src/HOL/Tools/record_package.ML
author paulson
Fri Nov 24 16:38:42 2006 +0100 (2006-11-24)
changeset 21513 9e9fff87dc6c
parent 21363 a12c0bcd9b2a
child 21546 268b6bed0cc8
permissions -rw-r--r--
Conversion of "equal" to "=" for TSTP format; big tidy-up
     1 (*  Title:      HOL/Tools/record_package.ML
     2     ID:         $Id$
     3     Author:     Wolfgang Naraschewski, Norbert Schirmer and Markus Wenzel, TU Muenchen
     4 
     5 Extensible records with structural subtyping in HOL.
     6 *)
     7 
     8 
     9 signature BASIC_RECORD_PACKAGE =
    10 sig
    11   val record_simproc: simproc
    12   val record_eq_simproc: simproc
    13   val record_upd_simproc: simproc
    14   val record_split_simproc: (term -> int) -> simproc
    15   val record_ex_sel_eq_simproc: simproc
    16   val record_split_tac: int -> tactic
    17   val record_split_simp_tac: thm list -> (term -> int) -> int -> tactic
    18   val record_split_name: string
    19   val record_split_wrapper: string * wrapper
    20   val print_record_type_abbr: bool ref
    21   val print_record_type_as_fields: bool ref
    22 end;
    23 
    24 signature RECORD_PACKAGE =
    25 sig
    26   include BASIC_RECORD_PACKAGE
    27   val quiet_mode: bool ref
    28   val record_quick_and_dirty_sensitive: bool ref
    29   val updateN: string
    30   val updN: string
    31   val ext_typeN: string
    32   val extN: string
    33   val makeN: string
    34   val moreN: string
    35   val ext_dest: string
    36   val KN:string
    37 
    38   val last_extT: typ -> (string * typ list) option
    39   val dest_recTs : typ -> (string * typ list) list
    40   val get_extT_fields:  theory -> typ -> ((string * typ) list * (string * typ))
    41   val get_recT_fields:  theory -> typ -> ((string * typ) list * (string * typ))
    42   val get_extension: theory -> Symtab.key -> (string * typ list) option
    43   val get_extinjects: theory -> thm list
    44   val get_simpset: theory -> simpset
    45   val print_records: theory -> unit
    46   val add_record: string list * string -> string option -> (string * string * mixfix) list
    47     -> theory -> theory
    48   val add_record_i: string list * string -> (typ list * string) option
    49     -> (string * typ * mixfix) list -> theory -> theory
    50   val setup: theory -> theory
    51 end;
    52 
    53 
    54 structure RecordPackage: RECORD_PACKAGE =
    55 struct
    56 
    57 val rec_UNIV_I = thm "rec_UNIV_I";
    58 val rec_True_simp = thm "rec_True_simp";
    59 val Pair_eq = thm "Product_Type.Pair_eq";
    60 val atomize_all = thm "HOL.atomize_all";
    61 val atomize_imp = thm "HOL.atomize_imp";
    62 val meta_allE = thm "Pure.meta_allE";
    63 val prop_subst = thm "prop_subst";
    64 val Pair_sel_convs = [fst_conv,snd_conv];
    65 val K_record_apply = thm "Record.K_record_apply";
    66 val K_comp_convs = [o_apply,K_record_apply]
    67 
    68 (** name components **)
    69 
    70 val rN = "r";
    71 val wN = "w";
    72 val moreN = "more";
    73 val schemeN = "_scheme";
    74 val ext_typeN = "_ext_type";
    75 val extN ="_ext";
    76 val casesN = "_cases";
    77 val ext_dest = "_sel";
    78 val updateN = "_update";
    79 val updN = "_upd";
    80 val makeN = "make";
    81 val fields_selN = "fields";
    82 val extendN = "extend";
    83 val truncateN = "truncate";
    84 val KN = "Record.K_record";
    85 
    86 (*see typedef_package.ML*)
    87 val RepN = "Rep_";
    88 val AbsN = "Abs_";
    89 
    90 (*** utilities ***)
    91 
    92 fun but_last xs = fst (split_last xs);
    93 
    94 fun varifyT midx =
    95   let fun varify (a, S) = TVar ((a, midx + 1), S);
    96   in map_type_tfree varify end;
    97 
    98 fun the_plist (SOME (a,b)) = [a,b]
    99   | the_plist NONE = raise Option;
   100 
   101 fun domain_type' T =
   102     domain_type T handle Match => T;
   103 
   104 fun range_type' T =
   105     range_type T handle Match => T;
   106 
   107 (* messages *)
   108 
   109 val quiet_mode = ref false;
   110 fun message s = if ! quiet_mode then () else writeln s;
   111 
   112 fun trace_thm str thm =
   113     tracing (str ^ (Pretty.string_of (Display.pretty_thm thm)));
   114 
   115 fun trace_thms str thms =
   116     (tracing str; map (trace_thm "") thms);
   117 
   118 fun trace_term str t =
   119     tracing (str ^ (Display.raw_string_of_term t));
   120 
   121 (* timing *)
   122 
   123 fun timeit_msg s x = if !timing then (warning s; timeit x) else x ();
   124 fun timing_msg s = if !timing then warning s else ();
   125 
   126 (* syntax *)
   127 
   128 fun prune n xs = Library.drop (n, xs);
   129 fun prefix_base s = NameSpace.map_base (fn bname => s ^ bname);
   130 
   131 val Trueprop = HOLogic.mk_Trueprop;
   132 fun All xs t = Term.list_all_free (xs, t);
   133 
   134 infix 9 $$;
   135 infix 0 :== ===;
   136 infixr 0 ==>;
   137 
   138 val (op $$) = Term.list_comb;
   139 val (op :==) = Logic.mk_defpair;
   140 val (op ===) = Trueprop o HOLogic.mk_eq;
   141 val (op ==>) = Logic.mk_implies;
   142 
   143 (* morphisms *)
   144 
   145 fun mk_RepN name = suffix ext_typeN (prefix_base RepN name);
   146 fun mk_AbsN name = suffix ext_typeN (prefix_base AbsN name);
   147 
   148 fun mk_Rep name repT absT  =
   149   Const (suffix ext_typeN (prefix_base RepN name),absT --> repT);
   150 
   151 fun mk_Abs name repT absT =
   152   Const (mk_AbsN name,repT --> absT);
   153 
   154 (* constructor *)
   155 
   156 fun mk_extC (name,T) Ts  = (suffix extN name, Ts ---> T);
   157 
   158 fun mk_ext (name,T) ts =
   159   let val Ts = map fastype_of ts
   160   in list_comb (Const (mk_extC (name,T) Ts),ts) end;
   161 
   162 (* cases *)
   163 
   164 fun mk_casesC (name,T,vT) Ts = (suffix casesN name, (Ts ---> vT) --> T --> vT)
   165 
   166 fun mk_cases (name,T,vT) f =
   167   let val Ts = binder_types (fastype_of f)
   168   in Const (mk_casesC (name,T,vT) Ts) $ f end;
   169 
   170 (* selector *)
   171 
   172 fun mk_selC sT (c,T) = (c,sT --> T);
   173 
   174 fun mk_sel s (c,T) =
   175   let val sT = fastype_of s
   176   in Const (mk_selC sT (c,T)) $ s end;
   177 
   178 (* updates *)
   179 
   180 fun mk_updC sfx sT (c,T) = (suffix sfx c, (T --> T) --> sT --> sT);
   181 
   182 fun mk_upd' sfx c v sT =
   183   let val vT = domain_type (fastype_of v);
   184   in Const (mk_updC sfx sT (c, vT)) $ v  end;
   185 
   186 fun mk_upd sfx c v s = mk_upd' sfx c v (fastype_of s) $ s
   187 
   188 (* types *)
   189 
   190 fun dest_recT (typ as Type (c_ext_type, Ts as (T::_))) =
   191       (case try (unsuffix ext_typeN) c_ext_type of
   192         NONE => raise TYPE ("RecordPackage.dest_recT", [typ], [])
   193       | SOME c => ((c, Ts), List.last Ts))
   194   | dest_recT typ = raise TYPE ("RecordPackage.dest_recT", [typ], []);
   195 
   196 fun is_recT T =
   197   (case try dest_recT T of NONE => false | SOME _ => true);
   198 
   199 fun dest_recTs T =
   200   let val ((c, Ts), U) = dest_recT T
   201   in (c, Ts) :: dest_recTs U
   202   end handle TYPE _ => [];
   203 
   204 fun last_extT T =
   205   let val ((c, Ts), U) = dest_recT T
   206   in (case last_extT U of
   207         NONE => SOME (c,Ts)
   208       | SOME l => SOME l)
   209   end handle TYPE _ => NONE
   210 
   211 fun rec_id i T =
   212   let val rTs = dest_recTs T
   213       val rTs' = if i < 0 then rTs else Library.take (i,rTs)
   214   in Library.foldl (fn (s,(c,T)) => s ^ c) ("",rTs') end;
   215 
   216 (*** extend theory by record definition ***)
   217 
   218 (** record info **)
   219 
   220 (* type record_info and parent_info  *)
   221 
   222 type record_info =
   223  {args: (string * sort) list,
   224   parent: (typ list * string) option,
   225   fields: (string * typ) list,
   226   extension: (string * typ list),
   227   induct: thm
   228  };
   229 
   230 fun make_record_info args parent fields extension induct =
   231  {args = args, parent = parent, fields = fields, extension = extension,
   232   induct = induct}: record_info;
   233 
   234 
   235 type parent_info =
   236  {name: string,
   237   fields: (string * typ) list,
   238   extension: (string * typ list),
   239   induct: thm
   240 };
   241 
   242 fun make_parent_info name fields extension induct =
   243  {name = name, fields = fields, extension = extension, induct = induct}: parent_info;
   244 
   245 (* data kind 'HOL/record' *)
   246 
   247 type record_data =
   248  {records: record_info Symtab.table,
   249   sel_upd:
   250    {selectors: unit Symtab.table,
   251     updates: string Symtab.table,
   252     simpset: Simplifier.simpset},
   253   equalities: thm Symtab.table,
   254   extinjects: thm list,
   255   extsplit: thm Symtab.table, (* maps extension name to split rule *)
   256   splits: (thm*thm*thm*thm) Symtab.table,    (* !!,!,EX - split-equalities,induct rule *)
   257   extfields: (string*typ) list Symtab.table, (* maps extension to its fields *)
   258   fieldext: (string*typ list) Symtab.table   (* maps field to its extension *)
   259 };
   260 
   261 fun make_record_data
   262       records sel_upd equalities extinjects extsplit splits extfields fieldext =
   263  {records = records, sel_upd = sel_upd,
   264   equalities = equalities, extinjects=extinjects, extsplit = extsplit, splits = splits,
   265   extfields = extfields, fieldext = fieldext }: record_data;
   266 
   267 structure RecordsData = TheoryDataFun
   268 (struct
   269   val name = "HOL/record"; 
   270   type T = record_data;
   271 
   272   val empty =
   273     make_record_data Symtab.empty
   274       {selectors = Symtab.empty, updates = Symtab.empty, simpset = HOL_basic_ss}
   275        Symtab.empty [] Symtab.empty Symtab.empty Symtab.empty Symtab.empty;
   276 
   277   val copy = I;
   278   val extend = I;
   279   fun merge _
   280    ({records = recs1,
   281      sel_upd = {selectors = sels1, updates = upds1, simpset = ss1},
   282      equalities = equalities1,
   283      extinjects = extinjects1,
   284      extsplit = extsplit1,
   285      splits = splits1,
   286      extfields = extfields1,
   287      fieldext = fieldext1},
   288     {records = recs2,
   289      sel_upd = {selectors = sels2, updates = upds2, simpset = ss2},
   290      equalities = equalities2,
   291      extinjects = extinjects2,
   292      extsplit = extsplit2,
   293      splits = splits2,
   294      extfields = extfields2,
   295      fieldext = fieldext2}) =
   296     make_record_data
   297       (Symtab.merge (K true) (recs1, recs2))
   298       {selectors = Symtab.merge (K true) (sels1, sels2),
   299         updates = Symtab.merge (K true) (upds1, upds2),
   300         simpset = Simplifier.merge_ss (ss1, ss2)}
   301       (Symtab.merge Thm.eq_thm (equalities1, equalities2))
   302       (gen_merge_lists Thm.eq_thm extinjects1 extinjects2)
   303       (Symtab.merge Thm.eq_thm (extsplit1,extsplit2))
   304       (Symtab.merge (fn ((a,b,c,d),(w,x,y,z))
   305                      => Thm.eq_thm (a,w) andalso Thm.eq_thm (b,x) andalso
   306                         Thm.eq_thm (c,y) andalso Thm.eq_thm (d,z))
   307                     (splits1, splits2))
   308       (Symtab.merge (K true) (extfields1,extfields2))
   309       (Symtab.merge (K true) (fieldext1,fieldext2));
   310 
   311   fun print thy ({records = recs, ...}: record_data) =
   312     let
   313       val prt_typ = Sign.pretty_typ thy;
   314 
   315       fun pretty_parent NONE = []
   316         | pretty_parent (SOME (Ts, name)) =
   317             [Pretty.block [prt_typ (Type (name, Ts)), Pretty.str " +"]];
   318 
   319       fun pretty_field (c, T) = Pretty.block
   320         [Pretty.str (Sign.extern_const thy c), Pretty.str " ::",
   321           Pretty.brk 1, Pretty.quote (prt_typ T)];
   322 
   323       fun pretty_record (name, {args, parent, fields, ...}: record_info) =
   324         Pretty.block (Pretty.fbreaks (Pretty.block
   325           [prt_typ (Type (name, map TFree args)), Pretty.str " = "] ::
   326           pretty_parent parent @ map pretty_field fields));
   327     in map pretty_record (Symtab.dest recs) |> Pretty.chunks |> Pretty.writeln end;
   328 end);
   329 
   330 val print_records = RecordsData.print;
   331 
   332 
   333 (* access 'records' *)
   334 
   335 val get_record = Symtab.lookup o #records o RecordsData.get;
   336 
   337 fun put_record name info thy =
   338   let
   339     val {records, sel_upd, equalities, extinjects,extsplit,splits,extfields,fieldext} =
   340           RecordsData.get thy;
   341     val data = make_record_data (Symtab.update (name, info) records)
   342       sel_upd equalities extinjects extsplit splits extfields fieldext;
   343   in RecordsData.put data thy end;
   344 
   345 (* access 'sel_upd' *)
   346 
   347 val get_sel_upd = #sel_upd o RecordsData.get;
   348 
   349 val is_selector = Symtab.defined o #selectors o get_sel_upd;
   350 val get_updates = Symtab.lookup o #updates o get_sel_upd;
   351 fun get_simpset thy = Simplifier.theory_context thy (#simpset (get_sel_upd thy));
   352 
   353 fun put_sel_upd names simps thy =
   354   let
   355     val sels = map (rpair ()) names;
   356     val upds = map (suffix updateN) names ~~ names;
   357 
   358     val {records, sel_upd = {selectors, updates, simpset},
   359       equalities, extinjects, extsplit, splits, extfields,fieldext} = RecordsData.get thy;
