src/HOL/Tools/record.ML
author wenzelm
Sun Feb 21 22:35:02 2010 +0100 (2010-02-21)
changeset 35262 9ea4445d2ccf
parent 35240 663436ed5bd6
child 35363 09489d8ffece
permissions -rw-r--r--
slightly more abstract syntax mark/unmark operations;
     1 (*  Title:      HOL/Tools/record.ML
     2     Author:     Wolfgang Naraschewski, TU Muenchen
     3     Author:     Markus Wenzel, TU Muenchen
     4     Author:     Norbert Schirmer, TU Muenchen
     5     Author:     Thomas Sewell, NICTA
     6 
     7 Extensible records with structural subtyping.
     8 *)
     9 
    10 signature BASIC_RECORD =
    11 sig
    12   type record_info =
    13    {args: (string * sort) list,
    14     parent: (typ list * string) option,
    15     fields: (string * typ) list,
    16     extension: (string * typ list),
    17     ext_induct: thm, ext_inject: thm, ext_surjective: thm, ext_split: thm, ext_def: thm,
    18     select_convs: thm list, update_convs: thm list, select_defs: thm list, update_defs: thm list,
    19     fold_congs: thm list, unfold_congs: thm list, splits: thm list, defs: thm list,
    20     surjective: thm, equality: thm, induct_scheme: thm, induct: thm, cases_scheme: thm,
    21     cases: thm, simps: thm list, iffs: thm list}
    22   val get_record: theory -> string -> record_info option
    23   val the_record: theory -> string -> record_info
    24   val record_simproc: simproc
    25   val record_eq_simproc: simproc
    26   val record_upd_simproc: simproc
    27   val record_split_simproc: (term -> int) -> simproc
    28   val record_ex_sel_eq_simproc: simproc
    29   val record_split_tac: int -> tactic
    30   val record_split_simp_tac: thm list -> (term -> int) -> int -> tactic
    31   val record_split_name: string
    32   val record_split_wrapper: string * wrapper
    33   val print_record_type_abbr: bool Unsynchronized.ref
    34   val print_record_type_as_fields: bool Unsynchronized.ref
    35 end;
    36 
    37 signature RECORD =
    38 sig
    39   include BASIC_RECORD
    40   val timing: bool Unsynchronized.ref
    41   val updateN: string
    42   val ext_typeN: string
    43   val extN: string
    44   val makeN: string
    45   val moreN: string
    46   val last_extT: typ -> (string * typ list) option
    47   val dest_recTs: typ -> (string * typ list) list
    48   val get_extT_fields: theory -> typ -> (string * typ) list * (string * typ)
    49   val get_recT_fields: theory -> typ -> (string * typ) list * (string * typ)
    50   val get_parent: theory -> string -> (typ list * string) option
    51   val get_extension: theory -> string -> (string * typ list) option
    52   val get_extinjects: theory -> thm list
    53   val get_simpset: theory -> simpset
    54   val print_records: theory -> unit
    55   val read_typ: Proof.context -> string -> (string * sort) list -> typ * (string * sort) list
    56   val cert_typ: Proof.context -> typ -> (string * sort) list -> typ * (string * sort) list
    57   val add_record: bool -> string list * binding -> (typ list * string) option ->
    58     (binding * typ * mixfix) list -> theory -> theory
    59   val add_record_cmd: bool -> string list * binding -> string option ->
    60     (binding * string * mixfix) list -> theory -> theory
    61   val setup: theory -> theory
    62 end;
    63 
    64 
    65 signature ISO_TUPLE_SUPPORT =
    66 sig
    67   val add_iso_tuple_type: bstring * string list -> typ * typ -> theory -> (term * term) * theory
    68   val mk_cons_tuple: term * term -> term
    69   val dest_cons_tuple: term -> term * term
    70   val iso_tuple_intros_tac: int -> tactic
    71   val named_cterm_instantiate: (string * cterm) list -> thm -> thm
    72 end;
    73 
    74 structure Iso_Tuple_Support: ISO_TUPLE_SUPPORT =
    75 struct
    76 
    77 val isoN = "_Tuple_Iso";
    78 
    79 val iso_tuple_intro = @{thm isomorphic_tuple_intro};
    80 val iso_tuple_intros = Tactic.build_net @{thms isomorphic_tuple.intros};
    81 
    82 val tuple_iso_tuple = (@{const_name tuple_iso_tuple}, @{thm tuple_iso_tuple});
    83 
    84 fun named_cterm_instantiate values thm =
    85   let
    86     fun match name ((name', _), _) = name = name';
    87     fun getvar name =
    88       (case find_first (match name) (Term.add_vars (prop_of thm) []) of
    89         SOME var => cterm_of (theory_of_thm thm) (Var var)
    90       | NONE => raise THM ("named_cterm_instantiate: " ^ name, 0, [thm]));
    91   in
    92     cterm_instantiate (map (apfst getvar) values) thm
    93   end;
    94 
    95 structure Iso_Tuple_Thms = Theory_Data
    96 (
    97   type T = thm Symtab.table;
    98   val empty = Symtab.make [tuple_iso_tuple];
    99   val extend = I;
   100   fun merge data = Symtab.merge Thm.eq_thm_prop data;   (* FIXME handle Symtab.DUP ?? *)
   101 );
   102 
   103 fun do_typedef name repT alphas thy =
   104   let
   105     fun get_thms thy name =
   106       let
   107         val {Rep_inject = rep_inject, Abs_name = absN, abs_type = absT,
   108           Abs_inverse = abs_inverse, ...} = Typedef.the_info thy name;
   109         val rewrite_rule =
   110           MetaSimplifier.rewrite_rule [@{thm iso_tuple_UNIV_I}, @{thm iso_tuple_True_simp}];
   111       in
   112         (map rewrite_rule [rep_inject, abs_inverse], Const (absN, repT --> absT), absT)
   113       end;
   114   in
   115     thy
   116     |> Typecopy.typecopy (Binding.name name, alphas) repT NONE
   117     |-> (fn (name, _) => `(fn thy => get_thms thy name))
   118   end;
   119 
   120 fun mk_cons_tuple (left, right) =
   121   let
   122     val (leftT, rightT) = (fastype_of left, fastype_of right);
   123     val prodT = HOLogic.mk_prodT (leftT, rightT);
   124     val isomT = Type (@{type_name tuple_isomorphism}, [prodT, leftT, rightT]);
   125   in
   126     Const (@{const_name iso_tuple_cons}, isomT --> leftT --> rightT --> prodT) $
   127       Const (fst tuple_iso_tuple, isomT) $ left $ right
   128   end;
   129 
   130 fun dest_cons_tuple (Const (@{const_name iso_tuple_cons}, _) $ Const _ $ t $ u) = (t, u)
   131   | dest_cons_tuple t = raise TERM ("dest_cons_tuple", [t]);
   132 
   133 fun add_iso_tuple_type (name, alphas) (leftT, rightT) thy =
   134   let
   135     val repT = HOLogic.mk_prodT (leftT, rightT);
   136 
   137     val (([rep_inject, abs_inverse], absC, absT), typ_thy) =
   138       thy
   139       |> do_typedef name repT alphas
   140       ||> Sign.add_path name;
   141 
   142     (*construct a type and body for the isomorphism constant by
   143       instantiating the theorem to which the definition will be applied*)
   144     val intro_inst =
   145       rep_inject RS named_cterm_instantiate [("abst", cterm_of typ_thy absC)] iso_tuple_intro;
   146     val (_, body) = Logic.dest_equals (List.last (prems_of intro_inst));
   147     val isomT = fastype_of body;
   148     val isom_binding = Binding.name (name ^ isoN);
   149     val isom_name = Sign.full_name typ_thy isom_binding;
   150     val isom = Const (isom_name, isomT);
   151 
   152     val ([isom_def], cdef_thy) =
   153       typ_thy
   154       |> Sign.declare_const ((isom_binding, isomT), NoSyn) |> snd
   155       |> PureThy.add_defs false
   156         [((Binding.conceal (Thm.def_binding isom_binding), Logic.mk_equals (isom, body)), [])];
   157 
   158     val iso_tuple = isom_def RS (abs_inverse RS (rep_inject RS iso_tuple_intro));
   159     val cons = Const (@{const_name iso_tuple_cons}, isomT --> leftT --> rightT --> absT);
   160 
   161     val thm_thy =
   162       cdef_thy
   163       |> Iso_Tuple_Thms.map (Symtab.insert Thm.eq_thm_prop (isom_name, iso_tuple))
   164       |> Sign.restore_naming thy
   165       |> Code.add_default_eqn isom_def;
   166   in
   167     ((isom, cons $ isom), thm_thy)
   168   end;
   169 
   170 val iso_tuple_intros_tac =
   171   resolve_from_net_tac iso_tuple_intros THEN'
   172   CSUBGOAL (fn (cgoal, i) =>
   173     let
   174       val thy = Thm.theory_of_cterm cgoal;
   175       val goal = Thm.term_of cgoal;
   176 
   177       val isthms = Iso_Tuple_Thms.get thy;
   178       fun err s t = raise TERM ("iso_tuple_intros_tac: " ^ s, [t]);
   179 
   180       val goal' = Envir.beta_eta_contract goal;
   181       val is =
   182         (case goal' of
   183           Const (@{const_name Trueprop}, _) $
   184             (Const (@{const_name isomorphic_tuple}, _) $ Const is) => is
   185         | _ => err "unexpected goal format" goal');
   186       val isthm =
   187         (case Symtab.lookup isthms (#1 is) of
   188           SOME isthm => isthm
   189         | NONE => err "no thm found for constant" (Const is));
   190     in rtac isthm i end);
   191 
   192 end;
   193 
   194 
   195 structure Record: RECORD =
   196 struct
   197 
   198 val eq_reflection = @{thm eq_reflection};
   199 val atomize_all = @{thm HOL.atomize_all};
   200 val atomize_imp = @{thm HOL.atomize_imp};
   201 val meta_allE = @{thm Pure.meta_allE};
   202 val prop_subst = @{thm prop_subst};
   203 val K_record_comp = @{thm K_record_comp};
   204 val K_comp_convs = [@{thm o_apply}, K_record_comp];
   205 val o_assoc = @{thm o_assoc};
   206 val id_apply = @{thm id_apply};
   207 val id_o_apps = [@{thm id_apply}, @{thm id_o}, @{thm o_id}];
   208 val Not_eq_iff = @{thm Not_eq_iff};
   209 
   210 val refl_conj_eq = @{thm refl_conj_eq};
   211 
   212 val surject_assistI = @{thm iso_tuple_surjective_proof_assistI};
   213 val surject_assist_idE = @{thm iso_tuple_surjective_proof_assist_idE};
   214 
   215 val updacc_accessor_eqE = @{thm update_accessor_accessor_eqE};
   216 val updacc_updator_eqE = @{thm update_accessor_updator_eqE};
   217 val updacc_eq_idI = @{thm iso_tuple_update_accessor_eq_assist_idI};
   218 val updacc_eq_triv = @{thm iso_tuple_update_accessor_eq_assist_triv};
   219 
   220 val updacc_foldE = @{thm update_accessor_congruence_foldE};
   221 val updacc_unfoldE = @{thm update_accessor_congruence_unfoldE};
   222 val updacc_noopE = @{thm update_accessor_noopE};
   223 val updacc_noop_compE = @{thm update_accessor_noop_compE};
   224 val updacc_cong_idI = @{thm update_accessor_cong_assist_idI};
   225 val updacc_cong_triv = @{thm update_accessor_cong_assist_triv};
   226 val updacc_cong_from_eq = @{thm iso_tuple_update_accessor_cong_from_eq};
   227 
   228 val o_eq_dest = @{thm o_eq_dest};
   229 val o_eq_id_dest = @{thm o_eq_id_dest};
   230 val o_eq_dest_lhs = @{thm o_eq_dest_lhs};
   231 
   232 
   233 
   234 (** name components **)
   235 
   236 val rN = "r";
   237 val wN = "w";
   238 val moreN = "more";
   239 val schemeN = "_scheme";
   240 val ext_typeN = "_ext_type";
   241 val inner_typeN = "_inner_type";
   242 val extN ="_ext";
   243 val updateN = "_update";
   244 val makeN = "make";
   245 val fields_selN = "fields";
   246 val extendN = "extend";
   247 val truncateN = "truncate";
   248 
   249 
   250 
   251 (*** utilities ***)
   252 
   253 fun but_last xs = fst (split_last xs);
   254 
   255 fun varifyT midx =
   256   let fun varify (a, S) = TVar ((a, midx + 1), S);
   257   in map_type_tfree varify end;
   258 
   259 
   260 (* timing *)
   261 
   262 val timing = Unsynchronized.ref false;
   263 fun timeit_msg s x = if ! timing then (warning s; timeit x) else x ();
   264 fun timing_msg s = if ! timing then warning s else ();
   265 
   266 
   267 (* syntax *)
   268 
   269 val Trueprop = HOLogic.mk_Trueprop;
   270 fun All xs t = Term.list_all_free (xs, t);
   271 
   272 infix 0 :== ===;
   273 infixr 0 ==>;
   274 
   275 val op :== = Primitive_Defs.mk_defpair;
   276 val op === = Trueprop o HOLogic.mk_eq;
   277 val op ==> = Logic.mk_implies;
   278 
   279 
   280 (* constructor *)
   281 
   282 fun mk_ext (name, T) ts =
   283   let val Ts = map fastype_of ts
   284   in list_comb (Const (suffix extN name, Ts ---> T), ts) end;
   285 
   286 
   287 (* selector *)
   288 
   289 fun mk_selC sT (c, T) = (c, sT --> T);
   290 
   291 fun mk_sel s (c, T) =
   292   let val sT = fastype_of s
   293   in Const (mk_selC sT (c, T)) $ s end;
   294 
   295 
   296 (* updates *)
   297 
   298 fun mk_updC sfx sT (c, T) = (suffix sfx c, (T --> T) --> sT --> sT);
   299 
   300 fun mk_upd' sfx c v sT =
   301   let val vT = domain_type (fastype_of v);
   302   in Const (mk_updC sfx sT (c, vT)) $ v end;
   303 
   304 fun mk_upd sfx c v s = mk_upd' sfx c v (fastype_of s) $ s;
   305 
   306 
   307 (* types *)
   308 
   309 fun dest_recT (typ as Type (c_ext_type, Ts as (_ :: _))) =
   310       (case try (unsuffix ext_typeN) c_ext_type of
   311         NONE => raise TYPE ("Record.dest_recT", [typ], [])
   312       | SOME c => ((c, Ts), List.last Ts))
   313   | dest_recT typ = raise TYPE ("Record.dest_recT", [typ], []);
   314 
   315 val is_recT = can dest_recT;
   316 
   317 fun dest_recTs T =
