key K, X|}) : set evs;            \
\           (ALL NB. Says A Spy {|NA, NB, Key K|} ~: set evs);          \
\           A ~: lost;  B ~: lost;  evs : ns_shared lost |]             \
\        ==> Key K ~: analz (sees lost C evs)";
by (rtac (subset_insertI RS sees_mono RS analz_mono RS contra_subsetD) 1);
by (rtac (sees_lost_agent_subset_sees_Spy RS analz_mono RS contra_subsetD) 1);
by (FIRSTGOAL (rtac Spy_not_see_encrypted_key));
by (REPEAT_FIRST (blast_tac (!claset addIs [ns_shared_mono RS subsetD])));
qed "Agent_not_see_encrypted_key";



(**** Guarantees available at various stages of protocol ***)

A_trusts_NS2 RS conjunct2 RS Spy_not_see_encrypted_key;


(*If the encrypted message appears then it originated with the Server*)
goal thy
 "!!evs. [| Crypt (shrK B) {|Key K, Agent A|} : parts (sees lost Spy evs); \
\           B ~: lost;  evs : ns_shared lost |]                        \
\         ==> EX NA. Says Server A                                     \
\              (Crypt (shrK A) {|NA, Agent B, Key K,                   \
\                                Crypt (shrK B) {|Key K, Agent A|}|})  \
\             : set evs";
by (etac rev_mp 1);
by parts_induct_tac;
by (Fake_parts_insert_tac 1);
(*Fake case*)
by (ALLGOALS Blast_tac);
qed "B_trusts_NS3";


goal thy
 "!!evs. [| B ~: lost;  evs : ns_shared lost |]                        \
\        ==> Key K ~: analz (sees lost Spy evs) -->                    \
\            Says Server A (Crypt (shrK A) {|NA, Agent B, Key K, X|})  \
\            : set evs -->                                             \
\            Crypt K (Nonce NB) : parts (sees lost Spy evs) -->        \
\            Says B A (Crypt K (Nonce NB)) : set evs";
by (etac ns_shared.induct 1);
by (forward_tac [Says_S_message_form] 5 THEN assume_tac 5);     
by (dres_inst_tac [("lost","lost")] NS3_msg_in_parts_sees_Spy 5);
by (forw_inst_tac [("lost","lost")] Oops_parts_sees_Spy 8);
by (TRYALL (rtac impI));
by (REPEAT_FIRST
    (dtac (sees_subset_sees_Says RS analz_mono RS contra_subsetD)));
by (ALLGOALS (asm_simp_tac (!simpset addsimps [all_conj_distrib])));
(**LEVEL 7**)
by (blast_tac (!claset addSDs [Crypt_Fake_parts_insert]
                       addDs [impOfSubs analz_subset_parts]) 1);
by (Blast_tac 2);
by (REPEAT_FIRST (rtac impI ORELSE' etac conjE ORELSE' hyp_subst_tac));
(*Subgoal 1: contradiction from the assumptions  
  Key K ~: used evsa  and Crypt K (Nonce NB) : parts (sees lost Spy evsa) *)
by (dtac Crypt_imp_invKey_keysFor 1);
(**LEVEL 11**)
by (Asm_full_simp_tac 1);
by (rtac disjI1 1);
by (thin_tac "?PP-->?QQ" 1);
by (case_tac "Ba : lost" 1);
by (blast_tac (!claset addDs [Says_imp_sees_Spy' RS parts.Inj RS B_trusts_NS3, 
			      unique_session_keys]) 2);
by (blast_tac (!claset addDs [Says_imp_sees_Spy RS analz.Inj RS
			      Crypt_Spy_analz_lost]) 1);
val lemma = result();

goal thy
 "!!evs. [| Crypt K (Nonce NB) : parts (sees lost Spy evs);           \
\           Says Server A (Crypt (shrK A) {|NA, Agent B, Key K, X|})  \
\           : set evs;                                                \
\           ALL NB. Says A Spy {|NA, NB, Key K|} ~: set evs;          \
\           A ~: lost;  B ~: lost;  evs : ns_shared lost |]           \
\        ==> Says B A (Crypt K (Nonce NB)) : set evs";
by (blast_tac (!claset addSIs [lemma RS mp RS mp RS mp]
                       addSEs [Spy_not_see_encrypted_key RSN (2,rev_notE)]) 1);
qed "A_trusts_NS4";