   360     val data = make_record_data records
   361       {selectors = Symtab.extend (selectors, sels),
   362         updates = Symtab.extend (updates, upds),
   363         simpset = Simplifier.addsimps (simpset, simps)}
   364        equalities extinjects extsplit splits extfields fieldext;
   365   in RecordsData.put data thy end;
   366 
   367 (* access 'equalities' *)
   368 
   369 fun add_record_equalities name thm thy =
   370   let
   371     val {records, sel_upd, equalities, extinjects, extsplit, splits, extfields,fieldext} =
   372           RecordsData.get thy;
   373     val data = make_record_data records sel_upd
   374            (Symtab.update_new (name, thm) equalities) extinjects extsplit
   375            splits extfields fieldext;
   376   in RecordsData.put data thy end;
   377 
   378 val get_equalities =Symtab.lookup o #equalities o RecordsData.get;
   379 
   380 (* access 'extinjects' *)
   381 
   382 fun add_extinjects thm thy =
   383   let
   384     val {records, sel_upd, equalities, extinjects, extsplit, splits, extfields,fieldext} =
   385           RecordsData.get thy;
   386     val data = make_record_data records sel_upd equalities (extinjects@[thm]) extsplit
   387                  splits extfields fieldext;
   388   in RecordsData.put data thy end;
   389 
   390 fun get_extinjects thy = #extinjects (RecordsData.get thy);
   391 
   392 (* access 'extsplit' *)
   393 
   394 fun add_extsplit name thm thy =
   395   let
   396     val {records, sel_upd, equalities, extinjects, extsplit, splits, extfields,fieldext} =
   397           RecordsData.get thy;
   398     val data = make_record_data records sel_upd
   399       equalities extinjects (Symtab.update_new (name, thm) extsplit) splits
   400       extfields fieldext;
   401   in RecordsData.put data thy end;
   402 
   403 val get_extsplit = Symtab.lookup o #extsplit o RecordsData.get;
   404 
   405 (* access 'splits' *)
   406 
   407 fun add_record_splits name thmP thy =
   408   let
   409     val {records, sel_upd, equalities, extinjects, extsplit, splits, extfields,fieldext} =
   410           RecordsData.get thy;
   411     val data = make_record_data records sel_upd
   412       equalities extinjects extsplit (Symtab.update_new (name, thmP) splits)
   413       extfields fieldext;
   414   in RecordsData.put data thy end;
   415 
   416 val get_splits = Symtab.lookup o #splits o RecordsData.get;
   417 
   418 
   419 
   420 (* extension of a record name *)
   421 val get_extension =
   422   Option.map #extension oo (Symtab.lookup o #records o RecordsData.get);
   423 
   424 
   425 (* access 'extfields' *)
   426 
   427 fun add_extfields name fields thy =
   428   let
   429     val {records, sel_upd, equalities, extinjects, extsplit,splits, extfields, fieldext} =
   430           RecordsData.get thy;
   431     val data = make_record_data records sel_upd
   432          equalities extinjects extsplit splits
   433          (Symtab.update_new (name, fields) extfields) fieldext;
   434   in RecordsData.put data thy end;
   435 
   436 val get_extfields = Symtab.lookup o #extfields o RecordsData.get;
   437 
   438 fun get_extT_fields thy T =
   439   let
   440     val ((name,Ts),moreT) = dest_recT T;
   441     val recname = let val (nm::recn::rst) = rev (NameSpace.unpack name)
   442                   in NameSpace.pack (rev (nm::rst)) end;
   443     val midx = maxidx_of_typs (moreT::Ts);
   444     val varifyT = varifyT midx;
   445     val {records,extfields,...} = RecordsData.get thy;
   446     val (flds,(more,_)) = split_last (Symtab.lookup_list extfields name);
   447     val args = map varifyT (snd (#extension (the (Symtab.lookup records recname))));
   448 
   449     val subst = fold (Sign.typ_match thy) (but_last args ~~ but_last Ts) (Vartab.empty);
   450     val flds' = map (apsnd ((Envir.norm_type subst) o varifyT)) flds;
   451   in (flds',(more,moreT)) end;
   452 
   453 fun get_recT_fields thy T =
   454   let
   455     val (root_flds,(root_more,root_moreT)) = get_extT_fields thy T;
   456     val (rest_flds,rest_more) =
   457            if is_recT root_moreT then get_recT_fields thy root_moreT
   458            else ([],(root_more,root_moreT));
   459   in (root_flds@rest_flds,rest_more) end;
   460 
   461 
   462 (* access 'fieldext' *)
   463 
   464 fun add_fieldext extname_types fields thy =
   465   let
   466     val {records, sel_upd, equalities, extinjects, extsplit, splits, extfields, fieldext} =
   467            RecordsData.get thy;
   468     val fieldext' =
   469       fold (fn field => Symtab.update_new (field, extname_types)) fields fieldext;
   470     val data=make_record_data records sel_upd equalities extinjects extsplit
   471               splits extfields fieldext';
   472   in RecordsData.put data thy end;
   473 
   474 
   475 val get_fieldext = Symtab.lookup o #fieldext o RecordsData.get;
   476 
   477 (* parent records *)
   478 
   479 fun add_parents thy NONE parents = parents
   480   | add_parents thy (SOME (types, name)) parents =
   481       let
   482         val sign = Theory.sign_of thy;
   483         fun err msg = error (msg ^ " parent record " ^ quote name);
   484 
   485         val {args, parent, fields, extension, induct} =
   486           (case get_record thy name of SOME info => info | NONE => err "Unknown");
   487         val _ = if length types <> length args then err "Bad number of arguments for" else ();
   488 
   489         fun bad_inst ((x, S), T) =
   490           if Sign.of_sort sign (T, S) then NONE else SOME x
   491         val bads = List.mapPartial bad_inst (args ~~ types);
   492 
   493         val inst = map fst args ~~ types;
   494         val subst = Term.map_type_tfree (the o AList.lookup (op =) inst o fst);
   495         val parent' = Option.map (apfst (map subst)) parent;
   496         val fields' = map (apsnd subst) fields;
   497         val extension' = apsnd (map subst) extension;
   498       in
   499         conditional (not (null bads)) (fn () =>
   500           err ("Ill-sorted instantiation of " ^ commas bads ^ " in"));
   501         add_parents thy parent'
   502           (make_parent_info name fields' extension' induct::parents)
   503       end;
   504 
   505 
   506 (** concrete syntax for records **)
   507 
   508 (* parse translations *)
   509 
   510 fun gen_field_tr mark sfx (t as Const (c, _) $ Const (name, _) $ arg) =
   511       if c = mark then Syntax.const (suffix sfx name) $ (Syntax.const KN $ arg)
   512       else raise TERM ("gen_field_tr: " ^ mark, [t])
   513   | gen_field_tr mark _ t = raise TERM ("gen_field_tr: " ^ mark, [t]);
   514 
   515 fun gen_fields_tr sep mark sfx (tm as Const (c, _) $ t $ u) =
   516       if c = sep then gen_field_tr mark sfx t :: gen_fields_tr sep mark sfx u
   517       else [gen_field_tr mark sfx tm]
   518   | gen_fields_tr _ mark sfx tm = [gen_field_tr mark sfx tm];
   519 
   520 
   521 fun record_update_tr [t, u] =
   522       Library.foldr (op $) (rev (gen_fields_tr "_updates" "_update" updateN u), t)
   523   | record_update_tr ts = raise TERM ("record_update_tr", ts);
   524 
   525 fun update_name_tr (Free (x, T) :: ts) = Free (suffix updateN x, T) $$ ts
   526   | update_name_tr (Const (x, T) :: ts) = Const (suffix updateN x, T) $$ ts
   527   | update_name_tr (((c as Const ("_constrain", _)) $ t $ ty) :: ts) =
   528       (c $ update_name_tr [t] $ (Syntax.const "fun" $ ty $ Syntax.const "dummy")) $$ ts
   529   | update_name_tr ts = raise TERM ("update_name_tr", ts);
   530 
   531 fun dest_ext_field mark (t as (Const (c,_) $ Const (name,_) $ arg)) =
   532      if c = mark then (name,arg) else raise TERM ("dest_ext_field: " ^ mark, [t])
   533   | dest_ext_field _ t = raise TERM ("dest_ext_field", [t])
   534 
   535 fun dest_ext_fields sep mark (trm as (Const (c,_) $ t $ u)) =
   536      if c = sep then dest_ext_field mark t::dest_ext_fields sep mark u
   537      else [dest_ext_field mark trm]
   538   | dest_ext_fields _ mark t = [dest_ext_field mark t]
   539 
   540 fun gen_ext_fields_tr sep mark sfx more context t =
   541   let
   542     val thy = Context.theory_of context;
   543     val msg = "error in record input: ";
   544     val fieldargs = dest_ext_fields sep mark t;
   545     fun splitargs (field::fields) ((name,arg)::fargs) =
   546           if can (unsuffix name) field
   547           then let val (args,rest) = splitargs fields fargs
   548                in (arg::args,rest) end
   549           else raise TERM (msg ^ "expecting field " ^ field ^ " but got " ^ name, [t])
   550       | splitargs [] (fargs as (_::_)) = ([],fargs)
   551       | splitargs (_::_) [] = raise TERM (msg ^ "expecting more fields", [t])
   552       | splitargs _ _ = ([],[]);
   553 
   554     fun mk_ext (fargs as (name,arg)::_) =
   555          (case get_fieldext thy (Sign.intern_const thy name) of
   556             SOME (ext,_) => (case get_extfields thy ext of
   557                                SOME flds
   558                                  => let val (args,rest) =
   559                                                splitargs (map fst (but_last flds)) fargs;
   560                                         val more' = mk_ext rest;
   561                                     in list_comb (Syntax.const (suffix sfx ext),args@[more'])
   562                                     end
   563                              | NONE => raise TERM(msg ^ "no fields defined for "
   564                                                    ^ ext,[t]))
   565           | NONE => raise TERM (msg ^ name ^" is no proper field",[t]))
   566       | mk_ext [] = more
   567 
   568   in mk_ext fieldargs end;
   569 
   570 fun gen_ext_type_tr sep mark sfx more context t =
   571   let
   572     val thy = Context.theory_of context;
   573     val msg = "error in record-type input: ";
   574     val fieldargs = dest_ext_fields sep mark t;
   575     fun splitargs (field::fields) ((name,arg)::fargs) =
   576           if can (unsuffix name) field
   577           then let val (args,rest) = splitargs fields fargs
   578                in (arg::args,rest) end
   579           else raise TERM (msg ^ "expecting field " ^ field ^ " but got " ^ name, [t])
   580       | splitargs [] (fargs as (_::_)) = ([],fargs)
   581       | splitargs (_::_) [] = raise TERM (msg ^ "expecting more fields", [t])
   582       | splitargs _ _ = ([],[]);
   583 
   584     fun get_sort xs n = AList.lookup (op =) xs n |> the_default (Sign.defaultS thy);
   585 
   586     fun to_type t = Sign.certify_typ thy
   587                        (Sign.intern_typ thy
   588                          (Syntax.typ_of_term (get_sort (Syntax.raw_term_sorts t)) I t));
   589 
   590     fun mk_ext (fargs as (name,arg)::_) =
   591          (case get_fieldext thy (Sign.intern_const thy name) of
   592             SOME (ext,alphas) =>
   593               (case get_extfields thy ext of
   594                  SOME flds
   595                   => (let
   596                        val flds' = but_last flds;
   597                        val types = map snd flds';
   598                        val (args,rest) = splitargs (map fst flds') fargs;
   599                        val argtypes = map to_type args;
   600                        val midx =  fold (fn T => fn i => Int.max (maxidx_of_typ T, i)) 
   601                                     argtypes 0;
   602                        val varifyT = varifyT midx;
   603                        val vartypes = map varifyT types;
   604 
   605                        val subst = fold (Sign.typ_match thy) (vartypes ~~ argtypes)
   606                                             Vartab.empty;
   607                        val alphas' = map ((Syntax.term_of_typ (! Syntax.show_sorts)) o
   608                                           Envir.norm_type subst o varifyT)
   609                                          (but_last alphas);
   610 
   611                        val more' = mk_ext rest;
   612                      in list_comb (Syntax.const (suffix sfx ext),alphas'@[more'])
   613                      end handle TYPE_MATCH => raise
   614                            TERM (msg ^ "type is no proper record (extension)", [t]))
   615                | NONE => raise TERM (msg ^ "no fields defined for " ^ ext,[t]))
   616           | NONE => raise TERM (msg ^ name ^" is no proper field",[t]))
   617       | mk_ext [] = more
   618 
   619   in mk_ext fieldargs end;
   620 
   621 fun gen_adv_record_tr sep mark sfx unit context [t] =
   622       gen_ext_fields_tr sep mark sfx unit context t
   623   | gen_adv_record_tr _ _ _ _ _ ts = raise TERM ("gen_record_tr", ts);
   624 
   625 fun gen_adv_record_scheme_tr sep mark sfx context [t, more] =
   626       gen_ext_fields_tr sep mark sfx more context t
   627   | gen_adv_record_scheme_tr _ _ _ _ ts = raise TERM ("gen_record_scheme_tr", ts);
   628 
   629 fun gen_adv_record_type_tr sep mark sfx unit context [t] =
   630       gen_ext_type_tr sep mark sfx unit context t
   631   | gen_adv_record_type_tr _ _ _ _ _ ts = raise TERM ("gen_record_tr", ts);
   632 
   633 fun gen_adv_record_type_scheme_tr sep mark sfx context [t, more] =
   634       gen_ext_type_tr sep mark sfx more context t
   635   | gen_adv_record_type_scheme_tr _ _ _ _ ts = raise TERM ("gen_record_scheme_tr", ts);