   318   let val ((c, Ts), U) = dest_recT T
   319   in (c, Ts) :: dest_recTs U
   320   end handle TYPE _ => [];
   321 
   322 fun last_extT T =
   323   let val ((c, Ts), U) = dest_recT T in
   324     (case last_extT U of
   325       NONE => SOME (c, Ts)
   326     | SOME l => SOME l)
   327   end handle TYPE _ => NONE;
   328 
   329 fun rec_id i T =
   330   let
   331     val rTs = dest_recTs T;
   332     val rTs' = if i < 0 then rTs else take i rTs;
   333   in implode (map #1 rTs') end;
   334 
   335 
   336 
   337 (*** extend theory by record definition ***)
   338 
   339 (** record info **)
   340 
   341 (* type record_info and parent_info *)
   342 
   343 type record_info =
   344  {args: (string * sort) list,
   345   parent: (typ list * string) option,
   346   fields: (string * typ) list,
   347   extension: (string * typ list),
   348 
   349   ext_induct: thm,
   350   ext_inject: thm,
   351   ext_surjective: thm,
   352   ext_split: thm,
   353   ext_def: thm,
   354 
   355   select_convs: thm list,
   356   update_convs: thm list,
   357   select_defs: thm list,
   358   update_defs: thm list,
   359   fold_congs: thm list,
   360   unfold_congs: thm list,
   361   splits: thm list,
   362   defs: thm list,
   363 
   364   surjective: thm,
   365   equality: thm,
   366   induct_scheme: thm,
   367   induct: thm,
   368   cases_scheme: thm,
   369   cases: thm,
   370 
   371   simps: thm list,
   372   iffs: thm list};
   373 
   374 fun make_record_info args parent fields extension
   375     ext_induct ext_inject ext_surjective ext_split ext_def
   376     select_convs update_convs select_defs update_defs fold_congs unfold_congs splits defs
   377     surjective equality induct_scheme induct cases_scheme cases
   378     simps iffs : record_info =
   379  {args = args, parent = parent, fields = fields, extension = extension,
   380   ext_induct = ext_induct, ext_inject = ext_inject, ext_surjective = ext_surjective,
   381   ext_split = ext_split, ext_def = ext_def, select_convs = select_convs,
   382   update_convs = update_convs, select_defs = select_defs, update_defs = update_defs,
   383   fold_congs = fold_congs, unfold_congs = unfold_congs, splits = splits, defs = defs,
   384   surjective = surjective, equality = equality, induct_scheme = induct_scheme,
   385   induct = induct, cases_scheme = cases_scheme, cases = cases, simps = simps, iffs = iffs};
   386 
   387 type parent_info =
   388  {name: string,
   389   fields: (string * typ) list,
   390   extension: (string * typ list),
   391   induct_scheme: thm,
   392   ext_def: thm};
   393 
   394 fun make_parent_info name fields extension ext_def induct_scheme : parent_info =
   395  {name = name, fields = fields, extension = extension,
   396   ext_def = ext_def, induct_scheme = induct_scheme};
   397 
   398 
   399 (* theory data *)
   400 
   401 type record_data =
   402  {records: record_info Symtab.table,
   403   sel_upd:
   404    {selectors: (int * bool) Symtab.table,
   405     updates: string Symtab.table,
   406     simpset: Simplifier.simpset,
   407     defset: Simplifier.simpset,
   408     foldcong: Simplifier.simpset,
   409     unfoldcong: Simplifier.simpset},
   410   equalities: thm Symtab.table,
   411   extinjects: thm list,
   412   extsplit: thm Symtab.table,  (*maps extension name to split rule*)
   413   splits: (thm * thm * thm * thm) Symtab.table,  (*!!, ALL, EX - split-equalities, induct rule*)
   414   extfields: (string * typ) list Symtab.table,  (*maps extension to its fields*)
   415   fieldext: (string * typ list) Symtab.table};  (*maps field to its extension*)
   416 
   417 fun make_record_data
   418     records sel_upd equalities extinjects extsplit splits extfields fieldext =
   419  {records = records, sel_upd = sel_upd,
   420   equalities = equalities, extinjects=extinjects, extsplit = extsplit, splits = splits,
   421   extfields = extfields, fieldext = fieldext }: record_data;
   422 
   423 structure Records_Data = Theory_Data
   424 (
   425   type T = record_data;
   426   val empty =
   427     make_record_data Symtab.empty
   428       {selectors = Symtab.empty, updates = Symtab.empty,
   429           simpset = HOL_basic_ss, defset = HOL_basic_ss,
   430           foldcong = HOL_basic_ss, unfoldcong = HOL_basic_ss}
   431        Symtab.empty [] Symtab.empty Symtab.empty Symtab.empty Symtab.empty;
   432   val extend = I;
   433   fun merge
   434    ({records = recs1,
   435      sel_upd =
   436       {selectors = sels1, updates = upds1,
   437        simpset = ss1, defset = ds1,
   438        foldcong = fc1, unfoldcong = uc1},
   439      equalities = equalities1,
   440      extinjects = extinjects1,
   441      extsplit = extsplit1,
   442      splits = splits1,
   443      extfields = extfields1,
   444      fieldext = fieldext1},
   445     {records = recs2,
   446      sel_upd =
   447       {selectors = sels2, updates = upds2,
   448        simpset = ss2, defset = ds2,
   449        foldcong = fc2, unfoldcong = uc2},
   450      equalities = equalities2,
   451      extinjects = extinjects2,
   452      extsplit = extsplit2,
   453      splits = splits2,
   454      extfields = extfields2,
   455      fieldext = fieldext2}) =
   456     make_record_data
   457       (Symtab.merge (K true) (recs1, recs2))
   458       {selectors = Symtab.merge (K true) (sels1, sels2),
   459         updates = Symtab.merge (K true) (upds1, upds2),
   460         simpset = Simplifier.merge_ss (ss1, ss2),
   461         defset = Simplifier.merge_ss (ds1, ds2),
   462         foldcong = Simplifier.merge_ss (fc1, fc2),
   463         unfoldcong = Simplifier.merge_ss (uc1, uc2)}
   464       (Symtab.merge Thm.eq_thm_prop (equalities1, equalities2))
   465       (Thm.merge_thms (extinjects1, extinjects2))
   466       (Symtab.merge Thm.eq_thm_prop (extsplit1, extsplit2))
   467       (Symtab.merge (fn ((a, b, c, d), (w, x, y, z)) =>
   468           Thm.eq_thm (a, w) andalso Thm.eq_thm (b, x) andalso
   469           Thm.eq_thm (c, y) andalso Thm.eq_thm (d, z)) (splits1, splits2))
   470       (Symtab.merge (K true) (extfields1, extfields2))
   471       (Symtab.merge (K true) (fieldext1, fieldext2));
   472 );
   473 
   474 fun print_records thy =
   475   let
   476     val {records = recs, ...} = Records_Data.get thy;
   477     val prt_typ = Syntax.pretty_typ_global thy;
   478 
   479     fun pretty_parent NONE = []
   480       | pretty_parent (SOME (Ts, name)) =
   481           [Pretty.block [prt_typ (Type (name, Ts)), Pretty.str " +"]];
   482 
   483     fun pretty_field (c, T) = Pretty.block
   484       [Pretty.str (Sign.extern_const thy c), Pretty.str " ::",
   485         Pretty.brk 1, Pretty.quote (prt_typ T)];
   486 
   487     fun pretty_record (name, {args, parent, fields, ...}: record_info) =
   488       Pretty.block (Pretty.fbreaks (Pretty.block
   489         [prt_typ (Type (name, map TFree args)), Pretty.str " = "] ::
   490         pretty_parent parent @ map pretty_field fields));
   491   in map pretty_record (Symtab.dest recs) |> Pretty.chunks |> Pretty.writeln end;
   492 
   493 
   494 (* access 'records' *)
   495 
   496 val get_record = Symtab.lookup o #records o Records_Data.get;
   497 
   498 fun the_record thy name =
   499   (case get_record thy name of
   500     SOME info => info
   501   | NONE => error ("Unknown record type " ^ quote name));
   502 
   503 fun put_record name info thy =
   504   let
   505     val {records, sel_upd, equalities, extinjects, extsplit, splits, extfields, fieldext} =
   506       Records_Data.get thy;
   507     val data = make_record_data (Symtab.update (name, info) records)
   508       sel_upd equalities extinjects extsplit splits extfields fieldext;
   509   in Records_Data.put data thy end;
   510 
   511 
   512 (* access 'sel_upd' *)
   513 
   514 val get_sel_upd = #sel_upd o Records_Data.get;
   515 
   516 val is_selector = Symtab.defined o #selectors o get_sel_upd;
   517 val get_updates = Symtab.lookup o #updates o get_sel_upd;
   518 fun get_ss_with_context getss thy = Simplifier.global_context thy (getss (get_sel_upd thy));
   519 
   520 val get_simpset = get_ss_with_context #simpset;
   521 val get_sel_upd_defs = get_ss_with_context #defset;
   522 
   523 fun get_update_details u thy =
   524   let val sel_upd = get_sel_upd thy in
   525     (case Symtab.lookup (#updates sel_upd) u of
   526       SOME s =>
   527         let val SOME (dep, ismore) = Symtab.lookup (#selectors sel_upd) s
   528         in SOME (s, dep, ismore) end
   529     | NONE => NONE)
   530   end;
   531 
   532 fun put_sel_upd names more depth simps defs (folds, unfolds) thy =
   533   let
   534     val all = names @ [more];
   535     val sels = map (rpair (depth, false)) names @ [(more, (depth, true))];
   536     val upds = map (suffix updateN) all ~~ all;
   537 
   538     val {records, sel_upd = {selectors, updates, simpset, defset, foldcong, unfoldcong},
   539       equalities, extinjects, extsplit, splits, extfields, fieldext} = Records_Data.get thy;
   540     val data = make_record_data records
   541       {selectors = fold Symtab.update_new sels selectors,
   542         updates = fold Symtab.update_new upds updates,
   543         simpset = Simplifier.addsimps (simpset, simps),
   544         defset = Simplifier.addsimps (defset, defs),
   545         foldcong = foldcong addcongs folds,
   546         unfoldcong = unfoldcong addcongs unfolds}
   547        equalities extinjects extsplit splits extfields fieldext;
   548   in Records_Data.put data thy end;
   549 
   550 
   551 (* access 'equalities' *)
   552 
   553 fun add_record_equalities name thm thy =
   554   let
   555     val {records, sel_upd, equalities, extinjects, extsplit, splits, extfields, fieldext} =
   556       Records_Data.get thy;
   557     val data = make_record_data records sel_upd
   558       (Symtab.update_new (name, thm) equalities) extinjects extsplit splits extfields fieldext;
   559   in Records_Data.put data thy end;
   560 
   561 val get_equalities = Symtab.lookup o #equalities o Records_Data.get;
   562 
   563 
   564 (* access 'extinjects' *)
   565 
   566 fun add_extinjects thm thy =
   567   let
   568     val {records, sel_upd, equalities, extinjects, extsplit, splits, extfields, fieldext} =
   569       Records_Data.get thy;
   570     val data =
   571       make_record_data records sel_upd equalities (insert Thm.eq_thm_prop thm extinjects)
   572         extsplit splits extfields fieldext;
   573   in Records_Data.put data thy end;
   574 
   575 val get_extinjects = rev o #extinjects o Records_Data.get;
   576 
   577 
   578 (* access 'extsplit' *)
   579 
   580 fun add_extsplit name thm thy =
   581   let
   582     val {records, sel_upd, equalities, extinjects, extsplit, splits, extfields, fieldext} =
   583       Records_Data.get thy;
   584     val data =
   585       make_record_data records sel_upd equalities extinjects
   586         (Symtab.update_new (name, thm) extsplit) splits extfields fieldext;
   587   in Records_Data.put data thy end;
   588 
   589 
   590 (* access 'splits' *)
   591 
   592 fun add_record_splits name thmP thy =
   593   let
   594     val {records, sel_upd, equalities, extinjects, extsplit, splits, extfields, fieldext} =
   595       Records_Data.get thy;
   596     val data =
   597       make_record_data records sel_upd equalities extinjects extsplit
   598         (Symtab.update_new (name, thmP) splits) extfields fieldext;
   599   in Records_Data.put data thy end;
   600 
   601 val get_splits = Symtab.lookup o #splits o Records_Data.get;
   602 
   603 
   604 (* parent/extension of named record *)
   605 
   606 val get_parent = (Option.join o Option.map #parent) oo (Symtab.lookup o #records o Records_Data.get);
   607 val get_extension = Option.map #extension oo (Symtab.lookup o #records o Records_Data.get);
   608 
   609 
   610 (* access 'extfields' *)
   611 
   612 fun add_extfields name fields thy =
   613   let
   614     val {records, sel_upd, equalities, extinjects, extsplit, splits, extfields, fieldext} =
   615       Records_Data.get thy;
   616     val data =
   617       make_record_data records sel_upd equalities extinjects extsplit splits
   618         (Symtab.update_new (name, fields) extfields) fieldext;
   619   in Records_Data.put data thy end;
   620 
   621 val get_extfields = Symtab.lookup o #extfields o Records_Data.get;
   622 
   623 fun get_extT_fields thy T =
   624   let
   625     val ((name, Ts), moreT) = dest_recT T;
   626     val recname =
   627       let val (nm :: _ :: rst) = rev (Long_Name.explode name)   (* FIXME !? *)
   628       in Long_Name.implode (rev (nm :: rst)) end;
   629     val midx = maxidx_of_typs (moreT :: Ts);
   630     val varifyT = varifyT midx;
   631     val {records, extfields, ...} = Records_Data.get thy;
   632     val (fields, (more, _)) = split_last (Symtab.lookup_list extfields name);
   633     val args = map varifyT (snd (#extension (the (Symtab.lookup records recname))));
   634 
   635     val subst = fold (Sign.typ_match thy) (but_last args ~~ but_last Ts) Vartab.empty;
   636     val fields' = map (apsnd (Envir.norm_type subst o varifyT)) fields;
   637   in (fields', (more, moreT)) end;
   638 
   639 fun get_recT_fields thy T =
   640   let
   641     val (root_fields, (root_more, root_moreT)) = get_extT_fields thy T;
   642     val (rest_fields, rest_more) =
   643       if is_recT root_moreT then get_recT_fields thy root_moreT
   644       else ([], (root_more, root_moreT));
   645   in (root_fields @ rest_fields, rest_more) end;
   646 
   647 
   648 (* access 'fieldext' *)
   649 
   650 fun add_fieldext extname_types fields thy =
   651   let
   652     val {records, sel_upd, equalities, extinjects, extsplit, splits, extfields, fieldext} =
   653       Records_Data.get thy;
   654     val fieldext' =
   655       fold (fn field => Symtab.update_new (field, extname_types)) fields fieldext;
   656     val data =
   657       make_record_data records sel_upd equalities extinjects
   658         extsplit splits extfields fieldext';
   659   in Records_Data.put data thy end;
   660 
   661 val get_fieldext = Symtab.lookup o #fieldext o Records_Data.get;
   662 
   663 
   664 (* parent records *)
   665 
   666 fun add_parents _ NONE parents = parents
   667   | add_parents thy (SOME (types, name)) parents =
   668       let
   669         fun err msg = error (msg ^ " parent record " ^ quote name);
   670 
   671         val {args, parent, fields, extension, induct_scheme, ext_def, ...} =
   672           (case get_record thy name of SOME info => info | NONE => err "Unknown");
   673         val _ = if length types <> length args then err "Bad number of arguments for" else ();
   674 
   675         fun bad_inst ((x, S), T) =
   676           if Sign.of_sort thy (T, S) then NONE else SOME x
   677         val bads = map_filter bad_inst (args ~~ types);
   678         val _ = null bads orelse err ("Ill-sorted instantiation of " ^ commas bads ^ " in");
   679 
   680         val inst = map fst args ~~ types;
   681         val subst = Term.map_type_tfree (the o AList.lookup (op =) inst o fst);
   682         val parent' = Option.map (apfst (map subst)) parent;
   683         val fields' = map (apsnd subst) fields;
   684         val extension' = apsnd (map subst) extension;
   685       in
   686         add_parents thy parent'
   687           (make_parent_info name fields' extension' ext_def induct_scheme :: parents)
   688       end;
   689 
   690 
   691 
   692 (** concrete syntax for records **)
   693 
   694 (* decode type *)
   695 
   696 fun decode_type thy t =
   697   let
   698     fun get_sort env xi =
   699       the_default (Sign.defaultS thy) (AList.lookup (op =) env (xi: indexname));
   700     val map_sort = Sign.intern_sort thy;
   701   in
   702     Syntax.typ_of_term (get_sort (Syntax.term_sorts map_sort t)) map_sort t
   703     |> Sign.intern_tycons thy
   704   end;
   705 
   706 
   707 (* parse translations *)
   708 
   709 local
   710 
   711 fun field_type_tr ((Const (@{syntax_const "_field_type"}, _) $ Const (name, _) $ arg)) =
   712       (name, arg)
   713   | field_type_tr t = raise TERM ("field_type_tr", [t]);
   714 
   715 fun field_types_tr (Const (@{syntax_const "_field_types"}, _) $ t $ u) =
   716       field_type_tr t :: field_types_tr u
   717   | field_types_tr t = [field_type_tr t];
   718 
   719 fun record_field_types_tr more ctxt t =
   720   let
   721     val thy = ProofContext.theory_of ctxt;
   722     fun err msg = raise TERM ("Error in record-type input: " ^ msg, [t]);
   723 
   724     fun split_args (field :: fields) ((name, arg) :: fargs) =
   725           if can (unsuffix name) field then
   726             let val (args, rest) = split_args fields fargs
   727             in (arg :: args, rest) end
   728           else err ("expecting field " ^ field ^ " but got " ^ name)
   729       | split_args [] (fargs as (_ :: _)) = ([], fargs)
   730       | split_args (_ :: _) [] = err "expecting more fields"
   731       | split_args _ _ = ([], []);
   732 
   733     fun mk_ext (fargs as (name, _) :: _) =
   734           (case get_fieldext thy (Sign.intern_const thy name) of
   735             SOME (ext, alphas) =>
   736               (case get_extfields thy ext of
   737                 SOME fields =>
   738                   let
   739                     val fields' = but_last fields;
   740                     val types = map snd fields';
   741                     val (args, rest) = split_args (map fst fields') fargs;
   742                     val argtypes = map (Sign.certify_typ thy o decode_type thy) args;
   743                     val midx = fold Term.maxidx_typ argtypes 0;
   744                     val varifyT = varifyT midx;
   745                     val vartypes = map varifyT types;
   746 
   747                     val subst = fold (Sign.typ_match thy) (vartypes ~~ argtypes) Vartab.empty
   748                       handle Type.TYPE_MATCH => err "type is no proper record (extension)";
   749                     val alphas' =
   750                       map (Syntax.term_of_typ (! Syntax.show_sorts) o Envir.norm_type subst o varifyT)
   751                         (but_last alphas);
   752 
   753                     val more' = mk_ext rest;
   754                   in
   755                     (* FIXME authentic syntax *)
   756                     list_comb (Syntax.const (suffix ext_typeN ext), alphas' @ [more'])
   757                   end
   758               | NONE => err ("no fields defined for " ^ ext))
   759           | NONE => err (name ^ " is no proper field"))
   760       | mk_ext [] = more;
   761   in
   762     mk_ext (field_types_tr t)
   763   end;
   764 
   765 (* FIXME @{type_syntax} *)
   766 fun record_type_tr ctxt [t] = record_field_types_tr (Syntax.const "Product_Type.unit") ctxt t
   767   | record_type_tr _ ts = raise TERM ("record_type_tr", ts);
   768 
   769 fun record_type_scheme_tr ctxt [t, more] = record_field_types_tr more ctxt t
   770   | record_type_scheme_tr _ ts = raise TERM ("record_type_scheme_tr", ts);
   771 
   772 
   773 fun field_tr ((Const (@{syntax_const "_field"}, _) $ Const (name, _) $ arg)) = (name, arg)
   774   | field_tr t = raise TERM ("field_tr", [t]);
   775 
   776 fun fields_tr (Const (@{syntax_const "_fields"}, _) $ t $ u) = field_tr t :: fields_tr u
   777   | fields_tr t = [field_tr t];
   778 
   779 fun record_fields_tr more ctxt t =
   780   let
   781     val thy = ProofContext.theory_of ctxt;
   782     fun err msg = raise TERM ("Error in record input: " ^ msg, [t]);
   783 
   784     fun split_args (field :: fields) ((name, arg) :: fargs) =
   785           if can (unsuffix name) field
   786           then
   787             let val (args, rest) = split_args fields fargs
   788             in (arg :: args, rest) end
   789           else err ("expecting field " ^ field ^ " but got " ^ name)
   790       | split_args [] (fargs as (_ :: _)) = ([], fargs)
   791       | split_args (_ :: _) [] = err "expecting more fields"
   792       | split_args _ _ = ([], []);
   793 
   794     fun mk_ext (fargs as (name, _) :: _) =
   795           (case get_fieldext thy (Sign.intern_const thy name) of
   796             SOME (ext, _) =>
   797               (case get_extfields thy ext of
   798                 SOME fields =>
   799                   let
   800                     val (args, rest) = split_args (map fst (but_last fields)) fargs;
   801                     val more' = mk_ext rest;
   802                   in list_comb (Syntax.const (Syntax.mark_const (ext ^ extN)), args @ [more']) end
   803               | NONE => err ("no fields defined for " ^ ext))
   804           | NONE => err (name ^ " is no proper field"))
   805       | mk_ext [] = more;
   806   in mk_ext (fields_tr t) end;
   807 
   808 fun record_tr ctxt [t] = record_fields_tr (Syntax.const @{const_syntax Unity}) ctxt t
   809   | record_tr _ ts = raise TERM ("record_tr", ts);
   810 
   811 fun record_scheme_tr ctxt [t, more] = record_fields_tr more ctxt t
   812   | record_scheme_tr _ ts = raise TERM ("record_scheme_tr", ts);
   813 
   814 
   815 fun field_update_tr (Const (@{syntax_const "_field_update"}, _) $ Const (name, _) $ arg) =
   816       Syntax.const (suffix updateN name) $ Abs ("_", dummyT, arg)
   817   | field_update_tr t = raise TERM ("field_update_tr", [t]);
   818 
   819 fun field_updates_tr (Const (@{syntax_const "_field_updates"}, _) $ t $ u) =
   820       field_update_tr t :: field_updates_tr u
   821   | field_updates_tr t = [field_update_tr t];
   822 
   823 fun record_update_tr [t, u] = fold (curry op $) (field_updates_tr u) t
   824   | record_update_tr ts = raise TERM ("record_update_tr", ts);
   825 
   826 in
   827 
   828 val parse_translation =
   829  [(@{syntax_const "_record_update"}, record_update_tr)];
   830 
   831 val advanced_parse_translation =
   832  [(@{syntax_const "_record"}, record_tr),
   833   (@{syntax_const "_record_scheme"}, record_scheme_tr),
   834   (@{syntax_const "_record_type"}, record_type_tr),
   835   (@{syntax_const "_record_type_scheme"}, record_type_scheme_tr)];
   836 
   837 end;
   838 
   839 
   840 (* print translations *)
   841 
   842 val print_record_type_abbr = Unsynchronized.ref true;
   843 val print_record_type_as_fields = Unsynchronized.ref true;
   844 
   845 
   846 local
   847 
   848 (* FIXME early extern (!??) *)
   849 (* FIXME Syntax.free (??) *)
   850 fun field_type_tr' (c, t) = Syntax.const @{syntax_const "_field_type"} $ Syntax.const c $ t;
   851 
   852 fun field_types_tr' (t, u) = Syntax.const @{syntax_const "_field_types"} $ t $ u;
   853 
   854 fun record_type_tr' ctxt t =
   855   let
   856     val thy = ProofContext.theory_of ctxt;
   857 
   858     val T = decode_type thy t;
   859     val varifyT = varifyT (Term.maxidx_of_typ T);
   860 
   861     val term_of_type = Syntax.term_of_typ (! Syntax.show_sorts) o Sign.extern_typ thy;
   862 
   863     fun strip_fields T =
   864       (case T of
   865         Type (ext, args) =>
   866           (case try (unsuffix ext_typeN) ext of
   867             SOME ext' =>
   868               (case get_extfields thy ext' of
   869                 SOME fields =>
   870                   (case get_fieldext thy (fst (hd fields)) of
   871                     SOME (_, alphas) =>
   872                      (let
   873                         val f :: fs = but_last fields;
   874                         val fields' =
   875                           apfst (Sign.extern_const thy) f :: map (apfst Long_Name.base_name) fs;
   876                         val (args', more) = split_last args;
   877                         val alphavars = map varifyT (but_last alphas);
   878                         val subst = fold (Sign.typ_match thy) (alphavars ~~ args') Vartab.empty;
   879                         val fields'' = (map o apsnd) (Envir.norm_type subst o varifyT) fields';
   880                       in fields'' @ strip_fields more end
   881                       handle Type.TYPE_MATCH => [("", T)]
   882                         | Library.UnequalLengths => [("", T)])
   883                   | NONE => [("", T)])
   884               | NONE => [("", T)])
   885           | NONE => [("", T)])
   886       | _ => [("", T)]);
   887 
   888     val (fields, (_, moreT)) = split_last (strip_fields T);
   889     val _ = null fields andalso raise Match;
   890     val u = foldr1 field_types_tr' (map (field_type_tr' o apsnd term_of_type) fields);
   891   in
   892     if not (! print_record_type_as_fields) orelse null fields then raise Match
   893     else if moreT = HOLogic.unitT then Syntax.const @{syntax_const "_record_type"} $ u
   894     else Syntax.const @{syntax_const "_record_type_scheme"} $ u $ term_of_type moreT
   895   end;
   896 
   897 (*try to reconstruct the record name type abbreviation from
   898   the (nested) extension types*)
   899 fun record_type_abbr_tr' abbr alphas zeta last_ext schemeT ctxt tm =
   900   let
   901     val thy = ProofContext.theory_of ctxt;
   902 
   903     (*tm is term representation of a (nested) field type. We first reconstruct the
   904       type from tm so that we can continue on the type level rather then the term level*)
   905 
   906     (* FIXME !??? *)
   907     (*WORKAROUND:
   908       If a record type occurs in an error message of type inference there
   909       may be some internal frees donoted by ??:
   910       (Const "_tfree",_) $ Free ("??'a", _).