   636 
   637 val adv_record_tr = gen_adv_record_tr "_fields" "_field" extN HOLogic.unit;
   638 val adv_record_scheme_tr = gen_adv_record_scheme_tr "_fields" "_field" extN;
   639 
   640 val adv_record_type_tr =
   641       gen_adv_record_type_tr "_field_types" "_field_type" ext_typeN
   642         (Syntax.term_of_typ false (HOLogic.unitT));
   643 val adv_record_type_scheme_tr =
   644       gen_adv_record_type_scheme_tr "_field_types" "_field_type" ext_typeN;
   645 
   646 
   647 val parse_translation = 
   648  [("_record_update", record_update_tr),
   649   ("_update_name", update_name_tr)];
   650 
   651 
   652 val adv_parse_translation = 
   653  [("_record",adv_record_tr),
   654   ("_record_scheme",adv_record_scheme_tr),
   655   ("_record_type",adv_record_type_tr),
   656   ("_record_type_scheme",adv_record_type_scheme_tr)];
   657 
   658 
   659 (* print translations *)
   660 
   661 val print_record_type_abbr = ref true;
   662 val print_record_type_as_fields = ref true;
   663 
   664 fun gen_field_upds_tr' mark sfx (tm as Const (name_field, _) $ (Const ("K_record",_)$t) $ u) =
   665     (case try (unsuffix sfx) name_field of
   666       SOME name =>
   667         apfst (cons (Syntax.const mark $ Syntax.free name $ t)) (gen_field_upds_tr' mark sfx u)
   668      | NONE => ([], tm))
   669   | gen_field_upds_tr' _ _ tm = ([], tm);
   670 
   671 fun record_update_tr' tm =
   672   let val (ts, u) = gen_field_upds_tr' "_update" updateN tm in
   673     if null ts then raise Match
   674     else Syntax.const "_record_update" $ u $
   675           foldr1 (fn (v, w) => Syntax.const "_updates" $ v $ w) (rev ts)
   676   end;
   677 
   678 fun gen_field_tr' sfx tr' name =
   679   let val name_sfx = suffix sfx name
   680   in (name_sfx, fn [t, u] => tr' (Syntax.const name_sfx $ t $ u) | _ => raise Match) end;
   681 
   682 fun record_tr' sep mark record record_scheme unit context t =
   683   let
   684     val thy = Context.theory_of context;
   685     fun field_lst t =
   686       (case strip_comb t of
   687         (Const (ext,_),args as (_::_))
   688          => (case try (unsuffix extN) (Sign.intern_const thy ext) of
   689                SOME ext'
   690                => (case get_extfields thy ext' of
   691                      SOME flds
   692                      => (let
   693                           val (f::fs) = but_last (map fst flds);
   694                           val flds' = Sign.extern_const thy f :: map NameSpace.base fs;
   695                           val (args',more) = split_last args;
   696                          in (flds'~~args')@field_lst more end
   697                          handle Library.UnequalLengths => [("",t)])
   698                    | NONE => [("",t)])
   699              | NONE => [("",t)])
   700        | _ => [("",t)])
   701 
   702     val (flds,(_,more)) = split_last (field_lst t);
   703     val _ = if null flds then raise Match else ();
   704     val flds' = map (fn (n,t)=>Syntax.const mark$Syntax.const n$t) flds;
   705     val flds'' = foldr1 (fn (x,y) => Syntax.const sep$x$y) flds';
   706 
   707   in if unit more
   708      then Syntax.const record$flds''
   709      else Syntax.const record_scheme$flds''$more
   710   end
   711 
   712 fun gen_record_tr' name =
   713   let val name_sfx = suffix extN name;
   714       val unit = (fn Const ("Unity",_) => true | _ => false);
   715       fun tr' context ts = record_tr' "_fields" "_field" "_record" "_record_scheme" unit context
   716                        (list_comb (Syntax.const name_sfx,ts))
   717   in (name_sfx,tr')
   718   end
   719 
   720 fun print_translation names =
   721   map (gen_field_tr' updateN record_update_tr') names;
   722 
   723 
   724 (* record_type_abbr_tr' tries to reconstruct the record name type abbreviation from *)
   725 (* the (nested) extension types.                                                    *)
   726 fun record_type_abbr_tr' default_tr' abbr alphas zeta lastExt schemeT context tm =
   727   let
   728       val thy = Context.theory_of context;
   729       (* tm is term representation of a (nested) field type. We first reconstruct the      *)
   730       (* type from tm so that we can continue on the type level rather then the term level.*)
   731 
   732       fun get_sort xs n = AList.lookup (op =) xs n |> the_default (Sign.defaultS thy);
   733 
   734       (* WORKAROUND:
   735        * If a record type occurs in an error message of type inference there
   736        * may be some internal frees donoted by ??:
   737        * (Const "_tfree",_)$Free ("??'a",_).
   738 
   739        * This will unfortunately be translated to Type ("??'a",[]) instead of
   740        * TFree ("??'a",_) by typ_of_term, which will confuse unify below.
   741        * fixT works around.
   742        *)
   743       fun fixT (T as Type (x,[])) =
   744             if String.isPrefix "??'" x then TFree (x,Sign.defaultS thy) else T
   745         | fixT (Type (x,xs)) = Type (x,map fixT xs)
   746         | fixT T = T;
   747 
   748       val T = fixT (Sign.intern_typ thy
   749                       (Syntax.typ_of_term (get_sort (Syntax.raw_term_sorts tm)) I tm));
   750       val midx = maxidx_of_typ T;
   751       val varifyT = varifyT midx;
   752 
   753       fun mk_type_abbr subst name alphas =
   754           let val abbrT = Type (name, map (fn a => varifyT (TFree (a, Sign.defaultS thy))) alphas);
   755           in Syntax.term_of_typ (! Syntax.show_sorts)
   756                (Sign.extern_typ thy (Envir.norm_type subst abbrT)) end;
   757 
   758       fun match rT T = (Sign.typ_match thy (varifyT rT,T) 
   759                                                 Vartab.empty);
   760 
   761    in if !print_record_type_abbr
   762       then (case last_extT T of
   763              SOME (name,_)
   764               => if name = lastExt
   765                  then
   766                   (let
   767                      val subst = match schemeT T
   768                    in
   769                     if HOLogic.is_unitT (Envir.norm_type subst (varifyT (TFree(zeta,Sign.defaultS thy))))
   770                     then mk_type_abbr subst abbr alphas
   771                     else mk_type_abbr subst (suffix schemeN abbr) (alphas@[zeta])
   772                    end handle TYPE_MATCH => default_tr' context tm)
   773                  else raise Match (* give print translation of specialised record a chance *)
   774             | _ => raise Match)
   775        else default_tr' context tm
   776   end
   777 
   778 fun record_type_tr' sep mark record record_scheme context t =
   779   let
   780     val thy = Context.theory_of context;
   781     fun get_sort xs n = AList.lookup (op =) xs n |> the_default (Sign.defaultS thy);
   782 
   783     val T = Sign.intern_typ thy (Syntax.typ_of_term (get_sort (Syntax.raw_term_sorts t)) I t)
   784     val varifyT = varifyT (Term.maxidx_of_typ T)
   785 
   786     fun term_of_type T = Syntax.term_of_typ (!Syntax.show_sorts) (Sign.extern_typ thy T);
   787 
   788     fun field_lst T =
   789       (case T of
   790         Type (ext,args)
   791          => (case try (unsuffix ext_typeN) ext of
   792                SOME ext'
   793                => (case get_extfields thy ext' of
   794                      SOME flds
   795                      => (case get_fieldext thy (fst (hd flds)) of
   796                            SOME (_,alphas)
   797                            => (let
   798                                 val (f::fs) = but_last flds;
   799                                 val flds' = apfst (Sign.extern_const thy) f
   800                                             ::map (apfst NameSpace.base) fs;
   801                                 val (args',more) = split_last args;
   802                                 val alphavars = map varifyT (but_last alphas);
   803                                 val subst= fold (Sign.typ_match thy) (alphavars~~args')
   804                                                     Vartab.empty;
   805                                 val flds'' =map (apsnd (Envir.norm_type subst o varifyT))
   806                                                 flds';
   807                               in flds''@field_lst more end
   808                               handle TYPE_MATCH     => [("",T)]
   809                                    | Library.UnequalLengths => [("",T)])
   810                          | NONE => [("",T)])
   811                    | NONE => [("",T)])
   812              | NONE => [("",T)])
   813         | _ => [("",T)])
   814 
   815     val (flds,(_,moreT)) = split_last (field_lst T);
   816     val flds' = map (fn (n,T)=>Syntax.const mark$Syntax.const n$term_of_type T) flds;
   817     val flds'' = foldr1 (fn (x,y) => Syntax.const sep$x$y) flds';
   818 
   819   in if not (!print_record_type_as_fields) orelse null flds then raise Match
   820      else if moreT = HOLogic.unitT
   821           then Syntax.const record$flds''
   822           else Syntax.const record_scheme$flds''$term_of_type moreT
   823   end
   824 
   825 
   826 fun gen_record_type_tr' name =
   827   let val name_sfx = suffix ext_typeN name;
   828       fun tr' context ts = record_type_tr' "_field_types" "_field_type"
   829                        "_record_type" "_record_type_scheme" context
   830                        (list_comb (Syntax.const name_sfx,ts))
   831   in (name_sfx,tr')
   832   end
   833 
   834 
   835 fun gen_record_type_abbr_tr' abbr alphas zeta lastExt schemeT name =
   836   let val name_sfx = suffix ext_typeN name;
   837       val default_tr' = record_type_tr' "_field_types" "_field_type"
   838                                "_record_type" "_record_type_scheme"
   839       fun tr' context ts =
   840           record_type_abbr_tr' default_tr' abbr alphas zeta lastExt schemeT context
   841                                (list_comb (Syntax.const name_sfx,ts))
   842   in (name_sfx, tr') end;
   843 
   844 (** record simprocs **)
   845 
   846 val record_quick_and_dirty_sensitive = ref false;
   847 
   848 
   849 fun quick_and_dirty_prove stndrd thy asms prop tac =
   850   if !record_quick_and_dirty_sensitive andalso !quick_and_dirty
   851   then Goal.prove (ProofContext.init thy) [] []
   852         (Logic.list_implies (map Logic.varify asms,Logic.varify prop))
   853         (K (SkipProof.cheat_tac HOL.thy))
   854         (* standard can take quite a while for large records, thats why
   855          * we varify the proposition manually here.*)
   856   else let val prf = Goal.prove (ProofContext.init thy) [] asms prop tac;
   857        in if stndrd then standard prf else prf end;
   858 
   859 fun quick_and_dirty_prf noopt opt () =
   860       if !record_quick_and_dirty_sensitive andalso !quick_and_dirty
   861       then noopt ()
   862       else opt ();
   863 
   864 local
   865 fun abstract_over_fun_app (Abs (f,fT,t)) =
   866   let
   867      val (f',t') = Term.dest_abs (f,fT,t);
   868      val T = domain_type fT;
   869      val (x,T') = hd (Term.variant_frees t' [("x",T)]);
   870      val f_x = Free (f',fT)$(Free (x,T'));
   871      fun is_constr (Const (c,_)$_) = can (unsuffix extN) c
   872        | is_constr _ = false;
   873      fun subst (t as u$w) = if Free (f',fT)=u 
   874                             then if is_constr w then f_x 
   875                                  else raise TERM ("abstract_over_fun_app",[t])
   876                             else subst u$subst w
   877        | subst (Abs (x,T,t)) = (Abs (x,T,subst t))
   878        | subst t = t
   879      val t'' = abstract_over (f_x,subst t');
   880      val vars = strip_qnt_vars "all" t'';
   881      val bdy = strip_qnt_body "all" t'';
   882      
   883   in list_abs ((x,T')::vars,bdy) end
   884   | abstract_over_fun_app t = raise TERM ("abstract_over_fun_app",[t]);
   885 (* Generates a theorem of the kind:
   886  * !!f x*. PROP P (f ( r x* ) x* == !!r x*. PROP P r x* 
   887  *) 
   888 fun mk_fun_apply_eq (Abs (f, fT, t)) thy =
   889   let
   890     val rT = domain_type fT;
   891     val vars = Term.strip_qnt_vars "all" t;
   892     val Ts = map snd vars;
   893     val n = length vars;
   894     fun app_bounds 0 t = t$Bound 0
   895       | app_bounds n t = if n > 0 then app_bounds (n-1) (t$Bound n) else t
   896 
   897    
   898     val [P,r] = Term.variant_frees t [("P",rT::Ts--->Term.propT),("r",Ts--->rT)];
   899     val prop = Logic.mk_equals
   900                 (list_all ((f,fT)::vars,
   901                            app_bounds (n - 1) ((Free P)$(Bound n$app_bounds (n-1) (Free r)))),
   902                  list_all ((fst r,rT)::vars,
   903                            app_bounds (n - 1) ((Free P)$Bound n))); 
   904     val prove_standard = quick_and_dirty_prove true thy;
   905     val thm = prove_standard [] prop (fn prems =>
   906 	 EVERY [rtac equal_intr_rule 1, 
   907                 norm_hhf_tac 1,REPEAT (etac meta_allE 1), atac 1,
   908                 norm_hhf_tac 1,REPEAT (etac meta_allE 1), atac 1]);
   909   in thm end
   910   | mk_fun_apply_eq t thy = raise TERM ("mk_fun_apply_eq",[t]);
   911 
   912 in
   913 (* During proof of theorems produced by record_simproc you can end up in
   914  * situations like "!!f ... . ... f r ..." where f is an extension update function.