   911 
   912       This will unfortunately be translated to Type ("??'a", []) instead of
   913       TFree ("??'a", _) by typ_of_term, which will confuse unify below.
   914       fixT works around.*)
   915     fun fixT (T as Type (x, [])) =
   916           if String.isPrefix "??'" x then TFree (x, Sign.defaultS thy) else T
   917       | fixT (Type (x, xs)) = Type (x, map fixT xs)
   918       | fixT T = T;
   919 
   920     val T = fixT (decode_type thy tm);
   921     val midx = maxidx_of_typ T;
   922     val varifyT = varifyT midx;
   923 
   924     fun mk_type_abbr subst name alphas =
   925       let val abbrT = Type (name, map (fn a => varifyT (TFree (a, Sign.defaultS thy))) alphas) in
   926         Syntax.term_of_typ (! Syntax.show_sorts)
   927           (Sign.extern_typ thy (Envir.norm_type subst abbrT))
   928       end;
   929 
   930     fun match rT T = Sign.typ_match thy (varifyT rT, T) Vartab.empty;
   931   in
   932     if ! print_record_type_abbr then
   933       (case last_extT T of
   934         SOME (name, _) =>
   935           if name = last_ext then
   936             let val subst = match schemeT T in
   937               if HOLogic.is_unitT (Envir.norm_type subst (varifyT (TFree (zeta, Sign.defaultS thy))))
   938               then mk_type_abbr subst abbr alphas
   939               else mk_type_abbr subst (suffix schemeN abbr) (alphas @ [zeta])
   940             end handle Type.TYPE_MATCH => record_type_tr' ctxt tm
   941           else raise Match (*give print translation of specialised record a chance*)
   942       | _ => raise Match)
   943     else record_type_tr' ctxt tm
   944   end;
   945 
   946 in
   947 
   948 fun record_ext_type_tr' name =
   949   let
   950     val ext_type_name = suffix ext_typeN name;
   951     fun tr' ctxt ts =
   952       record_type_tr' ctxt (list_comb (Syntax.const ext_type_name, ts));
   953   in (ext_type_name, tr') end;
   954 
   955 fun record_ext_type_abbr_tr' abbr alphas zeta last_ext schemeT name =
   956   let
   957     val ext_type_name = suffix ext_typeN name;
   958     fun tr' ctxt ts =
   959       record_type_abbr_tr' abbr alphas zeta last_ext schemeT ctxt
   960         (list_comb (Syntax.const ext_type_name, ts));
   961   in (ext_type_name, tr') end;
   962 
   963 end;
   964 
   965 
   966 local
   967 
   968 (* FIXME Syntax.free (??) *)
   969 fun field_tr' (c, t) = Syntax.const @{syntax_const "_field"} $ Syntax.const c $ t;
   970 fun fields_tr' (t, u) = Syntax.const @{syntax_const "_fields"} $ t $ u;
   971 
   972 fun record_tr' ctxt t =
   973   let
   974     val thy = ProofContext.theory_of ctxt;
   975     val extern = Consts.extern (ProofContext.consts_of ctxt);
   976 
   977     fun strip_fields t =
   978       (case strip_comb t of
   979         (Const (ext, _), args as (_ :: _)) =>
   980           (case try (Syntax.unmark_const o unsuffix extN) ext of
   981             SOME ext' =>
   982               (case get_extfields thy ext' of
   983                 SOME fields =>
   984                  (let
   985                     val f :: fs = but_last (map fst fields);
   986                     val fields' = extern f :: map Long_Name.base_name fs;
   987                     val (args', more) = split_last args;
   988                   in (fields' ~~ args') @ strip_fields more end
   989                   handle Library.UnequalLengths => [("", t)])
   990               | NONE => [("", t)])
   991           | NONE => [("", t)])
   992        | _ => [("", t)]);
   993 
   994     val (fields, (_, more)) = split_last (strip_fields t);
   995     val _ = null fields andalso raise Match;
   996     val u = foldr1 fields_tr' (map field_tr' fields);
   997   in
   998     case more of
   999       Const (@{const_syntax Unity}, _) => Syntax.const @{syntax_const "_record"} $ u
  1000     | _ => Syntax.const @{syntax_const "_record_scheme"} $ u $ more
  1001   end;
  1002 
  1003 in
  1004 
  1005 fun record_ext_tr' name =
  1006   let
  1007     val ext_name = Syntax.mark_const (name ^ extN);
  1008     fun tr' ctxt ts = record_tr' ctxt (list_comb (Syntax.const ext_name, ts));
  1009   in (ext_name, tr') end;
  1010 
  1011 end;
  1012 
  1013 
  1014 local
  1015 
  1016 fun field_updates_tr' ctxt (tm as Const (c, _) $ k $ u) =
  1017       let
  1018         val extern = Consts.extern (ProofContext.consts_of ctxt);
  1019         val t =
  1020           (case k of
  1021             Abs (_, _, Abs (_, _, t) $ Bound 0) =>
  1022               if null (loose_bnos t) then t else raise Match
  1023           | Abs (_, _, t) =>
  1024               if null (loose_bnos t) then t else raise Match
  1025           | _ => raise Match);
  1026       in
  1027         (case Option.map extern (try Syntax.unmark_const c) of
  1028           SOME update_name =>
  1029             (case try (unsuffix updateN) update_name of
  1030               SOME name =>
  1031                 apfst (cons (Syntax.const @{syntax_const "_field_update"} $ Syntax.free name $ t))
  1032                   (field_updates_tr' ctxt u)
  1033             | NONE => ([], tm))
  1034         | NONE => ([], tm))
  1035       end
  1036   | field_updates_tr' _ tm = ([], tm);
  1037 
  1038 fun record_update_tr' ctxt tm =
  1039   (case field_updates_tr' ctxt tm of
  1040     ([], _) => raise Match
  1041   | (ts, u) =>
  1042       Syntax.const @{syntax_const "_record_update"} $ u $
  1043         foldr1 (fn (v, w) => Syntax.const @{syntax_const "_field_updates"} $ v $ w) (rev ts));
  1044 
  1045 in
  1046 
  1047 fun field_update_tr' name =
  1048   let
  1049     val update_name = Syntax.mark_const (name ^ updateN);
  1050     fun tr' ctxt [t, u] = record_update_tr' ctxt (Syntax.const update_name $ t $ u)
  1051       | tr' _ _ = raise Match;
  1052   in (update_name, tr') end;
  1053 
  1054 end;
  1055 
  1056 
  1057 
  1058 (** record simprocs **)
  1059 
  1060 fun future_forward_prf_standard thy prf prop () =
  1061   let val thm =
  1062     if ! quick_and_dirty then Skip_Proof.make_thm thy prop
  1063     else if Goal.future_enabled () then
  1064       Goal.future_result (ProofContext.init thy) (Future.fork_pri ~1 prf) prop
  1065     else prf ()
  1066   in Drule.export_without_context thm end;
  1067 
  1068 fun prove_common immediate stndrd thy asms prop tac =
  1069   let
  1070     val prv =
  1071       if ! quick_and_dirty then Skip_Proof.prove
  1072       else if immediate orelse not (Goal.future_enabled ()) then Goal.prove
  1073       else Goal.prove_future;
  1074     val prf = prv (ProofContext.init thy) [] asms prop tac;
  1075   in if stndrd then Drule.export_without_context prf else prf end;
  1076 
  1077 val prove_future_global = prove_common false;
  1078 val prove_global = prove_common true;
  1079 
  1080 fun is_sel_upd_pair thy (Const (s, _)) (Const (u, t')) =
  1081   (case get_updates thy u of
  1082     SOME u_name => u_name = s
  1083   | NONE => raise TERM ("is_sel_upd_pair: not update", [Const (u, t')]));
  1084 
  1085 fun mk_comp f g =
  1086   let
  1087     val X = fastype_of g;
  1088     val A = domain_type X;
  1089     val B = range_type X;
  1090     val C = range_type (fastype_of f);
  1091     val T = (B --> C) --> (A --> B) --> A --> C;
  1092   in Const (@{const_name Fun.comp}, T) $ f $ g end;
  1093 
  1094 fun mk_comp_id f =
  1095   let val T = range_type (fastype_of f)
  1096   in mk_comp (Const (@{const_name Fun.id}, T --> T)) f end;
  1097 
  1098 fun get_upd_funs (upd $ _ $ t) = upd :: get_upd_funs t
  1099   | get_upd_funs _ = [];
  1100 
  1101 fun get_accupd_simps thy term defset =
  1102   let
  1103     val (acc, [body]) = strip_comb term;
  1104     val upd_funs = sort_distinct TermOrd.fast_term_ord (get_upd_funs body);
  1105     fun get_simp upd =
  1106       let
  1107         (* FIXME fresh "f" (!?) *)
  1108         val T = domain_type (fastype_of upd);
  1109         val lhs = mk_comp acc (upd $ Free ("f", T));
  1110         val rhs =
  1111           if is_sel_upd_pair thy acc upd
  1112           then mk_comp (Free ("f", T)) acc
  1113           else mk_comp_id acc;
  1114         val prop = lhs === rhs;
  1115         val othm =
  1116           Goal.prove (ProofContext.init thy) [] [] prop
  1117             (fn _ =>
  1118               simp_tac defset 1 THEN
  1119               REPEAT_DETERM (Iso_Tuple_Support.iso_tuple_intros_tac 1) THEN
  1120               TRY (simp_tac (HOL_ss addsimps id_o_apps) 1));
  1121         val dest =
  1122           if is_sel_upd_pair thy acc upd
  1123           then o_eq_dest
  1124           else o_eq_id_dest;
  1125       in Drule.export_without_context (othm RS dest) end;
  1126   in map get_simp upd_funs end;
  1127 
  1128 fun get_updupd_simp thy defset u u' comp =
  1129   let
  1130     (* FIXME fresh "f" (!?) *)
  1131     val f = Free ("f", domain_type (fastype_of u));
  1132     val f' = Free ("f'", domain_type (fastype_of u'));
  1133     val lhs = mk_comp (u $ f) (u' $ f');
  1134     val rhs =
  1135       if comp
  1136       then u $ mk_comp f f'
  1137       else mk_comp (u' $ f') (u $ f);
  1138     val prop = lhs === rhs;
  1139     val othm =
  1140       Goal.prove (ProofContext.init thy) [] [] prop
  1141         (fn _ =>
  1142           simp_tac defset 1 THEN
  1143           REPEAT_DETERM (Iso_Tuple_Support.iso_tuple_intros_tac 1) THEN
  1144           TRY (simp_tac (HOL_ss addsimps [id_apply]) 1));
  1145     val dest = if comp then o_eq_dest_lhs else o_eq_dest;
  1146   in Drule.export_without_context (othm RS dest) end;
  1147 
  1148 fun get_updupd_simps thy term defset =
  1149   let
  1150     val upd_funs = get_upd_funs term;
  1151     val cname = fst o dest_Const;
  1152     fun getswap u u' = get_updupd_simp thy defset u u' (cname u = cname u');
  1153     fun build_swaps_to_eq _ [] swaps = swaps
  1154       | build_swaps_to_eq upd (u :: us) swaps =
  1155           let
  1156             val key = (cname u, cname upd);
  1157             val newswaps =
  1158               if Symreltab.defined swaps key then swaps
  1159               else Symreltab.insert (K true) (key, getswap u upd) swaps;
  1160           in
  1161             if cname u = cname upd then newswaps
  1162             else build_swaps_to_eq upd us newswaps
  1163           end;
  1164     fun swaps_needed [] _ _ swaps = map snd (Symreltab.dest swaps)
  1165       | swaps_needed (u :: us) prev seen swaps =
  1166           if Symtab.defined seen (cname u)
  1167           then swaps_needed us prev seen (build_swaps_to_eq u prev swaps)
  1168           else swaps_needed us (u :: prev) (Symtab.insert (K true) (cname u, ()) seen) swaps;
  1169   in swaps_needed upd_funs [] Symtab.empty Symreltab.empty end;
  1170 
  1171 val named_cterm_instantiate = Iso_Tuple_Support.named_cterm_instantiate;
  1172 
  1173 fun prove_unfold_defs thy ex_simps ex_simprs prop =
  1174   let
  1175     val defset = get_sel_upd_defs thy;
  1176     val prop' = Envir.beta_eta_contract prop;
  1177     val (lhs, _) = Logic.dest_equals (Logic.strip_assums_concl prop');
  1178     val (_, args) = strip_comb lhs;
  1179     val simps = (if length args = 1 then get_accupd_simps else get_updupd_simps) thy lhs defset;
  1180   in
  1181     Goal.prove (ProofContext.init thy) [] [] prop'
  1182       (fn _ =>
  1183         simp_tac (HOL_basic_ss addsimps (simps @ [K_record_comp])) 1 THEN
  1184         TRY (simp_tac (HOL_basic_ss addsimps ex_simps addsimprocs ex_simprs) 1))
  1185   end;
  1186 
  1187 
  1188 local
  1189 
  1190 fun eq (s1: string) (s2: string) = (s1 = s2);
  1191 
  1192 fun has_field extfields f T =
  1193   exists (fn (eN, _) => exists (eq f o fst) (Symtab.lookup_list extfields eN)) (dest_recTs T);
  1194 
  1195 fun K_skeleton n (T as Type (_, [_, kT])) (b as Bound i) (Abs (x, xT, t)) =
  1196       if null (loose_bnos t) then ((n, kT), (Abs (x, xT, Bound (i + 1)))) else ((n, T), b)
  1197   | K_skeleton n T b _ = ((n, T), b);
  1198 
  1199 in
  1200 
  1201 (* record_simproc *)
  1202 
  1203 (*
  1204   Simplify selections of an record update:
  1205     (1)  S (S_update k r) = k (S r)
  1206     (2)  S (X_update k r) = S r
  1207 
  1208   The simproc skips multiple updates at once, eg:
  1209    S (X_update x (Y_update y (S_update k r))) = k (S r)
  1210 
  1211   But be careful in (2) because of the extensibility of records.
  1212   - If S is a more-selector we have to make sure that the update on component
  1213     X does not affect the selected subrecord.
  1214   - If X is a more-selector we have to make sure that S is not in the updated
  1215     subrecord.
  1216 *)
  1217 val record_simproc =
  1218   Simplifier.simproc @{theory HOL} "record_simp" ["x"]
  1219     (fn thy => fn _ => fn t =>
  1220       (case t of
  1221         (sel as Const (s, Type (_, [_, rangeS]))) $
  1222             ((upd as Const (u, Type (_, [_, Type (_, [rT, _])]))) $ k $ r) =>
  1223           if is_selector thy s andalso is_some (get_updates thy u) then
  1224             let
  1225               val {sel_upd = {updates, ...}, extfields, ...} = Records_Data.get thy;
  1226 
  1227               fun mk_eq_terms ((upd as Const (u, Type(_, [kT, _]))) $ k $ r) =
  1228                     (case Symtab.lookup updates u of
  1229                       NONE => NONE
  1230                     | SOME u_name =>
  1231                         if u_name = s then
  1232                           (case mk_eq_terms r of
  1233                             NONE =>
  1234                               let
  1235                                 val rv = ("r", rT);
  1236                                 val rb = Bound 0;
  1237                                 val (kv, kb) = K_skeleton "k" kT (Bound 1) k;
  1238                               in SOME (upd $ kb $ rb, kb $ (sel $ rb), [kv, rv]) end
  1239                           | SOME (trm, trm', vars) =>
  1240                               let
  1241                                 val (kv, kb) = K_skeleton "k" kT (Bound (length vars)) k;
  1242                               in SOME (upd $ kb $ trm, kb $ trm', kv :: vars) end)
  1243                         else if has_field extfields u_name rangeS orelse
  1244                           has_field extfields s (domain_type kT) then NONE
  1245                         else
  1246                           (case mk_eq_terms r of
  1247                             SOME (trm, trm', vars) =>
  1248                               let val (kv, kb) = K_skeleton "k" kT (Bound (length vars)) k
  1249                               in SOME (upd $ kb $ trm, trm', kv :: vars) end
  1250                           | NONE =>
  1251                               let
  1252                                 val rv = ("r", rT);
  1253                                 val rb = Bound 0;
  1254                                 val (kv, kb) = K_skeleton "k" kT (Bound 1) k;
  1255                               in SOME (upd $ kb $ rb, sel $ rb, [kv, rv]) end))
  1256                 | mk_eq_terms _ = NONE;
  1257             in
  1258               (case mk_eq_terms (upd $ k $ r) of
  1259                 SOME (trm, trm', vars) =>
  1260                   SOME
  1261                     (prove_unfold_defs thy [] []
  1262                       (list_all (vars, Logic.mk_equals (sel $ trm, trm'))))
  1263               | NONE => NONE)
  1264             end
  1265           else NONE
  1266       | _ => NONE));
  1267 
  1268 fun get_upd_acc_cong_thm upd acc thy simpset =
  1269   let
  1270     val insts = [("upd", cterm_of thy upd), ("acc", cterm_of thy acc)];
  1271     val prop = Thm.concl_of (named_cterm_instantiate insts updacc_cong_triv);
  1272   in
  1273     Goal.prove (ProofContext.init thy) [] [] prop
  1274       (fn _ =>
  1275         simp_tac simpset 1 THEN
  1276         REPEAT_DETERM (Iso_Tuple_Support.iso_tuple_intros_tac 1) THEN
  1277         TRY (resolve_tac [updacc_cong_idI] 1))
  1278   end;
  1279 
  1280 
  1281 (* record_upd_simproc *)
  1282 
  1283 (*Simplify multiple updates:
  1284     (1) "N_update y (M_update g (N_update x (M_update f r))) =
  1285           (N_update (y o x) (M_update (g o f) r))"
  1286     (2)  "r(|M:= M r|) = r"
  1287 
  1288   In both cases "more" updates complicate matters: for this reason
  1289   we omit considering further updates if doing so would introduce
  1290   both a more update and an update to a field within it.*)
  1291 val record_upd_simproc =
  1292   Simplifier.simproc @{theory HOL} "record_upd_simp" ["x"]
  1293     (fn thy => fn _ => fn t =>
  1294       let
  1295         (*We can use more-updators with other updators as long
  1296           as none of the other updators go deeper than any more
  1297           updator. min here is the depth of the deepest other
  1298           updator, max the depth of the shallowest more updator.*)
  1299         fun include_depth (dep, true) (min, max) =
  1300               if min <= dep
  1301               then SOME (min, if dep <= max orelse max = ~1 then dep else max)
  1302               else NONE
  1303           | include_depth (dep, false) (min, max) =
  1304               if dep <= max orelse max = ~1
  1305               then SOME (if min <= dep then dep else min, max)
  1306               else NONE;
  1307 
  1308         fun getupdseq (term as (upd as Const (u, _)) $ f $ tm) min max =
  1309               (case get_update_details u thy of
  1310                 SOME (s, dep, ismore) =>
  1311                   (case include_depth (dep, ismore) (min, max) of
  1312                     SOME (min', max') =>
  1313                       let val (us, bs, _) = getupdseq tm min' max'
  1314                       in ((upd, s, f) :: us, bs, fastype_of term) end
  1315                   | NONE => ([], term, HOLogic.unitT))
  1316               | NONE => ([], term, HOLogic.unitT))
  1317           | getupdseq term _ _ = ([], term, HOLogic.unitT);
  1318 
  1319         val (upds, base, baseT) = getupdseq t 0 ~1;
  1320 
  1321         fun is_upd_noop s (Abs (n, T, Const (s', T') $ tm')) tm =
  1322               if s = s' andalso null (loose_bnos tm')
  1323                 andalso subst_bound (HOLogic.unit, tm') = tm
  1324               then (true, Abs (n, T, Const (s', T') $ Bound 1))
  1325               else (false, HOLogic.unit)
  1326           | is_upd_noop _ _ _ = (false, HOLogic.unit);
  1327 
  1328         fun get_noop_simps (upd as Const _) (Abs (_, _, (acc as Const _) $ _)) =
  1329           let
  1330             val ss = get_sel_upd_defs thy;
  1331             val uathm = get_upd_acc_cong_thm upd acc thy ss;
  1332           in
  1333            [Drule.export_without_context (uathm RS updacc_noopE),
  1334             Drule.export_without_context (uathm RS updacc_noop_compE)]
  1335           end;
  1336 
  1337         (*If f is constant then (f o g) = f.  We know that K_skeleton
  1338           only returns constant abstractions thus when we see an
  1339           abstraction we can discard inner updates.*)
  1340         fun add_upd (f as Abs _) fs = [f]
  1341           | add_upd f fs = (f :: fs);
  1342 
  1343         (*mk_updterm returns
  1344           (orig-term-skeleton, simplified-skeleton,
  1345             variables, duplicate-updates, simp-flag, noop-simps)
  1346 
  1347           where duplicate-updates is a table used to pass upward
  1348           the list of update functions which can be composed
  1349           into an update above them, simp-flag indicates whether
  1350           any simplification was achieved, and noop-simps are
  1351           used for eliminating case (2) defined above*)
  1352         fun mk_updterm ((upd as Const (u, T), s, f) :: upds) above term =
  1353               let
  1354                 val (lhs, rhs, vars, dups, simp, noops) =
  1355                   mk_updterm upds (Symtab.update (u, ()) above) term;
  1356                 val (fvar, skelf) =
  1357                   K_skeleton (Long_Name.base_name s) (domain_type T) (Bound (length vars)) f;
  1358                 val (isnoop, skelf') = is_upd_noop s f term;
  1359                 val funT = domain_type T;
  1360                 fun mk_comp_local (f, f') =
  1361                   Const (@{const_name Fun.comp}, funT --> funT --> funT) $ f $ f';
  1362               in
  1363                 if isnoop then
  1364                   (upd $ skelf' $ lhs, rhs, vars,
  1365                     Symtab.update (u, []) dups, true,
  1366                     if Symtab.defined noops u then noops
  1367                     else Symtab.update (u, get_noop_simps upd skelf') noops)
  1368                 else if Symtab.defined above u then
  1369                   (upd $ skelf $ lhs, rhs, fvar :: vars,
  1370                     Symtab.map_default (u, []) (add_upd skelf) dups,
  1371                     true, noops)
  1372                 else
  1373                   (case Symtab.lookup dups u of
  1374                     SOME fs =>
  1375                      (upd $ skelf $ lhs,
  1376                       upd $ foldr1 mk_comp_local (add_upd skelf fs) $ rhs,
  1377                       fvar :: vars, dups, true, noops)
  1378                   | NONE => (upd $ skelf $ lhs, upd $ skelf $ rhs, fvar :: vars, dups, simp, noops))
  1379               end
  1380           | mk_updterm [] _ _ =
  1381               (Bound 0, Bound 0, [("r", baseT)], Symtab.empty, false, Symtab.empty)
  1382           | mk_updterm us _ _ = raise TERM ("mk_updterm match", map (fn (x, _, _) => x) us);
  1383 
  1384         val (lhs, rhs, vars, _, simp, noops) = mk_updterm upds Symtab.empty base;
  1385         val noops' = maps snd (Symtab.dest noops);
  1386       in
  1387         if simp then
  1388           SOME
  1389             (prove_unfold_defs thy noops' [record_simproc]
  1390               (list_all (vars, Logic.mk_equals (lhs, rhs))))
  1391         else NONE
  1392       end);
  1393 
  1394 end;
  1395 
  1396 
  1397 (* record_eq_simproc *)
  1398 
  1399 (*Look up the most specific record-equality.