   915  * In order to split "f r" we transform this to "!!r ... . ... r ..." so that the
   916  * usual split rules for extensions can apply.
   917  *)
   918 val record_split_f_more_simproc =
   919   Simplifier.simproc HOL.thy "record_split_f_more_simp" ["x"]
   920     (fn thy => fn _ => fn t =>
   921       (case t of (Const ("all", Type (_, [Type (_, [Type("fun",[T,T']), _]), _])))$
   922                   (trm as Abs _) =>
   923          (case rec_id (~1) T of
   924             "" => NONE
   925           | n => if T=T'  
   926                  then (let
   927                         val P=cterm_of thy (abstract_over_fun_app trm); 
   928                         val thm = mk_fun_apply_eq trm thy;
   929                         val PV = cterm_of thy (hd (term_vars (prop_of thm)));
   930                         val thm' = cterm_instantiate [(PV,P)] thm;
   931                        in SOME  thm' end handle TERM _ => NONE)
   932                 else NONE) 
   933        | _ => NONE))
   934 end
   935 
   936 fun prove_split_simp thy ss T prop =
   937   let
   938     val {sel_upd={simpset,...},extsplit,...} = RecordsData.get thy;
   939     val extsplits =
   940             Library.foldl (fn (thms,(n,_)) => the_list (Symtab.lookup extsplit n) @ thms)
   941                     ([],dest_recTs T);
   942     val thms = (case get_splits thy (rec_id (~1) T) of
   943                    SOME (all_thm,_,_,_) =>
   944                      all_thm::(case extsplits of [thm] => [] | _ => extsplits)
   945                               (* [thm] is the same as all_thm *)
   946                  | NONE => extsplits)
   947     val thms'=K_comp_convs@thms;
   948     val ss' = (Simplifier.inherit_context ss simpset 
   949                 addsimps thms'
   950                 addsimprocs [record_split_f_more_simproc]);
   951   in
   952     quick_and_dirty_prove true thy [] prop (fn _ => simp_tac ss' 1)
   953   end;
   954 
   955 
   956 local
   957 fun eq (s1:string) (s2:string) = (s1 = s2);
   958 fun has_field extfields f T =
   959      exists (fn (eN,_) => exists (eq f o fst) (Symtab.lookup_list extfields eN))
   960        (dest_recTs T);
   961 in
   962 (* record_simproc *)
   963 (* Simplifies selections of an record update:
   964  *  (1)  S (S_update k r) = k (S r)
   965  *  (2)  S (X_update k r) = S r
   966  * The simproc skips multiple updates at once, eg:
   967  *  S (X_update x (Y_update y (S_update k r))) = k (S r)
   968  * But be careful in (2) because of the extendibility of records.
   969  * - If S is a more-selector we have to make sure that the update on component
   970  *   X does not affect the selected subrecord.
   971  * - If X is a more-selector we have to make sure that S is not in the updated
   972  *   subrecord.
   973  *)
   974 val record_simproc =
   975   Simplifier.simproc HOL.thy "record_simp" ["x"]
   976     (fn thy => fn ss => fn t =>
   977       (case t of (sel as Const (s, Type (_,[domS,rangeS])))$
   978                    ((upd as Const (u,Type(_,[_,Type (_,[rT,_])]))) $ k $ r)=>
   979         if is_selector thy s then
   980           (case get_updates thy u of SOME u_name =>
   981             let
   982               val {sel_upd={updates,...},extfields,...} = RecordsData.get thy;
   983 
   984               fun mk_eq_terms ((upd as Const (u,Type(_,[kT,_]))) $ k $ r) =
   985                   (case Symtab.lookup updates u of
   986                      NONE => NONE
   987                    | SOME u_name
   988                      => if u_name = s
   989                         then (case mk_eq_terms r of 
   990                                NONE => 
   991                                  let
   992                                    val rv = ("r",rT)
   993                                    val rb = Bound 0
   994                                    val kv = ("k",kT)
   995                                    val kb = Bound 1
   996                                   in SOME (upd$kb$rb,kb$(sel$rb),[kv,rv]) end
   997                               | SOME (trm,trm',vars) =>
   998                                  let
   999                                    val kv = ("k",kT)
  1000                                    val kb = Bound (length vars)
  1001                                  in SOME (upd$kb$trm,kb$trm',kv::vars) end)
  1002                         else if has_field extfields u_name rangeS
  1003                              orelse has_field extfields s (domain_type kT)
  1004                              then NONE
  1005                              else (case mk_eq_terms r of
  1006                                      SOME (trm,trm',vars)
  1007                                      => let
  1008                                           val kv = ("k",kT)
  1009                                           val kb = Bound (length vars)
  1010                                         in SOME (upd$kb$trm,trm',kv::vars) end
  1011                                    | NONE
  1012                                      => let
  1013                                           val rv = ("r",rT)
  1014                                           val rb = Bound 0
  1015                                           val kv = ("k",kT)
  1016                                           val kb = Bound 1
  1017                                         in SOME (upd$kb$rb,sel$rb,[kv,rv]) end))
  1018                 | mk_eq_terms r = NONE
  1019             in
  1020               (case mk_eq_terms (upd$k$r) of
  1021                  SOME (trm,trm',vars)
  1022                  => SOME (prove_split_simp thy ss domS
  1023                                  (list_all(vars,(equals rangeS$(sel$trm)$trm'))))
  1024                | NONE => NONE)
  1025             end
  1026           | NONE => NONE)
  1027         else NONE
  1028       | _ => NONE));
  1029 
  1030 (* record_upd_simproc *)
  1031 (* simplify multiple updates:
  1032  *  (1)  "N_update y (M_update g (N_update x (M_update f r))) =
  1033           (N_update (y o x) (M_update (g o f) r))"
  1034  *  (2)  "r(|M:= M r|) = r"
  1035  * For (2) special care of "more" updates has to be taken:
  1036  *    r(|more := m; A := A r|)
  1037  * If A is contained in the fields of m we cannot remove the update A := A r!
  1038  * (But r(|more := r; A := A (r(|more := r|))|) = r(|more := r|)
  1039 *)
  1040 val record_upd_simproc =
  1041   Simplifier.simproc HOL.thy "record_upd_simp" ["x"]
  1042     (fn thy => fn ss => fn t =>
  1043       (case t of ((upd as Const (u, Type(_,[_,Type(_,[rT,_])]))) $ k $ r) =>
  1044          let datatype ('a,'b) calc = Init of 'b | Inter of 'a
  1045              val {sel_upd={selectors,updates,...},extfields,...} = RecordsData.get thy;
  1046 
  1047              (*fun mk_abs_var x t = (x, fastype_of t);*)
  1048              fun sel_name u = NameSpace.base (unsuffix updateN u);
  1049 
  1050              fun seed s (upd as Const (more,Type(_,[mT,_]))$ k $ r) =
  1051                   if has_field extfields s (domain_type' mT) then upd else seed s r
  1052                | seed _ r = r;
  1053 
  1054              fun grow u uT k kT vars (sprout,skeleton) =
  1055                    if sel_name u = moreN
  1056                    then let val kv = ("k", kT);
  1057                             val kb = Bound (length vars);
  1058                         in ((Const (u,uT)$k$sprout,Const (u,uT)$kb$skeleton),kv::vars) end
  1059                    else ((sprout,skeleton),vars);
  1060 
  1061              fun is_upd_same (sprout,skeleton) u 
  1062                                 ((K_rec as Const ("Record.K_record",_))$
  1063                                   ((sel as Const (s,_))$r)) =
  1064                    if (unsuffix updateN u) = s andalso (seed s sprout) = r
  1065                    then SOME (K_rec,sel,seed s skeleton)
  1066                    else NONE
  1067                | is_upd_same _ _ _ = NONE
  1068 
  1069              fun init_seed r = ((r,Bound 0), [("r", rT)]);
  1070 
  1071              fun add (n:string) f fmaps = 
  1072                (case AList.lookup (op =) fmaps n of
  1073                   NONE => AList.update (op =) (n,[f]) fmaps
  1074                 | SOME fs => AList.update (op =) (n,f::fs) fmaps) 
  1075 
  1076              fun comps (n:string) T fmaps = 
  1077                (case AList.lookup (op =) fmaps n of
  1078                  SOME fs => 
  1079                    foldr1 (fn (f,g) => Const ("Fun.comp",(T-->T)-->(T-->T)-->(T-->T))$f$g) fs
  1080                 | NONE => error ("record_upd_simproc.comps"))
  1081              
  1082              (* mk_updterm returns either
  1083               *  - Init (orig-term, orig-term-skeleton, vars) if no optimisation can be made,
  1084               *     where vars are the bound variables in the skeleton
  1085               *  - Inter (orig-term-skeleton,simplified-term-skeleton,
  1086               *           vars, (term-sprout, skeleton-sprout))
  1087               *     where "All vars. orig-term-skeleton = simplified-term-skeleton" is
  1088               *     the desired simplification rule,
  1089               *     the sprouts accumulate the "more-updates" on the way from the seed
  1090               *     to the outermost update. It is only relevant to calculate the
  1091               *     possible simplification for (2)
  1092               * The algorithm first walks down the updates to the seed-record while
  1093               * memorising the updates in the already-table. While walking up the
  1094               * updates again, the optimised term is constructed.
  1095               *)
  1096              fun mk_updterm upds already
  1097                  (t as ((upd as Const (u,uT as (Type (_,[kT,_])))) $ k $ r)) =
  1098                  if Symtab.defined upds u
  1099                  then let
  1100                          fun rest already = mk_updterm upds already
  1101                       in if u mem_string already
  1102                          then (case (rest already r) of
  1103                                  Init ((sprout,skel),vars) =>
  1104                                  let
  1105                                    val n = sel_name u;
  1106                                    val kv = (n, kT);
  1107                                    val kb = Bound (length vars);
  1108                                    val (sprout',vars')= grow u uT k kT (kv::vars) (sprout,skel);
  1109                                  in Inter (upd$kb$skel,skel,vars',add n kb [],sprout') end
  1110                                | Inter (trm,trm',vars,fmaps,sprout) =>
  1111                                  let
  1112                                    val n = sel_name u;
  1113                                    val kv = (n, kT);
  1114                                    val kb = Bound (length vars);
  1115                                    val (sprout',vars') = grow u uT k kT (kv::vars) sprout;
  1116                                  in Inter(upd$kb$trm,trm',kv::vars',add n kb fmaps,sprout') 
  1117                                  end)
  1118                          else
  1119                           (case rest (u::already) r of
  1120                              Init ((sprout,skel),vars) =>
  1121                               (case is_upd_same (sprout,skel) u k of
  1122                                  SOME (K_rec,sel,skel') =>
  1123                                  let
  1124                                    val (sprout',vars') = grow u uT k kT vars (sprout,skel);
  1125                                   in Inter(upd$(K_rec$(sel$skel'))$skel,skel,vars',[],sprout')
  1126                                   end
  1127                                | NONE =>
  1128                                  let
  1129                                    val kv = (sel_name u, kT);
  1130                                    val kb = Bound (length vars);
  1131                                  in Init ((upd$k$sprout,upd$kb$skel),kv::vars) end)
  1132                            | Inter (trm,trm',vars,fmaps,sprout) =>
  1133                                (case is_upd_same sprout u k of
  1134                                   SOME (K_rec,sel,skel) =>
  1135                                   let
  1136                                     val (sprout',vars') = grow u uT k kT vars sprout
  1137                                   in Inter(upd$(K_rec$(sel$skel))$trm,trm',vars',fmaps,sprout')
  1138                                   end
  1139                                 | NONE =>
  1140                                   let
  1141                                     val n = sel_name u
  1142                                     val T = domain_type kT
  1143                                     val kv = (n, kT)
  1144                                     val kb = Bound (length vars)
  1145                                     val (sprout',vars') = grow u uT k kT (kv::vars) sprout
  1146                                     val fmaps' = add n kb fmaps 
  1147                                   in Inter (upd$kb$trm,upd$comps n T fmaps'$trm'
  1148                                            ,vars',fmaps',sprout') end))
  1149                      end
  1150                  else Init (init_seed t)
  1151                | mk_updterm _ _ t = Init (init_seed t);
  1152 
  1153          in (case mk_updterm updates [] t of
  1154                Inter (trm,trm',vars,_,_)
  1155                 => SOME (prove_split_simp thy ss rT
  1156                           (list_all(vars,(equals rT$trm$trm'))))
  1157              | _ => NONE)
  1158          end 
  1159        | _ => NONE))
  1160 end
  1161 
  1162 (* record_eq_simproc *)
  1163 (* looks up the most specific record-equality.
  1164  * Note on efficiency:
  1165  * Testing equality of records boils down to the test of equality of all components.
  1166  * Therefore the complexity is: #components * complexity for single component.
  1167  * Especially if a record has a lot of components it may be better to split up
  1168  * the record first and do simplification on that (record_split_simp_tac).