  1400 
  1401  Note on efficiency:
  1402  Testing equality of records boils down to the test of equality of all components.
  1403  Therefore the complexity is: #components * complexity for single component.
  1404  Especially if a record has a lot of components it may be better to split up
  1405  the record first and do simplification on that (record_split_simp_tac).
  1406  e.g. r(|lots of updates|) = x
  1407 
  1408              record_eq_simproc          record_split_simp_tac
  1409  Complexity: #components * #updates     #updates
  1410 *)
  1411 val record_eq_simproc =
  1412   Simplifier.simproc @{theory HOL} "record_eq_simp" ["r = s"]
  1413     (fn thy => fn _ => fn t =>
  1414       (case t of Const (@{const_name "op ="}, Type (_, [T, _])) $ _ $ _ =>
  1415         (case rec_id ~1 T of
  1416           "" => NONE
  1417         | name =>
  1418             (case get_equalities thy name of
  1419               NONE => NONE
  1420             | SOME thm => SOME (thm RS Eq_TrueI)))
  1421       | _ => NONE));
  1422 
  1423 
  1424 (* record_split_simproc *)
  1425 
  1426 (*Split quantified occurrences of records, for which P holds.  P can peek on the
  1427   subterm starting at the quantified occurrence of the record (including the quantifier):
  1428     P t = 0: do not split
  1429     P t = ~1: completely split
  1430     P t > 0: split up to given bound of record extensions.*)
  1431 fun record_split_simproc P =
  1432   Simplifier.simproc @{theory HOL} "record_split_simp" ["x"]
  1433     (fn thy => fn _ => fn t =>
  1434       (case t of
  1435         Const (quantifier, Type (_, [Type (_, [T, _]), _])) $ _ =>
  1436           if quantifier = @{const_name all} orelse
  1437             quantifier = @{const_name All} orelse
  1438             quantifier = @{const_name Ex}
  1439           then
  1440             (case rec_id ~1 T of
  1441               "" => NONE
  1442             | _ =>
  1443                 let val split = P t in
  1444                   if split <> 0 then
  1445                     (case get_splits thy (rec_id split T) of
  1446                       NONE => NONE
  1447                     | SOME (all_thm, All_thm, Ex_thm, _) =>
  1448                         SOME
  1449                           (case quantifier of
  1450                             @{const_name all} => all_thm
  1451                           | @{const_name All} => All_thm RS eq_reflection
  1452                           | @{const_name Ex} => Ex_thm RS eq_reflection
  1453                           | _ => error "record_split_simproc"))
  1454                   else NONE
  1455                 end)
  1456           else NONE
  1457       | _ => NONE));
  1458 
  1459 val record_ex_sel_eq_simproc =
  1460   Simplifier.simproc @{theory HOL} "record_ex_sel_eq_simproc" ["Ex t"]
  1461     (fn thy => fn ss => fn t =>
  1462       let
  1463         fun prove prop =
  1464           prove_global true thy [] prop
  1465             (fn _ => simp_tac (Simplifier.inherit_context ss (get_simpset thy)
  1466                 addsimps simp_thms addsimprocs [record_split_simproc (K ~1)]) 1);
  1467 
  1468         fun mkeq (lr, Teq, (sel, Tsel), x) i =
  1469           if is_selector thy sel then
  1470             let
  1471               val x' =
  1472                 if not (loose_bvar1 (x, 0))
  1473                 then Free ("x" ^ string_of_int i, range_type Tsel)
  1474                 else raise TERM ("", [x]);
  1475               val sel' = Const (sel, Tsel) $ Bound 0;
  1476               val (l, r) = if lr then (sel', x') else (x', sel');
  1477             in Const (@{const_name "op ="}, Teq) $ l $ r end
  1478           else raise TERM ("", [Const (sel, Tsel)]);
  1479 
  1480         fun dest_sel_eq (Const (@{const_name "op ="}, Teq) $ (Const (sel, Tsel) $ Bound 0) $ X) =
  1481               (true, Teq, (sel, Tsel), X)
  1482           | dest_sel_eq (Const (@{const_name "op ="}, Teq) $ X $ (Const (sel, Tsel) $ Bound 0)) =
  1483               (false, Teq, (sel, Tsel), X)
  1484           | dest_sel_eq _ = raise TERM ("", []);
  1485       in
  1486         (case t of
  1487           Const (@{const_name Ex}, Tex) $ Abs (s, T, t) =>
  1488            (let
  1489              val eq = mkeq (dest_sel_eq t) 0;
  1490              val prop =
  1491                list_all ([("r", T)],
  1492                  Logic.mk_equals
  1493                   (Const (@{const_name Ex}, Tex) $ Abs (s, T, eq), HOLogic.true_const));
  1494             in SOME (prove prop) end
  1495             handle TERM _ => NONE)
  1496         | _ => NONE)
  1497       end);
  1498 
  1499 
  1500 (* record_split_simp_tac *)
  1501 
  1502 (*Split (and simplify) all records in the goal for which P holds.
  1503   For quantified occurrences of a record
  1504   P can peek on the whole subterm (including the quantifier); for free variables P
  1505   can only peek on the variable itself.
  1506   P t = 0: do not split
  1507   P t = ~1: completely split
  1508   P t > 0: split up to given bound of record extensions.*)
  1509 fun record_split_simp_tac thms P = CSUBGOAL (fn (cgoal, i) =>
  1510   let
  1511     val thy = Thm.theory_of_cterm cgoal;
  1512 
  1513     val goal = term_of cgoal;
  1514     val frees = filter (is_recT o #2) (Term.add_frees goal []);
  1515 
  1516     val has_rec = exists_Const
  1517       (fn (s, Type (_, [Type (_, [T, _]), _])) =>
  1518           (s = @{const_name all} orelse s = @{const_name All} orelse s = @{const_name Ex}) andalso
  1519           is_recT T
  1520         | _ => false);
  1521 
  1522     fun mk_split_free_tac free induct_thm i =
  1523       let
  1524         val cfree = cterm_of thy free;
  1525         val _$ (_ $ r) = concl_of induct_thm;
  1526         val crec = cterm_of thy r;
  1527         val thm = cterm_instantiate [(crec, cfree)] induct_thm;
  1528       in
  1529         simp_tac (HOL_basic_ss addsimps @{thms induct_atomize}) i THEN
  1530         rtac thm i THEN
  1531         simp_tac (HOL_basic_ss addsimps @{thms induct_rulify}) i
  1532       end;
  1533 
  1534     val split_frees_tacs =
  1535       frees |> map_filter (fn (x, T) =>
  1536         (case rec_id ~1 T of
  1537           "" => NONE
  1538         | _ =>
  1539             let
  1540               val free = Free (x, T);
  1541               val split = P free;
  1542             in
  1543               if split <> 0 then
  1544                 (case get_splits thy (rec_id split T) of
  1545                   NONE => NONE
  1546                 | SOME (_, _, _, induct_thm) =>
  1547                     SOME (mk_split_free_tac free induct_thm i))
  1548               else NONE
  1549             end));
  1550 
  1551     val simprocs = if has_rec goal then [record_split_simproc P] else [];
  1552     val thms' = K_comp_convs @ thms;
  1553   in
  1554     EVERY split_frees_tacs THEN
  1555     Simplifier.full_simp_tac (get_simpset thy addsimps thms' addsimprocs simprocs) i
  1556   end);
  1557 
  1558 
  1559 (* record_split_tac *)
  1560 
  1561 (*Split all records in the goal, which are quantified by !! or ALL.*)
  1562 val record_split_tac = CSUBGOAL (fn (cgoal, i) =>
  1563   let
  1564     val goal = term_of cgoal;
  1565 
  1566     val has_rec = exists_Const
  1567       (fn (s, Type (_, [Type (_, [T, _]), _])) =>
  1568           (s = @{const_name all} orelse s = @{const_name All}) andalso is_recT T
  1569         | _ => false);
  1570 
  1571     fun is_all (Const (@{const_name all}, _) $ _) = ~1
  1572       | is_all (Const (@{const_name All}, _) $ _) = ~1
  1573       | is_all _ = 0;
  1574   in
  1575     if has_rec goal then
  1576       Simplifier.full_simp_tac (HOL_basic_ss addsimprocs [record_split_simproc is_all]) i
  1577     else no_tac
  1578   end);
  1579 
  1580 
  1581 (* wrapper *)
  1582 
  1583 val record_split_name = "record_split_tac";
  1584 val record_split_wrapper = (record_split_name, fn tac => record_split_tac ORELSE' tac);
  1585 
  1586 
  1587 
  1588 (** theory extender interface **)
  1589 
  1590 (* prepare arguments *)
  1591 
  1592 fun read_raw_parent ctxt raw_T =
  1593   (case ProofContext.read_typ_abbrev ctxt raw_T of
  1594     Type (name, Ts) => (Ts, name)
  1595   | T => error ("Bad parent record specification: " ^ Syntax.string_of_typ ctxt T));
  1596 
  1597 fun read_typ ctxt raw_T env =
  1598   let
  1599     val ctxt' = fold (Variable.declare_typ o TFree) env ctxt;
  1600     val T = Syntax.read_typ ctxt' raw_T;
  1601     val env' = OldTerm.add_typ_tfrees (T, env);
  1602   in (T, env') end;
  1603 
  1604 fun cert_typ ctxt raw_T env =
  1605   let
  1606     val thy = ProofContext.theory_of ctxt;
  1607     val T = Type.no_tvars (Sign.certify_typ thy raw_T)
  1608       handle TYPE (msg, _, _) => error msg;
  1609     val env' = OldTerm.add_typ_tfrees (T, env);
  1610   in (T, env') end;
  1611 
  1612 
  1613 (* attributes *)
  1614 
  1615 fun case_names_fields x = Rule_Cases.case_names ["fields"] x;
  1616 fun induct_type_global name = [case_names_fields, Induct.induct_type name];
  1617 fun cases_type_global name = [case_names_fields, Induct.cases_type name];
  1618 
  1619 
  1620 (* tactics *)
  1621 
  1622 fun simp_all_tac ss simps = ALLGOALS (Simplifier.asm_full_simp_tac (ss addsimps simps));
  1623 
  1624 (*Do case analysis / induction according to rule on last parameter of ith subgoal
  1625   (or on s if there are no parameters).
  1626   Instatiation of record variable (and predicate) in rule is calculated to
  1627   avoid problems with higher order unification.*)
  1628 fun try_param_tac s rule = CSUBGOAL (fn (cgoal, i) =>
  1629   let
  1630     val cert = Thm.cterm_of (Thm.theory_of_cterm cgoal);
  1631 
  1632     val g = Thm.term_of cgoal;
  1633     val params = Logic.strip_params g;
  1634     val concl = HOLogic.dest_Trueprop (Logic.strip_assums_concl g);
  1635     val rule' = Thm.lift_rule cgoal rule;
  1636     val (P, ys) = strip_comb (HOLogic.dest_Trueprop
  1637       (Logic.strip_assums_concl (prop_of rule')));
  1638     (*ca indicates if rule is a case analysis or induction rule*)
  1639     val (x, ca) =
  1640       (case rev (drop (length params) ys) of
  1641         [] => (head_of (fst (HOLogic.dest_eq (HOLogic.dest_Trueprop
  1642           (hd (rev (Logic.strip_assums_hyp (hd (prems_of rule')))))))), true)
  1643       | [x] => (head_of x, false));
  1644     val rule'' = cterm_instantiate (map (pairself cert)
  1645       (case rev params of
  1646         [] =>
  1647           (case AList.lookup (op =) (Term.add_frees g []) s of
  1648             NONE => sys_error "try_param_tac: no such variable"
  1649           | SOME T => [(P, if ca then concl else lambda (Free (s, T)) concl), (x, Free (s, T))])
  1650       | (_, T) :: _ =>
  1651           [(P, list_abs (params, if ca then concl else incr_boundvars 1 (Abs (s, T, concl)))),
  1652             (x, list_abs (params, Bound 0))])) rule';
  1653   in compose_tac (false, rule'', nprems_of rule) i end);
  1654 
  1655 
  1656 fun extension_definition name fields alphas zeta moreT more vars thy =
  1657   let
  1658     val base_name = Long_Name.base_name name;
  1659 
  1660     val fieldTs = map snd fields;
  1661     val fields_moreTs = fieldTs @ [moreT];
  1662 
  1663     val alphas_zeta = alphas @ [zeta];
  1664     val alphas_zetaTs = map (fn a => TFree (a, HOLogic.typeS)) alphas_zeta;
  1665 
  1666     val ext_binding = Binding.name (suffix extN base_name);
  1667     val ext_name = suffix extN name;
  1668     val extT = Type (suffix ext_typeN name, alphas_zetaTs);
  1669     val ext_type = fields_moreTs ---> extT;
  1670 
  1671 
  1672     (* the tree of new types that will back the record extension *)
  1673 
  1674     val mktreeV = Balanced_Tree.make Iso_Tuple_Support.mk_cons_tuple;
  1675 
  1676     fun mk_iso_tuple (left, right) (thy, i) =
  1677       let
  1678         val suff = if i = 0 then ext_typeN else inner_typeN ^ string_of_int i;
  1679         val ((_, cons), thy') = thy
  1680           |> Iso_Tuple_Support.add_iso_tuple_type
  1681             (suffix suff base_name, alphas_zeta) (fastype_of left, fastype_of right);
  1682       in
  1683         (cons $ left $ right, (thy', i + 1))
  1684       end;
  1685 
  1686     (*trying to create a 1-element iso_tuple will fail, and is pointless anyway*)
  1687     fun mk_even_iso_tuple [arg] = pair arg
  1688       | mk_even_iso_tuple args = mk_iso_tuple (Iso_Tuple_Support.dest_cons_tuple (mktreeV args));
  1689 
  1690     fun build_meta_tree_type i thy vars more =
  1691       let val len = length vars in
  1692         if len < 1 then raise TYPE ("meta_tree_type args too short", [], vars)
  1693         else if len > 16 then
  1694           let
  1695             fun group16 [] = []
  1696               | group16 xs = take 16 xs :: group16 (drop 16 xs);
  1697             val vars' = group16 vars;
  1698             val (composites, (thy', i')) = fold_map mk_even_iso_tuple vars' (thy, i);
  1699           in
  1700             build_meta_tree_type i' thy' composites more
  1701           end
  1702         else
  1703           let val (term, (thy', _)) = mk_iso_tuple (mktreeV vars, more) (thy, 0)
  1704           in (term, thy') end
  1705       end;
  1706 
  1707     val _ = timing_msg "record extension preparing definitions";
  1708 
  1709 
  1710     (* 1st stage part 1: introduce the tree of new types *)
  1711 
  1712     fun get_meta_tree () = build_meta_tree_type 1 thy vars more;
  1713     val (ext_body, typ_thy) =
  1714       timeit_msg "record extension nested type def:" get_meta_tree;
  1715 
  1716 
  1717     (* prepare declarations and definitions *)
  1718 
  1719     (* 1st stage part 2: define the ext constant *)
  1720 
  1721     fun mk_ext args = list_comb (Const (ext_name, ext_type), args);
  1722     val ext_spec = Logic.mk_equals (mk_ext (vars @ [more]), ext_body);
  1723 
  1724     fun mk_defs () =
  1725       typ_thy
  1726       |> Sign.declare_const ((ext_binding, ext_type), NoSyn) |> snd
  1727       |> PureThy.add_defs false [((Thm.def_binding ext_binding, ext_spec), [])]
  1728       ||> Theory.checkpoint
  1729     val ([ext_def], defs_thy) =
  1730       timeit_msg "record extension constructor def:" mk_defs;
  1731 
  1732 
  1733     (* prepare propositions *)
  1734 
  1735     val _ = timing_msg "record extension preparing propositions";
  1736     val vars_more = vars @ [more];
  1737     val variants = map (fn Free (x, _) => x) vars_more;
  1738     val ext = mk_ext vars_more;
  1739     val s = Free (rN, extT);
  1740     val P = Free (Name.variant variants "P", extT --> HOLogic.boolT);
  1741 
  1742     val inject_prop =
  1743       let val vars_more' = map (fn (Free (x, T)) => Free (x ^ "'", T)) vars_more in
  1744         HOLogic.mk_conj (HOLogic.eq_const extT $
  1745           mk_ext vars_more $ mk_ext vars_more', HOLogic.true_const)
  1746         ===
  1747         foldr1 HOLogic.mk_conj
  1748           (map HOLogic.mk_eq (vars_more ~~ vars_more') @ [HOLogic.true_const])
  1749       end;
  1750 
  1751     val induct_prop =
  1752       (All (map dest_Free vars_more) (Trueprop (P $ ext)), Trueprop (P $ s));
  1753 
  1754     val split_meta_prop =
  1755       let val P = Free (Name.variant variants "P", extT --> Term.propT) in
  1756         Logic.mk_equals
  1757          (All [dest_Free s] (P $ s), All (map dest_Free vars_more) (P $ ext))
  1758       end;
  1759 
  1760     val prove_standard = prove_future_global true defs_thy;
  1761 
  1762     fun inject_prf () =
  1763       simplify HOL_ss
  1764         (prove_standard [] inject_prop
  1765           (fn _ =>
  1766             simp_tac (HOL_basic_ss addsimps [ext_def]) 1 THEN
  1767             REPEAT_DETERM
  1768               (rtac refl_conj_eq 1 ORELSE
  1769                 Iso_Tuple_Support.iso_tuple_intros_tac 1 ORELSE
  1770                 rtac refl 1)));
  1771 
  1772     val inject = timeit_msg "record extension inject proof:" inject_prf;
  1773 
  1774     (*We need a surjection property r = (| f = f r, g = g r ... |)
  1775       to prove other theorems. We haven't given names to the accessors
  1776       f, g etc yet however, so we generate an ext structure with
  1777       free variables as all arguments and allow the introduction tactic to
  1778       operate on it as far as it can. We then use Drule.export_without_context
  1779       to convert the free variables into unifiable variables and unify them with
  1780       (roughly) the definition of the accessor.*)
  1781     fun surject_prf () =
  1782       let
  1783         val cterm_ext = cterm_of defs_thy ext;
  1784         val start = named_cterm_instantiate [("y", cterm_ext)] surject_assist_idE;
  1785         val tactic1 =
  1786           simp_tac (HOL_basic_ss addsimps [ext_def]) 1 THEN
  1787           REPEAT_ALL_NEW Iso_Tuple_Support.iso_tuple_intros_tac 1;
  1788         val tactic2 = REPEAT (rtac surject_assistI 1 THEN rtac refl 1);
  1789         val [halfway] = Seq.list_of (tactic1 start);
  1790         val [surject] = Seq.list_of (tactic2 (Drule.export_without_context halfway));
  1791       in
  1792         surject
  1793       end;
  1794     val surject = timeit_msg "record extension surjective proof:" surject_prf;
  1795 
  1796     fun split_meta_prf () =
  1797       prove_standard [] split_meta_prop
  1798         (fn _ =>
  1799           EVERY1
  1800            [rtac equal_intr_rule, Goal.norm_hhf_tac,
  1801             etac meta_allE, atac,
  1802             rtac (prop_subst OF [surject]),
  1803             REPEAT o etac meta_allE, atac]);
  1804     val split_meta = timeit_msg "record extension split_meta proof:" split_meta_prf;
  1805 
  1806     fun induct_prf () =
  1807       let val (assm, concl) = induct_prop in
  1808         prove_standard [assm] concl
  1809           (fn {prems, ...} =>
  1810             cut_rules_tac [split_meta RS Drule.equal_elim_rule2] 1 THEN
  1811             resolve_tac prems 2 THEN
  1812             asm_simp_tac HOL_ss 1)
  1813       end;
  1814     val induct = timeit_msg "record extension induct proof:" induct_prf;
  1815 
  1816     val ([induct', inject', surjective', split_meta'], thm_thy) =
  1817       defs_thy
  1818       |> PureThy.add_thms (map (Thm.no_attributes o apfst Binding.name)
  1819            [("ext_induct", induct),
  1820             ("ext_inject", inject),
  1821             ("ext_surjective", surject),
  1822             ("ext_split", split_meta)])
  1823       ||> Code.add_default_eqn ext_def;
  1824 
  1825   in ((extT, induct', inject', surjective', split_meta', ext_def), thm_thy) end;
  1826 
  1827 fun chunks [] [] = []
  1828   | chunks [] xs = [xs]
  1829   | chunks (l :: ls) xs = take l xs :: chunks ls (drop l xs);
  1830 
  1831 fun chop_last [] = error "chop_last: list should not be empty"
  1832   | chop_last [x] = ([], x)
  1833   | chop_last (x :: xs) = let val (tl, l) = chop_last xs in (x :: tl, l) end;
  1834 
  1835 fun subst_last _ [] = error "subst_last: list should not be empty"
  1836   | subst_last s [_] = [s]
  1837   | subst_last s (x :: xs) = x :: subst_last s xs;
  1838 
  1839 
  1840 (* mk_recordT *)
  1841 
  1842 (*builds up the record type from the current extension tpye extT and a list
  1843   of parent extensions, starting with the root of the record hierarchy*)
  1844 fun mk_recordT extT =
  1845   fold_rev (fn (parent, Ts) => fn T => Type (parent, subst_last T Ts)) extT;
  1846 
  1847 
  1848 fun obj_to_meta_all thm =
  1849   let
  1850     fun E thm =  (* FIXME proper name *)
  1851       (case SOME (spec OF [thm]) handle THM _ => NONE of
  1852         SOME thm' => E thm'
  1853       | NONE => thm);
  1854     val th1 = E thm;
  1855     val th2 = Drule.forall_intr_vars th1;
  1856   in th2 end;
  1857 
  1858 fun meta_to_obj_all thm =
  1859   let
  1860     val thy = Thm.theory_of_thm thm;
  1861     val prop = Thm.prop_of thm;
  1862     val params = Logic.strip_params prop;
  1863     val concl = HOLogic.dest_Trueprop (Logic.strip_assums_concl prop);
  1864     val ct = cterm_of thy (HOLogic.mk_Trueprop (HOLogic.list_all (params, concl)));
  1865     val thm' = Seq.hd (REPEAT (rtac allI 1) (Thm.trivial ct));
  1866   in Thm.implies_elim thm' thm end;
  1867 
  1868 
  1869 (* record_definition *)
  1870 
  1871 fun record_definition (args, binding) parent (parents: parent_info list) raw_fields thy =
  1872   let
  1873     val alphas = map fst args;
  1874 
  1875     val name = Sign.full_name thy binding;
  1876     val full = Sign.full_name_path thy (Binding.name_of binding); (* FIXME Binding.qualified (!?) *)
  1877 
  1878     val bfields = map (fn (x, T, _) => (x, T)) raw_fields;
  1879     val field_syntax = map #3 raw_fields;
  1880 
  1881     val parent_fields = maps #fields parents;
  1882     val parent_chunks = map (length o #fields) parents;
  1883     val parent_names = map fst parent_fields;
  1884     val parent_types = map snd parent_fields;
  1885     val parent_fields_len = length parent_fields;
  1886     val parent_variants =
  1887       Name.variant_list [moreN, rN, rN ^ "'", wN] (map Long_Name.base_name parent_names);
  1888     val parent_vars = ListPair.map Free (parent_variants, parent_types);
  1889     val parent_len = length parents;
  1890 
  1891     val fields = map (apfst full) bfields;
  1892     val names = map fst fields;
  1893     val types = map snd fields;
  1894     val alphas_fields = fold Term.add_tfree_namesT types [];
  1895     val alphas_ext = inter (op =) alphas_fields alphas;
  1896     val len = length fields;
  1897     val variants =
  1898       Name.variant_list (moreN :: rN :: (rN ^ "'") :: wN :: parent_variants)