  1169  * e.g. r(|lots of updates|) = x
  1170  *
  1171  *               record_eq_simproc       record_split_simp_tac
  1172  * Complexity: #components * #updates     #updates
  1173  *
  1174  *)
  1175 val record_eq_simproc =
  1176   Simplifier.simproc HOL.thy "record_eq_simp" ["r = s"]
  1177     (fn thy => fn _ => fn t =>
  1178       (case t of Const ("op =", Type (_, [T, _])) $ _ $ _ =>
  1179         (case rec_id (~1) T of
  1180            "" => NONE
  1181          | name => (case get_equalities thy name of
  1182                                 NONE => NONE
  1183                               | SOME thm => SOME (thm RS Eq_TrueI)))
  1184        | _ => NONE));
  1185 
  1186 (* record_split_simproc *)
  1187 (* splits quantified occurrences of records, for which P holds. P can peek on the
  1188  * subterm starting at the quantified occurrence of the record (including the quantifier)
  1189  * P t = 0: do not split
  1190  * P t = ~1: completely split
  1191  * P t > 0: split up to given bound of record extensions
  1192  *)
  1193 fun record_split_simproc P =
  1194   Simplifier.simproc HOL.thy "record_split_simp" ["x"]
  1195     (fn thy => fn _ => fn t =>
  1196       (case t of (Const (quantifier, Type (_, [Type (_, [T, _]), _])))$trm =>
  1197          if quantifier = "All" orelse quantifier = "all" orelse quantifier = "Ex"
  1198          then (case rec_id (~1) T of
  1199                  "" => NONE
  1200                | name
  1201                   => let val split = P t
  1202                      in if split <> 0 then
  1203                         (case get_splits thy (rec_id split T) of
  1204                               NONE => NONE
  1205                             | SOME (all_thm, All_thm, Ex_thm,_)
  1206                                => SOME (case quantifier of
  1207                                           "all" => all_thm
  1208                                         | "All" => All_thm RS HOL.eq_reflection
  1209                                         | "Ex"  => Ex_thm RS HOL.eq_reflection
  1210                                         | _     => error "record_split_simproc"))
  1211                         else NONE
  1212                       end)
  1213          else NONE
  1214        | _ => NONE))
  1215 
  1216 val record_ex_sel_eq_simproc =
  1217   Simplifier.simproc HOL.thy "record_ex_sel_eq_simproc" ["Ex t"]
  1218     (fn thy => fn ss => fn t =>
  1219        let
  1220          fun prove prop =
  1221            quick_and_dirty_prove true thy [] prop
  1222              (fn _ => simp_tac (Simplifier.inherit_context ss (get_simpset thy)
  1223                addsimps simp_thms addsimprocs [record_split_simproc (K ~1)]) 1);
  1224 
  1225          fun mkeq (lr,Teq,(sel,Tsel),x) i =
  1226               if is_selector thy sel then
  1227                  let val x' = if not (loose_bvar1 (x,0))
  1228                               then Free ("x" ^ string_of_int i, range_type Tsel)
  1229                               else raise TERM ("",[x]);
  1230                      val sel' = Const (sel,Tsel)$Bound 0;
  1231                      val (l,r) = if lr then (sel',x') else (x',sel');
  1232                   in Const ("op =",Teq)$l$r end
  1233               else raise TERM ("",[Const (sel,Tsel)]);
  1234 
  1235          fun dest_sel_eq (Const ("op =",Teq)$(Const (sel,Tsel)$Bound 0)$X) =
  1236                            (true,Teq,(sel,Tsel),X)
  1237            | dest_sel_eq (Const ("op =",Teq)$X$(Const (sel,Tsel)$Bound 0)) =
  1238                            (false,Teq,(sel,Tsel),X)
  1239            | dest_sel_eq _ = raise TERM ("",[]);
  1240 
  1241        in
  1242          (case t of
  1243            (Const ("Ex",Tex)$Abs(s,T,t)) =>
  1244              (let val eq = mkeq (dest_sel_eq t) 0;
  1245                  val prop = list_all ([("r",T)],
  1246                               Logic.mk_equals (Const ("Ex",Tex)$Abs(s,T,eq),
  1247                                                HOLogic.true_const));
  1248              in SOME (prove prop) end
  1249              handle TERM _ => NONE)
  1250           | _ => NONE)
  1251          end)
  1252 
  1253 
  1254 
  1255 
  1256 local
  1257 val inductive_atomize = thms "induct_atomize";
  1258 val inductive_rulify = thms "induct_rulify";
  1259 in
  1260 (* record_split_simp_tac *)
  1261 (* splits (and simplifies) all records in the goal for which P holds.
  1262  * For quantified occurrences of a record
  1263  * P can peek on the whole subterm (including the quantifier); for free variables P
  1264  * can only peek on the variable itself.
  1265  * P t = 0: do not split
  1266  * P t = ~1: completely split
  1267  * P t > 0: split up to given bound of record extensions
  1268  *)
  1269 fun record_split_simp_tac thms P i st =
  1270   let
  1271     val thy = Thm.theory_of_thm st;
  1272 
  1273     val has_rec = exists_Const
  1274       (fn (s, Type (_, [Type (_, [T, _]), _])) =>
  1275           (s = "all" orelse s = "All" orelse s = "Ex") andalso is_recT T
  1276         | _ => false);
  1277 
  1278     val goal = nth (Thm.prems_of st) (i - 1);
  1279     val frees = List.filter (is_recT o type_of) (term_frees goal);
  1280 
  1281     fun mk_split_free_tac free induct_thm i =
  1282         let val cfree = cterm_of thy free;
  1283             val (_$(_$r)) = concl_of induct_thm;
  1284             val crec = cterm_of thy r;
  1285             val thm  = cterm_instantiate [(crec,cfree)] induct_thm;
  1286         in EVERY [simp_tac (HOL_basic_ss addsimps inductive_atomize) i,
  1287                   rtac thm i,
  1288                   simp_tac (HOL_basic_ss addsimps inductive_rulify) i]
  1289         end;
  1290 
  1291     fun split_free_tac P i (free as Free (n,T)) =
  1292         (case rec_id (~1) T of
  1293            "" => NONE
  1294          | name => let val split = P free
  1295                    in if split <> 0 then
  1296                       (case get_splits thy (rec_id split T) of
  1297                              NONE => NONE
  1298                            | SOME (_,_,_,induct_thm)
  1299                                => SOME (mk_split_free_tac free induct_thm i))
  1300                       else NONE
  1301                    end)
  1302      | split_free_tac _ _ _ = NONE;
  1303 
  1304     val split_frees_tacs = List.mapPartial (split_free_tac P i) frees;
  1305 
  1306     val simprocs = if has_rec goal then [record_split_simproc P] else [];
  1307     val thms' = K_comp_convs@thms
  1308   in st |> ((EVERY split_frees_tacs)
  1309            THEN (Simplifier.full_simp_tac (get_simpset thy addsimps thms' addsimprocs simprocs) i))
  1310   end handle Empty => Seq.empty;
  1311 end;
  1312 
  1313 
  1314 (* record_split_tac *)
  1315 (* splits all records in the goal, which are quantified by ! or !!. *)
  1316 fun record_split_tac i st =
  1317   let
  1318     val thy = Thm.theory_of_thm st;
  1319 
  1320     val has_rec = exists_Const
  1321       (fn (s, Type (_, [Type (_, [T, _]), _])) =>
  1322           (s = "all" orelse s = "All") andalso is_recT T
  1323         | _ => false);
  1324 
  1325     val goal = nth (Thm.prems_of st) (i - 1);
  1326 
  1327     fun is_all t =
  1328       (case t of (Const (quantifier, _)$_) =>
  1329          if quantifier = "All" orelse quantifier = "all" then ~1 else 0
  1330        | _ => 0);
  1331 
  1332   in if has_rec goal
  1333      then Simplifier.full_simp_tac
  1334            (HOL_basic_ss addsimprocs [record_split_simproc is_all]) i st
  1335      else Seq.empty
  1336   end handle Subscript => Seq.empty;
  1337 
  1338 (* wrapper *)
  1339 
  1340 val record_split_name = "record_split_tac";
  1341 val record_split_wrapper = (record_split_name, fn tac => record_split_tac ORELSE' tac);
  1342 
  1343 
  1344 
  1345 (** theory extender interface **)
  1346 
  1347 (* prepare arguments *)
  1348 
  1349 fun read_raw_parent sign s =
  1350   (case Sign.read_typ_abbrev (sign, K NONE) s handle TYPE (msg, _, _) => error msg of
  1351     Type (name, Ts) => (Ts, name)
  1352   | _ => error ("Bad parent record specification: " ^ quote s));
  1353 
  1354 fun read_typ sign (env, s) =
  1355   let
  1356     fun def_sort (x, ~1) = AList.lookup (op =) env x
  1357       | def_sort _ = NONE;
  1358     val T = Type.no_tvars (Sign.read_typ (sign, def_sort) s) handle TYPE (msg, _, _) => error msg;
  1359   in (Term.add_typ_tfrees (T, env), T) end;
  1360 
  1361 fun cert_typ sign (env, raw_T) =
  1362   let val T = Type.no_tvars (Sign.certify_typ sign raw_T) handle TYPE (msg, _, _) => error msg
  1363   in (Term.add_typ_tfrees (T, env), T) end;
  1364 
  1365 (* attributes *)
  1366 
  1367 fun case_names_fields x = RuleCases.case_names ["fields"] x;
  1368 fun induct_type_global name = [case_names_fields, InductAttrib.induct_type name];
  1369 fun cases_type_global name = [case_names_fields, InductAttrib.cases_type name];
  1370 
  1371 (* tactics *)
  1372 
  1373 fun simp_all_tac ss simps = ALLGOALS (Simplifier.asm_full_simp_tac (ss addsimps simps));
  1374 
  1375 (* do case analysis / induction according to rule on last parameter of ith subgoal
  1376  * (or on s if there are no parameters);
  1377  * Instatiation of record variable (and predicate) in rule is calculated to
  1378  * avoid problems with higher order unification.
  1379  *)
  1380 
  1381 fun try_param_tac s rule i st =
  1382   let
  1383     val cert = cterm_of (Thm.theory_of_thm st);
  1384     val g = nth (prems_of st) (i - 1);
  1385     val params = Logic.strip_params g;
  1386     val concl = HOLogic.dest_Trueprop (Logic.strip_assums_concl g);
  1387     val rule' = Thm.lift_rule (Thm.cprem_of st i) rule;
  1388     val (P, ys) = strip_comb (HOLogic.dest_Trueprop
  1389       (Logic.strip_assums_concl (prop_of rule')));
  1390     (* ca indicates if rule is a case analysis or induction rule *)
  1391     val (x, ca) = (case rev (Library.drop (length params, ys)) of
  1392         [] => (head_of (fst (HOLogic.dest_eq (HOLogic.dest_Trueprop
  1393           (hd (rev (Logic.strip_assums_hyp (hd (prems_of rule')))))))), true)
  1394       | [x] => (head_of x, false));
  1395     val rule'' = cterm_instantiate (map (pairself cert) (case (rev params) of
  1396         [] => (case AList.lookup (op =) (map dest_Free (term_frees (prop_of st))) s of
  1397           NONE => sys_error "try_param_tac: no such variable"
  1398         | SOME T => [(P, if ca then concl else lambda (Free (s, T)) concl),
  1399             (x, Free (s, T))])
  1400       | (_, T) :: _ => [(P, list_abs (params, if ca then concl
  1401           else incr_boundvars 1 (Abs (s, T, concl)))),
  1402         (x, list_abs (params, Bound 0))])) rule'
  1403   in compose_tac (false, rule'', nprems_of rule) i st end;
  1404 
  1405 
  1406 (* !!x1 ... xn. ... ==> EX x1 ... xn. P x1 ... xn;
  1407    instantiates x1 ... xn with parameters x1 ... xn *)
  1408 fun ex_inst_tac i st =
  1409   let
  1410     val thy = Thm.theory_of_thm st;
  1411     val g = nth (prems_of st) (i - 1);
  1412     val params = Logic.strip_params g;
  1413     val exI' = Thm.lift_rule (Thm.cprem_of st i) exI;
  1414     val (_$(_$x)) = Logic.strip_assums_concl (hd (prems_of exI'));
  1415     val cx = cterm_of thy (fst (strip_comb x));
  1416 
  1417   in Seq.single (Library.foldl (fn (st,v) =>
  1418         Seq.hd
  1419         (compose_tac (false, cterm_instantiate
  1420                                 [(cx,cterm_of thy (list_abs (params,Bound v)))] exI',1)
  1421                 i st)) (st,((length params) - 1) downto 0))
  1422   end;
  1423 
  1424 fun extension_typedef name repT alphas thy =
  1425   let
  1426     fun get_thms thy name =
  1427       let
  1428         val SOME { Abs_induct = abs_induct,
  1429           Abs_inject=abs_inject, Abs_inverse = abs_inverse, ...} = TypedefPackage.get_info thy name;
  1430         val rewrite_rule = Tactic.rewrite_rule [rec_UNIV_I, rec_True_simp];
  1431       in map rewrite_rule [abs_inject, abs_inverse, abs_induct] end;
  1432   in
  1433     thy
  1434     |> TypecopyPackage.add_typecopy (suffix ext_typeN (Sign.base_name name), alphas) repT NONE
  1435     |-> (fn (name, _) => `(fn thy => get_thms thy name))
  1436   end;
  1437 
  1438 fun mixit convs refls =
  1439   let fun f ((res,lhs,rhs),refl) = ((refl,List.revAppend (lhs,refl::tl rhs))::res,hd rhs::lhs,tl rhs);
  1440   in #1 (Library.foldl f (([],[],convs),refls)) end;
  1441 
  1442 
  1443 fun extension_definition full name fields names alphas zeta moreT more vars thy =
  1444   let
  1445     val base = Sign.base_name;
  1446     val fieldTs = (map snd fields);
  1447     val alphas_zeta = alphas@[zeta];
  1448     val alphas_zetaTs = map (fn n => TFree (n, HOLogic.typeS)) alphas_zeta;
  1449     val vT = TFree (Name.variant alphas_zeta "'v", HOLogic.typeS);
  1450     val extT_name = suffix ext_typeN name
  1451     val extT = Type (extT_name, alphas_zetaTs);
  1452     val repT = foldr1 HOLogic.mk_prodT (fieldTs@[moreT]);
  1453     val fields_more = fields@[(full moreN,moreT)];
  1454     val fields_moreTs = fieldTs@[moreT];
  1455     val bfields_more = map (apfst base) fields_more;
  1456     val r = Free (rN,extT)
  1457     val len = length fields;
  1458     val idxms = 0 upto len;
  1459 
  1460     (* prepare declarations and definitions *)
  1461 
  1462     (*fields constructor*)
  1463     val ext_decl = (mk_extC (name,extT) fields_moreTs);
  1464     (*
  1465     val ext_spec = Const ext_decl :==
  1466          (foldr (uncurry lambda)
  1467             (mk_Abs name repT extT $ (foldr1 HOLogic.mk_prod (vars@[more]))) (vars@[more]))
  1468     *)
  1469     val ext_spec = list_comb (Const ext_decl,vars@[more]) :==
  1470          (mk_Abs name repT extT $ (foldr1 HOLogic.mk_prod (vars@[more])));
  1471 
  1472     fun mk_ext args = list_comb (Const ext_decl, args);
  1473 
  1474     (*destructors*)
  1475     val _ = timing_msg "record extension preparing definitions";
  1476     val dest_decls = map (mk_selC extT o (apfst (suffix ext_dest))) bfields_more;
  1477 
  1478     fun mk_dest_spec (i, (c,T)) =
  1479       let val snds = (funpow i HOLogic.mk_snd (mk_Rep name repT extT $ r))
  1480       in Const (mk_selC extT (suffix ext_dest c,T))
  1481          :== (lambda r (if i=len then snds else HOLogic.mk_fst snds))
  1482       end;
  1483     val dest_specs =
  1484       ListPair.map mk_dest_spec (idxms, fields_more);
  1485 
  1486     (*updates*)
  1487     val upd_decls = map (mk_updC updN extT) bfields_more;
  1488     fun mk_upd_spec (c,T) =
  1489       let
  1490         val args = map (fn (n,nT) => if n=c then Free (base c,T --> T)$
  1491                                                   (mk_sel r (suffix ext_dest n,nT))
  1492                                      else (mk_sel r (suffix ext_dest n,nT)))
  1493                        fields_more;
  1494       in Const (mk_updC updN extT (c,T))$(Free (base c,T --> T))$r
  1495           :== mk_ext args
  1496       end;
  1497     val upd_specs = map mk_upd_spec fields_more;
  1498 
  1499     (* 1st stage: defs_thy *)
  1500     fun mk_defs () =
  1501       thy
  1502         |> extension_typedef name repT (alphas@[zeta])
  1503         ||> Theory.add_consts_i
  1504               (map Syntax.no_syn ((apfst base ext_decl)::dest_decls@upd_decls))
  1505         ||>> PureThy.add_defs_i false (map Thm.no_attributes (ext_spec::dest_specs))
  1506         ||>> PureThy.add_defs_i false (map Thm.no_attributes upd_specs)
  1507         |> swap
  1508     val (defs_thy, (([abs_inject, abs_inverse, abs_induct],ext_def::dest_defs),upd_defs)) =
  1509         timeit_msg "record extension type/selector/update defs:" mk_defs;
  1510 
  1511 
  1512     (* prepare propositions *)
  1513     val _ = timing_msg "record extension preparing propositions";
  1514     val vars_more = vars@[more];
  1515     val named_vars_more = (names@[full moreN])~~vars_more;
  1516     val variants = map (fn (Free (x,_))=>x) vars_more;
  1517     val ext = mk_ext vars_more;
  1518     val s     = Free (rN, extT);
  1519     val w     = Free (wN, extT);
  1520     val P = Free (Name.variant variants "P", extT-->HOLogic.boolT);
  1521     val C = Free (Name.variant variants "C", HOLogic.boolT);
  1522 
  1523     val inject_prop =
  1524       let val vars_more' = map (fn (Free (x,T)) => Free (x ^ "'",T)) vars_more;
  1525       in All (map dest_Free (vars_more@vars_more'))
  1526           ((HOLogic.eq_const extT $
  1527             mk_ext vars_more$mk_ext vars_more')
  1528            ===
  1529            foldr1 HOLogic.mk_conj (map HOLogic.mk_eq (vars_more ~~ vars_more')))
  1530       end;
  1531 
  1532     val induct_prop =
  1533       (All (map dest_Free vars_more) (Trueprop (P $ ext)), Trueprop (P $ s));
  1534 
  1535     val cases_prop =
  1536       (All (map dest_Free vars_more)
  1537         (Trueprop (HOLogic.mk_eq (s,ext)) ==> Trueprop C))
  1538       ==> Trueprop C;
  1539 
  1540     (*destructors*)
  1541     val dest_conv_props =
  1542        map (fn (c, x as Free (_,T)) => mk_sel ext (suffix ext_dest c,T) === x) named_vars_more;
  1543 
  1544     (*updates*)
  1545     fun mk_upd_prop (i,(c,T)) =
  1546       let val x' = Free (Name.variant variants (base c ^ "'"),T --> T)
  1547           val args' = nth_map i  (K (x'$nth vars_more i)) vars_more
  1548       in mk_upd updN c x' ext === mk_ext args'  end;
  1549     val upd_conv_props = ListPair.map mk_upd_prop (idxms, fields_more);
  1550 
  1551     val surjective_prop =
  1552       let val args =
  1553            map (fn (c, Free (_,T)) => mk_sel s (suffix ext_dest c,T)) named_vars_more;
  1554       in s === mk_ext args end;
  1555 
  1556     val split_meta_prop =
  1557       let val P = Free (Name.variant variants "P", extT-->Term.propT) in
  1558         Logic.mk_equals
  1559          (All [dest_Free s] (P $ s), All (map dest_Free vars_more) (P $ ext))
  1560       end;
  1561 
  1562     fun prove stndrd = quick_and_dirty_prove stndrd defs_thy;
  1563     val prove_standard = quick_and_dirty_prove true defs_thy;
  1564     fun prove_simp stndrd simps =
  1565       let val tac = simp_all_tac HOL_ss simps
  1566       in fn prop => prove stndrd [] prop (K tac) end;
  1567 
  1568     fun inject_prf () = (prove_simp true [ext_def,abs_inject,Pair_eq] inject_prop);
  1569     val inject = timeit_msg "record extension inject proof:" inject_prf;
  1570 
  1571     fun induct_prf () =
  1572       let val (assm, concl) = induct_prop
  1573       in prove_standard [assm] concl (fn {prems, ...} =>
  1574            EVERY [try_param_tac rN abs_induct 1,
  1575                   simp_tac (HOL_ss addsimps [split_paired_all]) 1,
  1576                   resolve_tac (map (rewrite_rule [ext_def]) prems) 1])
  1577       end;
  1578     val induct = timeit_msg "record extension induct proof:" induct_prf;
  1579 
  1580     fun cases_prf_opt () =
  1581       let
  1582         val (_$(Pvar$_)) = concl_of induct;
  1583         val ind = cterm_instantiate
  1584                     [(cterm_of defs_thy Pvar, cterm_of defs_thy
  1585                             (lambda w (HOLogic.imp$HOLogic.mk_eq(r,w)$C)))]
  1586                     induct;
  1587         in standard (ObjectLogic.rulify (mp OF [ind, refl])) end;
  1588 
  1589     fun cases_prf_noopt () =
  1590         prove_standard [] cases_prop (fn prems =>
  1591          EVERY [asm_full_simp_tac (HOL_basic_ss addsimps [atomize_all, atomize_imp]) 1,
  1592                 try_param_tac rN induct 1,
  1593                 rtac impI 1,
  1594                 REPEAT (etac allE 1),
  1595                 etac mp 1,
  1596                 rtac refl 1])
  1597 
  1598     val cases_prf = quick_and_dirty_prf cases_prf_noopt cases_prf_opt;
  1599     val cases = timeit_msg "record extension cases proof:" cases_prf;
  1600 
  1601     fun dest_convs_prf () = map (prove_simp false
  1602                       ([ext_def,abs_inverse]@Pair_sel_convs@dest_defs)) dest_conv_props;
  1603     val dest_convs = timeit_msg "record extension dest_convs proof:" dest_convs_prf;
  1604     fun dest_convs_standard_prf () = map standard dest_convs;
  1605 
  1606     val dest_convs_standard =
  1607         timeit_msg "record extension dest_convs_standard proof:" dest_convs_standard_prf;
  1608 
  1609     fun upd_convs_prf_noopt () = map (prove_simp true (dest_convs_standard@upd_defs))
  1610                                        upd_conv_props;
  1611     fun upd_convs_prf_opt () =
  1612       let
  1613 
  1614         fun mkrefl (c,T) = Thm.reflexive
  1615                     (cterm_of defs_thy (Free (Name.variant variants (base c ^ "'"),T-->T)));
  1616         val refls = map mkrefl fields_more;
  1617         val dest_convs' = map mk_meta_eq dest_convs;
  1618         val map_eqs = map (uncurry Thm.combination) (refls ~~ dest_convs');
  1619         
  1620         val constr_refl = Thm.reflexive (cterm_of defs_thy (head_of ext));
  1621 
  1622         fun mkthm (udef,(fld_refl,thms)) =
  1623           let val bdyeq = Library.foldl (uncurry Thm.combination) (constr_refl,thms);
  1624                (* (|N=N (|N=N,M=M,K=K,more=more|)
  1625                     M=M (|N=N,M=M,K=K,more=more|)
  1626                     K=K'
  1627                     more = more (|N=N,M=M,K=K,more=more|) =
  1628                   (|N=N,M=M,K=K',more=more|)
  1629                 *)
  1630               val (_$(_$v$r)$_) = prop_of udef;
  1631               val (_$(v'$_)$_) = prop_of fld_refl;
  1632               val udef' = cterm_instantiate
  1633                             [(cterm_of defs_thy v,cterm_of defs_thy v'),
  1634                              (cterm_of defs_thy r,cterm_of defs_thy ext)] udef;
  1635           in  standard (Thm.transitive udef' bdyeq) end;
  1636       in map mkthm (rev upd_defs  ~~ (mixit dest_convs' map_eqs)) end;
  1637 
  1638     val upd_convs_prf = quick_and_dirty_prf upd_convs_prf_noopt upd_convs_prf_opt;
  1639 
  1640     val upd_convs =
  1641          timeit_msg "record extension upd_convs proof:" upd_convs_prf;
  1642 
  1643     fun surjective_prf () =
  1644       prove_standard [] surjective_prop (fn prems =>
  1645           (EVERY [try_param_tac rN induct 1,
  1646                   simp_tac (HOL_basic_ss addsimps dest_convs_standard) 1]));
  1647     val surjective = timeit_msg "record extension surjective proof:" surjective_prf;
  1648 
  1649     fun split_meta_prf () =
  1650         prove_standard [] split_meta_prop (fn prems =>
  1651          EVERY [rtac equal_intr_rule 1, norm_hhf_tac 1,
  1652                 etac meta_allE 1, atac 1,
  1653                 rtac (prop_subst OF [surjective]) 1,
  1654                 REPEAT (etac meta_allE 1), atac 1]);
  1655     val split_meta = timeit_msg "record extension split_meta proof:" split_meta_prf;
  1656 
  1657 
  1658     val (([inject',induct',cases',surjective',split_meta'], 
  1659           [dest_convs',upd_convs']),
  1660       thm_thy) =
  1661       defs_thy
  1662       |> (PureThy.add_thms o map Thm.no_attributes)
  1663            [("ext_inject", inject),
  1664             ("ext_induct", induct),
  1665             ("ext_cases", cases),
  1666             ("ext_surjective", surjective),
  1667             ("ext_split", split_meta)]
  1668       ||>> (PureThy.add_thmss o map Thm.no_attributes)
  1669               [("dest_convs",dest_convs_standard),("upd_convs",upd_convs)]
  1670 
  1671   in (thm_thy,extT,induct',inject',dest_convs',split_meta',upd_convs')
  1672   end;
  1673 
  1674 fun chunks []      []   = []
  1675   | chunks []      xs   = [xs]
  1676   | chunks (l::ls) xs  = Library.take (l,xs)::chunks ls (Library.drop (l,xs));
  1677 
  1678 fun chop_last [] = error "last: list should not be empty"
  1679   | chop_last [x] = ([],x)
  1680   | chop_last (x::xs) = let val (tl,l) = chop_last xs in (x::tl,l) end;
  1681 
  1682 fun subst_last s []      = error "subst_last: list should not be empty"
  1683   | subst_last s ([x])   = [s]
  1684   | subst_last s (x::xs) = (x::subst_last s xs);
  1685 
  1686 (* mk_recordT builds up the record type from the current extension tpye extT and a list
  1687  * of parent extensions, starting with the root of the record hierarchy
  1688 *)
  1689 fun mk_recordT extT =
  1690     fold_rev (fn (parent, Ts) => fn T => Type (parent, subst_last T Ts)) extT;
  1691 
  1692 
  1693 
  1694 fun obj_to_meta_all thm =
  1695   let
  1696     fun E thm = case (SOME (spec OF [thm]) handle THM _ => NONE) of
  1697                   SOME thm' => E thm'
  1698                 | NONE => thm;
  1699     val th1 = E thm;
  1700     val th2 = Drule.forall_intr_vars th1;
  1701   in th2 end;
  1702 
  1703 fun meta_to_obj_all thm =
  1704   let
  1705     val {sign, prop, ...} = rep_thm thm;
  1706     val params = Logic.strip_params prop;
  1707     val concl = HOLogic.dest_Trueprop (Logic.strip_assums_concl prop);
  1708     val ct = cterm_of sign
  1709       (HOLogic.mk_Trueprop (HOLogic.list_all (params, concl)));
  1710     val thm' = Seq.hd (REPEAT (rtac allI 1) (Thm.trivial ct));
  1711   in
  1712     Thm.implies_elim thm' thm
  1713   end;
  1714 
  1715 
  1716 
  1717 (* record_definition *)
  1718 fun record_definition (args, bname) parent (parents: parent_info list) raw_fields thy =
  1719   (* smlnj needs type annotation of parents *)
  1720   let
  1721     val sign = Theory.sign_of thy;
  1722 
  1723     val alphas = map fst args;
  1724     val name = Sign.full_name sign bname;
  1725     val full = Sign.full_name_path sign bname;
  1726     val base = Sign.base_name;
  1727 
  1728     val (bfields, field_syntax) = split_list (map (fn (x, T, mx) => ((x, T), mx)) raw_fields);
  1729 
  1730     val parent_fields = List.concat (map #fields parents);
  1731     val parent_chunks = map (length o #fields) parents;
  1732     val parent_names = map fst parent_fields;
  1733     val parent_types = map snd parent_fields;
  1734     val parent_fields_len = length parent_fields;
  1735     val parent_variants = Name.variant_list [moreN, rN, rN ^ "'", wN] (map base parent_names);
  1736     val parent_vars = ListPair.map Free (parent_variants, parent_types);
  1737     val parent_len = length parents;
  1738     val parents_idx = (map #name parents) ~~ (0 upto (parent_len - 1));
  1739 
  1740     val fields = map (apfst full) bfields;
  1741     val names = map fst fields;
  1742     val extN = full bname;
  1743     val types = map snd fields;
  1744     val alphas_fields = foldr add_typ_tfree_names [] types;
  1745     val alphas_ext = alphas inter alphas_fields;
  1746     val len = length fields;
  1747     val variants = Name.variant_list (moreN::rN::rN ^ "'"::wN::parent_variants) (map fst bfields);
  1748     val vars = ListPair.map Free (variants, types);
  1749     val named_vars = names ~~ vars;
  1750     val idxs = 0 upto (len - 1);
  1751     val idxms = 0 upto len;
  1752 
  1753     val all_fields = parent_fields @ fields;
  1754     val all_names = parent_names @ names;
  1755     val all_types = parent_types @ types;
  1756     val all_len = parent_fields_len + len;
  1757     val all_variants = parent_variants @ variants;
  1758     val all_vars = parent_vars @ vars;
  1759     val all_named_vars = (parent_names ~~ parent_vars) @ named_vars;
  1760 
  1761 
  1762     val zeta = Name.variant alphas "'z";
  1763     val moreT = TFree (zeta, HOLogic.typeS);
  1764     val more = Free (moreN, moreT);
  1765     val full_moreN = full moreN;
  1766     val bfields_more = bfields @ [(moreN,moreT)];
  1767     val fields_more = fields @ [(full_moreN,moreT)];
  1768     val vars_more = vars @ [more];
  1769     val named_vars_more = named_vars @[(full_moreN,more)];
  1770     val all_vars_more = all_vars @ [more];
  1771     val all_named_vars_more = all_named_vars @ [(full_moreN,more)];
  1772 
  1773     (* 1st stage: extension_thy *)
  1774     val (extension_thy,extT,ext_induct,ext_inject,ext_dest_convs,ext_split,u_convs) =
  1775       thy
  1776       |> Theory.add_path bname
  1777       |> extension_definition full extN fields names alphas_ext zeta moreT more vars;
  1778 
  1779     val _ = timing_msg "record preparing definitions";
  1780     val Type extension_scheme = extT;
  1781     val extension_name = unsuffix ext_typeN (fst extension_scheme);
  1782     val extension = let val (n,Ts) = extension_scheme in (n,subst_last HOLogic.unitT Ts) end;
  1783     val extension_names =
  1784          (map ((unsuffix ext_typeN) o fst o #extension) parents) @ [extN];
  1785     val extension_id = Library.foldl (op ^) ("",extension_names);
  1786 
  1787 
  1788     fun rec_schemeT n = mk_recordT (map #extension (prune n parents)) extT;
  1789     val rec_schemeT0 = rec_schemeT 0;
  1790 
  1791     fun recT n =
  1792       let val (c,Ts) = extension
  1793       in mk_recordT (map #extension (prune n parents)) (Type (c,subst_last HOLogic.unitT Ts))
  1794       end;
  1795     val recT0 = recT 0;
  1796 
  1797     fun mk_rec args n =
  1798       let val (args',more) = chop_last args;
  1799           fun mk_ext' (((name,T),args),more) = mk_ext (name,T) (args@[more]);
  1800           fun build Ts =
  1801            foldr mk_ext' more (prune n (extension_names ~~ Ts ~~ (chunks parent_chunks args')))
  1802       in
  1803         if more = HOLogic.unit
  1804         then build (map recT (0 upto parent_len))
  1805         else build (map rec_schemeT (0 upto parent_len))
  1806       end;
  1807 
  1808     val r_rec0 = mk_rec all_vars_more 0;
  1809     val r_rec_unit0 = mk_rec (all_vars@[HOLogic.unit]) 0;
  1810 
  1811     fun r n = Free (rN, rec_schemeT n)
  1812     val r0 = r 0;
  1813     fun r_unit n = Free (rN, recT n)
  1814     val r_unit0 = r_unit 0;
  1815     val w = Free (wN, rec_schemeT 0)
  1816 
  1817     (* prepare print translation functions *)
  1818     val field_tr's =
  1819       print_translation (distinct (op =)
  1820         (List.concat (map NameSpace.accesses' (full_moreN :: names))));
  1821 
  1822     val adv_ext_tr's =
  1823     let
  1824       val trnames = NameSpace.accesses' extN;
  1825     in map (gen_record_tr') trnames end;
  1826 
  1827     val adv_record_type_abbr_tr's =
  1828       let val trnames = NameSpace.accesses' (hd extension_names);
  1829           val lastExt = (unsuffix ext_typeN (fst extension));
  1830       in map (gen_record_type_abbr_tr' name alphas zeta lastExt rec_schemeT0) trnames
  1831       end;
  1832 
  1833     val adv_record_type_tr's =
  1834       let val trnames = if parent_len > 0 then NameSpace.accesses' extN else [];
  1835                         (* avoid conflict with adv_record_type_abbr_tr's *)
  1836       in map (gen_record_type_tr') trnames
  1837       end;
  1838 
  1839 
  1840     (* prepare declarations *)
  1841 
  1842     val sel_decls = map (mk_selC rec_schemeT0) bfields_more;
  1843     val upd_decls = map (mk_updC updateN rec_schemeT0) bfields_more;
  1844     val make_decl = (makeN, all_types ---> recT0);
  1845     val fields_decl = (fields_selN, types ---> Type extension);
  1846     val extend_decl = (extendN, recT0 --> moreT --> rec_schemeT0);
  1847     val truncate_decl = (truncateN, rec_schemeT0 --> recT0);
  1848 
  1849     (* prepare definitions *)
  1850 
  1851     fun parent_more s =
  1852          if null parents then s
  1853          else mk_sel s (NameSpace.qualified (#name (List.last parents)) moreN, extT);
  1854 
  1855     fun parent_more_upd v s =
  1856       if null parents then v$s
  1857       else let val mp = NameSpace.qualified (#name (List.last parents)) moreN;
  1858            in mk_upd updateN mp v s end;
  1859 
  1860     (*record (scheme) type abbreviation*)
  1861     val recordT_specs =
  1862       [(suffix schemeN bname, alphas @ [zeta], rec_schemeT0, Syntax.NoSyn),
  1863         (bname, alphas, recT0, Syntax.NoSyn)];
  1864 
  1865     (*selectors*)
  1866     fun mk_sel_spec (c,T) =
  1867          Const (mk_selC rec_schemeT0 (c,T))
  1868           :== (lambda r0 (Const (mk_selC extT (suffix ext_dest c,T))$parent_more r0));
  1869     val sel_specs = map mk_sel_spec fields_more;
  1870 
  1871     (*updates*)
  1872 
  1873     fun mk_upd_spec (c,T) =
  1874       let
  1875         val new = mk_upd' updN c (Free (base c,T-->T)) extT(*(parent_more r0)*);
  1876       in Const (mk_updC updateN rec_schemeT0 (c,T))$(Free (base c,T-->T))$r0
  1877           :== (parent_more_upd new r0)
  1878       end;
  1879     val upd_specs = map mk_upd_spec fields_more;
  1880 
  1881     (*derived operations*)
  1882     val make_spec = Const (full makeN, all_types ---> recT0) $$ all_vars :==
  1883       mk_rec (all_vars @ [HOLogic.unit]) 0;
  1884     val fields_spec = Const (full fields_selN, types ---> Type extension) $$ vars :==
  1885       mk_rec (all_vars @ [HOLogic.unit]) parent_len;
  1886     val extend_spec =
  1887       Const (full extendN, recT0-->moreT-->rec_schemeT0) $ r_unit0 $ more :==
  1888       mk_rec ((map (mk_sel r_unit0) all_fields) @ [more]) 0;
  1889     val truncate_spec = Const (full truncateN, rec_schemeT0 --> recT0) $ r0 :==
  1890       mk_rec ((map (mk_sel r0) all_fields) @ [HOLogic.unit]) 0;
  1891 
  1892     (* 2st stage: defs_thy *)
  1893 
  1894     fun mk_defs () =
  1895       extension_thy
  1896         |> Theory.add_trfuns
  1897             ([],[],field_tr's, [])
  1898         |> Theory.add_advanced_trfuns
  1899             ([],[],adv_ext_tr's @ adv_record_type_tr's @ adv_record_type_abbr_tr's,[])
  1900         |> Theory.parent_path
  1901         |> Theory.add_tyabbrs_i recordT_specs
  1902         |> Theory.add_path bname
  1903         |> Theory.add_consts_i
  1904             (map2 (fn (x, T) => fn mx => (x, T, mx)) sel_decls (field_syntax @ [Syntax.NoSyn]))
  1905         |> (Theory.add_consts_i o map Syntax.no_syn)
  1906             (upd_decls @ [make_decl, fields_decl, extend_decl, truncate_decl])
  1907         |> ((PureThy.add_defs_i false o map Thm.no_attributes) sel_specs)
  1908         ||>> ((PureThy.add_defs_i false o map Thm.no_attributes) upd_specs)
  1909         ||>> ((PureThy.add_defs_i false o map Thm.no_attributes)
  1910                [make_spec, fields_spec, extend_spec, truncate_spec])
  1911         |> swap
  1912     val (defs_thy,((sel_defs,upd_defs),derived_defs)) =
  1913         timeit_msg "record trfuns/tyabbrs/selectors/updates/make/fields/extend/truncate defs:"
  1914          mk_defs;
  1915 
  1916 
  1917     (* prepare propositions *)
  1918     val _ = timing_msg "record preparing propositions";
  1919     val P = Free (Name.variant all_variants "P", rec_schemeT0-->HOLogic.boolT);
  1920     val C = Free (Name.variant all_variants "C", HOLogic.boolT);
  1921     val P_unit = Free (Name.variant all_variants "P", recT0-->HOLogic.boolT);
  1922 
  1923     (*selectors*)
  1924     val sel_conv_props =
  1925        map (fn (c, x as Free (_,T)) => mk_sel r_rec0 (c,T) === x) named_vars_more;
  1926 
  1927     (*updates*)
  1928     fun mk_upd_prop (i,(c,T)) =
  1929       let val x' = Free (Name.variant all_variants (base c ^ "'"),T-->T);
  1930           val n = parent_fields_len + i;
  1931           val args' = nth_map n (K (x'$nth all_vars_more n)) all_vars_more
  1932       in mk_upd updateN c x' r_rec0 === mk_rec args' 0  end;
  1933     val upd_conv_props = ListPair.map mk_upd_prop (idxms, fields_more);
  1934 
  1935     (*induct*)
  1936     val induct_scheme_prop =
  1937       All (map dest_Free all_vars_more) (Trueprop (P $ r_rec0)) ==> Trueprop (P $ r0);
  1938     val induct_prop =
  1939       (All (map dest_Free all_vars) (Trueprop (P_unit $ r_rec_unit0)),
  1940        Trueprop (P_unit $ r_unit0));
  1941 
  1942     (*surjective*)
  1943     val surjective_prop =
  1944       let val args = map (fn (c,Free (_,T)) => mk_sel r0 (c,T)) all_named_vars_more
  1945       in r0 === mk_rec args 0 end;
  1946 
  1947     (*cases*)
  1948     val cases_scheme_prop =
  1949       (All (map dest_Free all_vars_more)
  1950         (Trueprop (HOLogic.mk_eq (r0,r_rec0)) ==> Trueprop C))
  1951       ==> Trueprop C;
  1952 
  1953     val cases_prop =
  1954       (All (map dest_Free all_vars)
  1955         (Trueprop (HOLogic.mk_eq (r_unit0,r_rec_unit0)) ==> Trueprop C))
  1956        ==> Trueprop C;
  1957 
  1958     (*split*)
  1959     val split_meta_prop =
  1960       let val P = Free (Name.variant all_variants "P", rec_schemeT0-->Term.propT) in
  1961         Logic.mk_equals
  1962          (All [dest_Free r0] (P $ r0), All (map dest_Free all_vars_more) (P $ r_rec0))
  1963       end;
  1964 
  1965     val split_object_prop =
  1966       let fun ALL vs t = foldr (fn ((v,T),t) => HOLogic.mk_all (v,T,t)) t vs
  1967       in (ALL [dest_Free r0] (P $ r0)) === (ALL (map dest_Free all_vars_more) (P $ r_rec0))
  1968       end;
  1969 
  1970 
  1971     val split_ex_prop =
  1972       let fun EX vs t = foldr (fn ((v,T),t) => HOLogic.mk_exists (v,T,t)) t vs
  1973       in (EX [dest_Free r0] (P $ r0)) === (EX (map dest_Free all_vars_more) (P $ r_rec0))
  1974       end;
  1975 
  1976     (*equality*)
  1977     val equality_prop =
  1978       let
  1979         val s' = Free (rN ^ "'", rec_schemeT0)
  1980         fun mk_sel_eq (c,Free (_,T)) =  mk_sel r0 (c,T) === mk_sel s' (c,T)
  1981         val seleqs = map mk_sel_eq all_named_vars_more
  1982       in All (map dest_Free [r0,s']) (Logic.list_implies (seleqs,r0 === s')) end;
  1983 
  1984     (* 3rd stage: thms_thy *)
  1985 
  1986     fun prove stndrd = quick_and_dirty_prove stndrd defs_thy;
  1987     val prove_standard = quick_and_dirty_prove true defs_thy;
  1988 
  1989     fun prove_simp stndrd ss simps =
  1990       let val tac = simp_all_tac ss simps
  1991       in fn prop => prove stndrd [] prop (K tac) end;
  1992 
  1993     val ss = get_simpset defs_thy;
  1994 
  1995     fun sel_convs_prf () = map (prove_simp false ss
  1996                            (sel_defs@ext_dest_convs)) sel_conv_props;
  1997     val sel_convs = timeit_msg "record sel_convs proof:" sel_convs_prf;
  1998     fun sel_convs_standard_prf () = map standard sel_convs
  1999     val sel_convs_standard =
  2000           timeit_msg "record sel_convs_standard proof:" sel_convs_standard_prf;
  2001 
  2002     fun upd_convs_prf () =
  2003           map (prove_simp true ss (upd_defs@u_convs)) upd_conv_props;
  2004 
  2005     val upd_convs = timeit_msg "record upd_convs proof:" upd_convs_prf;
  2006 
  2007     val parent_induct = if null parents then [] else [#induct (hd (rev parents))];
  2008 
  2009     fun induct_scheme_prf () = prove_standard [] induct_scheme_prop (fn prems =>
  2010           (EVERY [if null parent_induct
  2011                   then all_tac else try_param_tac rN (hd parent_induct) 1,
  2012                   try_param_tac rN ext_induct 1,
  2013                   asm_simp_tac HOL_basic_ss 1]));
  2014     val induct_scheme = timeit_msg "record induct_scheme proof:" induct_scheme_prf;
  2015 
  2016     fun induct_prf () =
  2017       let val (assm, concl) = induct_prop;
  2018       in
  2019         prove_standard [assm] concl (fn {prems, ...} =>
  2020           try_param_tac rN induct_scheme 1
  2021           THEN try_param_tac "more" unit_induct 1
  2022           THEN resolve_tac prems 1)
  2023       end;
  2024     val induct = timeit_msg "record induct proof:" induct_prf;
  2025 
  2026     fun surjective_prf () =
  2027       prove_standard [] surjective_prop (fn prems =>
  2028           (EVERY [try_param_tac rN induct_scheme 1,
  2029                   simp_tac (ss addsimps sel_convs_standard) 1]))
  2030     val surjective = timeit_msg "record surjective proof:" surjective_prf;
  2031 
  2032     fun cases_scheme_prf_opt () =
  2033       let
  2034         val (_$(Pvar$_)) = concl_of induct_scheme;
  2035         val ind = cterm_instantiate
  2036                     [(cterm_of defs_thy Pvar, cterm_of defs_thy
  2037                             (lambda w (HOLogic.imp$HOLogic.mk_eq(r0,w)$C)))]
  2038                     induct_scheme;
  2039         in standard (ObjectLogic.rulify (mp OF [ind, refl])) end;
  2040 
  2041     fun cases_scheme_prf_noopt () =
  2042         prove_standard [] cases_scheme_prop (fn prems =>
  2043          EVERY [asm_full_simp_tac (HOL_basic_ss addsimps [atomize_all, atomize_imp]) 1,
  2044                try_param_tac rN induct_scheme 1,
  2045                rtac impI 1,
  2046                REPEAT (etac allE 1),
  2047                etac mp 1,
  2048                rtac refl 1])
  2049     val cases_scheme_prf = quick_and_dirty_prf cases_scheme_prf_noopt cases_scheme_prf_opt;
  2050     val cases_scheme = timeit_msg "record cases_scheme proof:" cases_scheme_prf;
  2051 
  2052     fun cases_prf () =
  2053       prove_standard [] cases_prop  (fn _ =>
  2054         try_param_tac rN cases_scheme 1
  2055         THEN simp_all_tac HOL_basic_ss [unit_all_eq1]);
  2056     val cases = timeit_msg "record cases proof:" cases_prf;
  2057 
  2058     fun split_meta_prf () =
  2059         prove false [] split_meta_prop (fn prems =>
  2060          EVERY [rtac equal_intr_rule 1, norm_hhf_tac 1,
  2061                 etac meta_allE 1, atac 1,
  2062                 rtac (prop_subst OF [surjective]) 1,
  2063                 REPEAT (etac meta_allE 1), atac 1]);
  2064     val split_meta = timeit_msg "record split_meta proof:" split_meta_prf;
  2065     val split_meta_standard = standard split_meta;
  2066 
  2067     fun split_object_prf_opt () =
  2068       let
  2069         val cPI= cterm_of defs_thy (lambda r0 (Trueprop (P$r0)));
  2070         val (_$Abs(_,_,P$_)) = fst (Logic.dest_equals (concl_of split_meta_standard));
  2071         val cP = cterm_of defs_thy P;
  2072         val split_meta' = cterm_instantiate [(cP,cPI)] split_meta_standard;
  2073         val (l,r) = HOLogic.dest_eq (HOLogic.dest_Trueprop split_object_prop);
  2074         val cl = cterm_of defs_thy (HOLogic.mk_Trueprop l);
  2075         val cr = cterm_of defs_thy (HOLogic.mk_Trueprop r);
  2076         val thl = assume cl                 (*All r. P r*) (* 1 *)
  2077                 |> obj_to_meta_all          (*!!r. P r*)
  2078                 |> equal_elim split_meta'   (*!!n m more. P (ext n m more)*)
  2079                 |> meta_to_obj_all          (*All n m more. P (ext n m more)*) (* 2*)
  2080                 |> implies_intr cl          (* 1 ==> 2 *)
  2081         val thr = assume cr                           (*All n m more. P (ext n m more)*)
  2082                 |> obj_to_meta_all                    (*!!n m more. P (ext n m more)*)
  2083                 |> equal_elim (symmetric split_meta') (*!!r. P r*)
  2084                 |> meta_to_obj_all                    (*All r. P r*)
  2085                 |> implies_intr cr                    (* 2 ==> 1 *)
  2086      in standard (thr COMP (thl COMP iffI)) end;
  2087 
  2088     fun split_object_prf_noopt () =
  2089         prove_standard [] split_object_prop (fn prems =>
  2090          EVERY [rtac iffI 1,
  2091                 REPEAT (rtac allI 1), etac allE 1, atac 1,
  2092                 rtac allI 1, rtac induct_scheme 1,REPEAT (etac allE 1),atac 1]);
  2093 
  2094     val split_object_prf = quick_and_dirty_prf split_object_prf_noopt split_object_prf_opt;
  2095     val split_object = timeit_msg "record split_object proof:" split_object_prf;
  2096 
  2097 
  2098     fun split_ex_prf () =
  2099         prove_standard [] split_ex_prop (fn prems =>
  2100           EVERY [rtac iffI 1,
  2101                    etac exE 1,
  2102                    simp_tac (HOL_basic_ss addsimps [split_meta_standard]) 1,
  2103                    ex_inst_tac 1,
  2104                    (*REPEAT (rtac exI 1),*)
  2105                    atac 1,
  2106                  REPEAT (etac exE 1),
  2107                  rtac exI 1,
  2108                  atac 1]);
  2109     val split_ex = timeit_msg "record split_ex proof:" split_ex_prf;
  2110 
  2111     fun equality_tac thms =
  2112       let val (s'::s::eqs) = rev thms;
  2113           val ss' = ss addsimps (s'::s::sel_convs_standard);
  2114           val eqs' = map (simplify ss') eqs;
  2115       in simp_tac (HOL_basic_ss addsimps (s'::s::eqs')) 1 end;
  2116 
  2117    fun equality_prf () = prove_standard [] equality_prop (fn _ =>
  2118       fn st => let val [s, s'] = map #1 (rev (Tactic.innermost_params 1 st)) in
  2119         st |> (res_inst_tac [(rN, s)] cases_scheme 1
  2120         THEN res_inst_tac [(rN, s')] cases_scheme 1
  2121         THEN (METAHYPS equality_tac 1))
  2122              (* simp_all_tac ss (sel_convs) would also work but is less efficient *)
  2123       end);
  2124      val equality = timeit_msg "record equality proof:" equality_prf;
  2125 
  2126     val ((([sel_convs',upd_convs',sel_defs',upd_defs',[split_meta',split_object',split_ex'],derived_defs'],
  2127             [surjective',equality']),[induct_scheme',induct',cases_scheme',cases']), thms_thy) =
  2128       defs_thy
  2129       |> (PureThy.add_thmss o map Thm.no_attributes)
  2130          [("select_convs", sel_convs_standard),
  2131           ("update_convs", upd_convs),
  2132           ("select_defs", sel_defs),
  2133           ("update_defs", upd_defs),
  2134           ("splits", [split_meta_standard,split_object,split_ex]),
  2135           ("defs", derived_defs)]
  2136       ||>> (PureThy.add_thms o map Thm.no_attributes)
  2137           [("surjective", surjective),
  2138            ("equality", equality)]
  2139       ||>> PureThy.add_thms
  2140         [(("induct_scheme", induct_scheme), induct_type_global (suffix schemeN name)),
  2141          (("induct", induct), induct_type_global name),
  2142          (("cases_scheme", cases_scheme), cases_type_global (suffix schemeN name)),
  2143          (("cases", cases), cases_type_global name)];
  2144 
  2145 
  2146     val sel_upd_simps = sel_convs' @ upd_convs';
  2147     val iffs = [ext_inject]
  2148     val final_thy =
  2149       thms_thy
  2150       |> (snd oo PureThy.add_thmss)
  2151           [(("simps", sel_upd_simps), [Simplifier.simp_add]),
  2152            (("iffs",iffs), [iff_add])]
  2153       |> put_record name (make_record_info args parent fields extension induct_scheme')
  2154       |> put_sel_upd (names @ [full_moreN]) sel_upd_simps
  2155       |> add_record_equalities extension_id equality'
  2156       |> add_extinjects ext_inject
  2157       |> add_extsplit extension_name ext_split
  2158       |> add_record_splits extension_id (split_meta',split_object',split_ex',induct_scheme')
  2159       |> add_extfields extension_name (fields @ [(full_moreN,moreT)])
  2160       |> add_fieldext (extension_name,snd extension) (names @ [full_moreN])
  2161       |> Theory.parent_path;
  2162 
  2163   in final_thy
  2164   end;
  2165 
  2166 (* add_record *)
  2167 
  2168 (*we do all preparations and error checks here, deferring the real
  2169   work to record_definition*)
  2170 fun gen_add_record prep_typ prep_raw_parent (params, bname) raw_parent raw_fields thy =
  2171   let
  2172     val _ = Theory.requires thy "Record" "record definitions";
  2173     val sign = Theory.sign_of thy;
  2174     val _ = message ("Defining record " ^ quote bname ^ " ...");
  2175 
  2176 
  2177     (* parents *)
  2178 
  2179     fun prep_inst T = snd (cert_typ sign ([], T));
  2180 
  2181     val parent = Option.map (apfst (map prep_inst) o prep_raw_parent sign) raw_parent
  2182       handle ERROR msg => cat_error msg ("The error(s) above in parent record specification");
  2183     val parents = add_parents thy parent [];
  2184 
  2185     val init_env =
  2186       (case parent of
  2187         NONE => []
  2188       | SOME (types, _) => foldr Term.add_typ_tfrees [] types);
  2189 
  2190 
  2191     (* fields *)
  2192 
  2193     fun prep_field (env, (c, raw_T, mx)) =
  2194       let val (env', T) = prep_typ sign (env, raw_T) handle ERROR msg =>
  2195         cat_error msg ("The error(s) above occured in field " ^ quote c)
  2196       in (env', (c, T, mx)) end;
  2197 
  2198     val (envir, bfields) = foldl_map prep_field (init_env, raw_fields);
  2199     val envir_names = map fst envir;
  2200 
  2201 
  2202     (* args *)
  2203 
  2204     val defaultS = Sign.defaultS sign;
  2205     val args = map (fn x => (x, AList.lookup (op =) envir x |> the_default defaultS)) params;
  2206 
  2207 
  2208     (* errors *)
  2209 
  2210     val name = Sign.full_name sign bname;
  2211     val err_dup_record =
  2212       if is_none (get_record thy name) then []
  2213       else ["Duplicate definition of record " ^ quote name];
  2214 
  2215     val err_dup_parms =
  2216       (case duplicates (op =) params of
  2217         [] => []
  2218       | dups => ["Duplicate parameter(s) " ^ commas dups]);
  2219 
  2220     val err_extra_frees =
  2221       (case subtract (op =) params envir_names of
  2222         [] => []
  2223       | extras => ["Extra free type variable(s) " ^ commas extras]);
  2224 
  2225     val err_no_fields = if null bfields then ["No fields present"] else [];
  2226 
  2227     val err_dup_fields =
  2228       (case duplicates (op =) (map #1 bfields) of
  2229         [] => []
  2230       | dups => ["Duplicate field(s) " ^ commas_quote dups]);
  2231 
  2232     val err_bad_fields =
  2233       if forall (not_equal moreN o #1) bfields then []
  2234       else ["Illegal field name " ^ quote moreN];
  2235 
  2236     val err_dup_sorts =
  2237       (case duplicates (op =) envir_names of
  2238         [] => []
  2239       | dups => ["Inconsistent sort constraints for " ^ commas dups]);
  2240 
  2241     val errs =
  2242       err_dup_record @ err_dup_parms @ err_extra_frees @ err_no_fields @
  2243       err_dup_fields @ err_bad_fields @ err_dup_sorts;
  2244   in
  2245     if null errs then () else error (cat_lines errs)  ;
  2246     thy |> record_definition (args, bname) parent parents bfields
  2247   end
  2248   handle ERROR msg => cat_error msg ("Failed to define record " ^ quote bname);
  2249 
  2250 val add_record = gen_add_record read_typ read_raw_parent;
  2251 val add_record_i = gen_add_record cert_typ (K I);
  2252 
  2253 (* setup theory *)
  2254 
  2255 val setup =
  2256   RecordsData.init #>
  2257   Theory.add_trfuns ([], parse_translation, [], []) #>
  2258   Theory.add_advanced_trfuns ([], adv_parse_translation, [], []) #>
  2259   (fn thy => (Simplifier.change_simpset_of thy
  2260     (fn ss => ss addsimprocs [record_simproc, record_upd_simproc, record_eq_simproc]); thy));
  2261 
  2262 (* outer syntax *)
  2263 
  2264 local structure P = OuterParse and K = OuterKeyword in
  2265 
  2266 val record_decl =
  2267   P.type_args -- P.name --
  2268     (P.$$$ "=" |-- Scan.option (P.typ --| P.$$$ "+") -- Scan.repeat1 P.const);
  2269 
  2270 val recordP =  
  2271   OuterSyntax.command "record" "define extensible record" K.thy_decl
  2272     (record_decl >> (fn (x, (y, z)) => Toplevel.theory (add_record x y z)));
  2273 
  2274 val _ = OuterSyntax.add_parsers [recordP];
  2275 
  2276 end;
  2277 
  2278 end;
  2279 
  2280 
  2281 structure BasicRecordPackage: BASIC_RECORD_PACKAGE = RecordPackage;
  2282 open BasicRecordPackage;