  1899         (map (Binding.name_of o fst) bfields);
  1900     val vars = ListPair.map Free (variants, types);
  1901     val named_vars = names ~~ vars;
  1902     val idxms = 0 upto len;
  1903 
  1904     val all_fields = parent_fields @ fields;
  1905     val all_types = parent_types @ types;
  1906     val all_variants = parent_variants @ variants;
  1907     val all_vars = parent_vars @ vars;
  1908     val all_named_vars = (parent_names ~~ parent_vars) @ named_vars;
  1909 
  1910 
  1911     val zeta = Name.variant alphas "'z";
  1912     val moreT = TFree (zeta, HOLogic.typeS);
  1913     val more = Free (moreN, moreT);
  1914     val full_moreN = full (Binding.name moreN);
  1915     val bfields_more = bfields @ [(Binding.name moreN, moreT)];
  1916     val fields_more = fields @ [(full_moreN, moreT)];
  1917     val named_vars_more = named_vars @ [(full_moreN, more)];
  1918     val all_vars_more = all_vars @ [more];
  1919     val all_named_vars_more = all_named_vars @ [(full_moreN, more)];
  1920 
  1921 
  1922     (* 1st stage: ext_thy *)
  1923 
  1924     val extension_name = full binding;
  1925 
  1926     val ((extT, ext_induct, ext_inject, ext_surjective, ext_split, ext_def), ext_thy) =
  1927       thy
  1928       |> Sign.qualified_path false binding
  1929       |> extension_definition extension_name fields alphas_ext zeta moreT more vars;
  1930 
  1931     val _ = timing_msg "record preparing definitions";
  1932     val Type extension_scheme = extT;
  1933     val extension_name = unsuffix ext_typeN (fst extension_scheme);
  1934     val extension = let val (n, Ts) = extension_scheme in (n, subst_last HOLogic.unitT Ts) end;
  1935     val extension_names = map (unsuffix ext_typeN o fst o #extension) parents @ [extension_name];
  1936     val extension_id = implode extension_names;
  1937 
  1938     fun rec_schemeT n = mk_recordT (map #extension (drop n parents)) extT;
  1939     val rec_schemeT0 = rec_schemeT 0;
  1940 
  1941     fun recT n =
  1942       let val (c, Ts) = extension in
  1943         mk_recordT (map #extension (drop n parents))
  1944           (Type (c, subst_last HOLogic.unitT Ts))
  1945       end;
  1946     val recT0 = recT 0;
  1947 
  1948     fun mk_rec args n =
  1949       let
  1950         val (args', more) = chop_last args;
  1951         fun mk_ext' ((name, T), args) more = mk_ext (name, T) (args @ [more]);
  1952         fun build Ts =
  1953           fold_rev mk_ext' (drop n ((extension_names ~~ Ts) ~~ chunks parent_chunks args'))
  1954             more;
  1955       in
  1956         if more = HOLogic.unit
  1957         then build (map_range recT (parent_len + 1))
  1958         else build (map_range rec_schemeT (parent_len + 1))
  1959       end;
  1960 
  1961     val r_rec0 = mk_rec all_vars_more 0;
  1962     val r_rec_unit0 = mk_rec (all_vars @ [HOLogic.unit]) 0;
  1963 
  1964     fun r n = Free (rN, rec_schemeT n)
  1965     val r0 = r 0;
  1966     fun r_unit n = Free (rN, recT n)
  1967     val r_unit0 = r_unit 0;
  1968     val w = Free (wN, rec_schemeT 0)
  1969 
  1970 
  1971     (* print translations *)
  1972 
  1973     val external_names = Name_Space.external_names (Sign.naming_of ext_thy);
  1974 
  1975     val record_ext_type_abbr_tr's =
  1976       let
  1977         val trnames = external_names (hd extension_names);
  1978         val last_ext = unsuffix ext_typeN (fst extension);
  1979       in map (record_ext_type_abbr_tr' name alphas zeta last_ext rec_schemeT0) trnames end;
  1980 
  1981     val record_ext_type_tr's =
  1982       let
  1983         (*avoid conflict with record_type_abbr_tr's*)
  1984         val trnames = if parent_len > 0 then external_names extension_name else [];
  1985       in map record_ext_type_tr' trnames end;
  1986 
  1987     val advanced_print_translation =
  1988       map field_update_tr' (full_moreN :: names) @ [record_ext_tr' extension_name] @
  1989       record_ext_type_tr's @ record_ext_type_abbr_tr's;
  1990 
  1991 
  1992     (* prepare declarations *)
  1993 
  1994     val sel_decls = map (mk_selC rec_schemeT0 o apfst Binding.name_of) bfields_more;
  1995     val upd_decls = map (mk_updC updateN rec_schemeT0 o apfst Binding.name_of) bfields_more;
  1996     val make_decl = (makeN, all_types ---> recT0);
  1997     val fields_decl = (fields_selN, types ---> Type extension);
  1998     val extend_decl = (extendN, recT0 --> moreT --> rec_schemeT0);
  1999     val truncate_decl = (truncateN, rec_schemeT0 --> recT0);
  2000 
  2001 
  2002     (* prepare definitions *)
  2003 
  2004     (*record (scheme) type abbreviation*)
  2005     val recordT_specs =
  2006       [(Binding.suffix_name schemeN binding, alphas @ [zeta], rec_schemeT0, NoSyn),
  2007         (binding, alphas, recT0, NoSyn)];
  2008 
  2009     val ext_defs = ext_def :: map #ext_def parents;
  2010 
  2011     (*Theorems from the iso_tuple intros.
  2012       By unfolding ext_defs from r_rec0 we create a tree of constructor
  2013       calls (many of them Pair, but others as well). The introduction
  2014       rules for update_accessor_eq_assist can unify two different ways
  2015       on these constructors. If we take the complete result sequence of
  2016       running a the introduction tactic, we get one theorem for each upd/acc
  2017       pair, from which we can derive the bodies of our selector and
  2018       updator and their convs.*)
  2019     fun get_access_update_thms () =
  2020       let
  2021         val r_rec0_Vars =
  2022           let
  2023             (*pick variable indices of 1 to avoid possible variable
  2024               collisions with existing variables in updacc_eq_triv*)
  2025             fun to_Var (Free (c, T)) = Var ((c, 1), T);
  2026           in mk_rec (map to_Var all_vars_more) 0 end;
  2027 
  2028         val cterm_rec = cterm_of ext_thy r_rec0;
  2029         val cterm_vrs = cterm_of ext_thy r_rec0_Vars;
  2030         val insts = [("v", cterm_rec), ("v'", cterm_vrs)];
  2031         val init_thm = named_cterm_instantiate insts updacc_eq_triv;
  2032         val terminal = rtac updacc_eq_idI 1 THEN rtac refl 1;
  2033         val tactic =
  2034           simp_tac (HOL_basic_ss addsimps ext_defs) 1 THEN
  2035           REPEAT (Iso_Tuple_Support.iso_tuple_intros_tac 1 ORELSE terminal);
  2036         val updaccs = Seq.list_of (tactic init_thm);
  2037       in
  2038         (updaccs RL [updacc_accessor_eqE],
  2039          updaccs RL [updacc_updator_eqE],
  2040          updaccs RL [updacc_cong_from_eq])
  2041       end;
  2042     val (accessor_thms, updator_thms, upd_acc_cong_assists) =
  2043       timeit_msg "record getting tree access/updates:" get_access_update_thms;
  2044 
  2045     fun lastN xs = drop parent_fields_len xs;
  2046 
  2047     (*selectors*)
  2048     fun mk_sel_spec ((c, T), thm) =
  2049       let
  2050         val (acc $ arg, _) =
  2051           HOLogic.dest_eq (HOLogic.dest_Trueprop (Envir.beta_eta_contract (Thm.concl_of thm)));
  2052         val _ =
  2053           if arg aconv r_rec0 then ()
  2054           else raise TERM ("mk_sel_spec: different arg", [arg]);
  2055       in
  2056         Const (mk_selC rec_schemeT0 (c, T)) :== acc
  2057       end;
  2058     val sel_specs = map mk_sel_spec (fields_more ~~ lastN accessor_thms);
  2059 
  2060     (*updates*)
  2061     fun mk_upd_spec ((c, T), thm) =
  2062       let
  2063         val (upd $ _ $ arg, _) =
  2064           HOLogic.dest_eq (HOLogic.dest_Trueprop (Envir.beta_eta_contract (Thm.concl_of thm)));
  2065         val _ =
  2066           if arg aconv r_rec0 then ()
  2067           else raise TERM ("mk_sel_spec: different arg", [arg]);
  2068       in Const (mk_updC updateN rec_schemeT0 (c, T)) :== upd end;
  2069     val upd_specs = map mk_upd_spec (fields_more ~~ lastN updator_thms);
  2070 
  2071     (*derived operations*)
  2072     val make_spec =
  2073       list_comb (Const (full (Binding.name makeN), all_types ---> recT0), all_vars) :==
  2074         mk_rec (all_vars @ [HOLogic.unit]) 0;
  2075     val fields_spec =
  2076       list_comb (Const (full (Binding.name fields_selN), types ---> Type extension), vars) :==
  2077         mk_rec (all_vars @ [HOLogic.unit]) parent_len;
  2078     val extend_spec =
  2079       Const (full (Binding.name extendN), recT0 --> moreT --> rec_schemeT0) $ r_unit0 $ more :==
  2080         mk_rec ((map (mk_sel r_unit0) all_fields) @ [more]) 0;
  2081     val truncate_spec =
  2082       Const (full (Binding.name truncateN), rec_schemeT0 --> recT0) $ r0 :==
  2083         mk_rec ((map (mk_sel r0) all_fields) @ [HOLogic.unit]) 0;
  2084 
  2085 
  2086     (* 2st stage: defs_thy *)
  2087 
  2088     fun mk_defs () =
  2089       ext_thy
  2090       |> Sign.add_advanced_trfuns ([], [], advanced_print_translation, [])
  2091       |> Sign.restore_naming thy
  2092       |> Sign.add_tyabbrs_i recordT_specs
  2093       |> Sign.qualified_path false binding
  2094       |> fold (fn ((x, T), mx) => snd o Sign.declare_const ((Binding.name x, T), mx))
  2095         (sel_decls ~~ (field_syntax @ [NoSyn]))
  2096       |> fold (fn (x, T) => snd o Sign.declare_const ((Binding.name x, T), NoSyn))
  2097         (upd_decls @ [make_decl, fields_decl, extend_decl, truncate_decl])
  2098       |> (PureThy.add_defs false o map (Thm.no_attributes o apfst (Binding.conceal o Binding.name)))
  2099         sel_specs
  2100       ||>> (PureThy.add_defs false o map (Thm.no_attributes o apfst (Binding.conceal o Binding.name)))
  2101         upd_specs
  2102       ||>> (PureThy.add_defs false o map (Thm.no_attributes o apfst (Binding.conceal o Binding.name)))
  2103         [make_spec, fields_spec, extend_spec, truncate_spec]
  2104       |->
  2105         (fn defs as ((sel_defs, upd_defs), derived_defs) =>
  2106           fold Code.add_default_eqn sel_defs
  2107           #> fold Code.add_default_eqn upd_defs
  2108           #> fold Code.add_default_eqn derived_defs
  2109           #> pair defs)
  2110       ||> Theory.checkpoint
  2111     val (((sel_defs, upd_defs), derived_defs), defs_thy) =
  2112       timeit_msg "record trfuns/tyabbrs/selectors/updates/make/fields/extend/truncate defs:"
  2113         mk_defs;
  2114 
  2115     (* prepare propositions *)
  2116     val _ = timing_msg "record preparing propositions";
  2117     val P = Free (Name.variant all_variants "P", rec_schemeT0 --> HOLogic.boolT);
  2118     val C = Free (Name.variant all_variants "C", HOLogic.boolT);
  2119     val P_unit = Free (Name.variant all_variants "P", recT0 --> HOLogic.boolT);
  2120 
  2121     (*selectors*)
  2122     val sel_conv_props =
  2123        map (fn (c, x as Free (_, T)) => mk_sel r_rec0 (c, T) === x) named_vars_more;
  2124 
  2125     (*updates*)
  2126     fun mk_upd_prop (i, (c, T)) =
  2127       let
  2128         val x' = Free (Name.variant all_variants (Long_Name.base_name c ^ "'"), T --> T);
  2129         val n = parent_fields_len + i;
  2130         val args' = nth_map n (K (x' $ nth all_vars_more n)) all_vars_more;
  2131       in mk_upd updateN c x' r_rec0 === mk_rec args' 0 end;
  2132     val upd_conv_props = ListPair.map mk_upd_prop (idxms, fields_more);
  2133 
  2134     (*induct*)
  2135     val induct_scheme_prop =
  2136       All (map dest_Free all_vars_more) (Trueprop (P $ r_rec0)) ==> Trueprop (P $ r0);
  2137     val induct_prop =
  2138       (All (map dest_Free all_vars) (Trueprop (P_unit $ r_rec_unit0)),
  2139         Trueprop (P_unit $ r_unit0));
  2140 
  2141     (*surjective*)
  2142     val surjective_prop =
  2143       let val args = map (fn (c, Free (_, T)) => mk_sel r0 (c, T)) all_named_vars_more
  2144       in r0 === mk_rec args 0 end;
  2145 
  2146     (*cases*)
  2147     val cases_scheme_prop =
  2148       (All (map dest_Free all_vars_more) ((r0 === r_rec0) ==> Trueprop C))
  2149         ==> Trueprop C;
  2150 
  2151     val cases_prop =
  2152       (All (map dest_Free all_vars) ((r_unit0 === r_rec_unit0) ==> Trueprop C))
  2153          ==> Trueprop C;
  2154 
  2155     (*split*)
  2156     val split_meta_prop =
  2157       let val P = Free (Name.variant all_variants "P", rec_schemeT0-->Term.propT) in
  2158         Logic.mk_equals
  2159          (All [dest_Free r0] (P $ r0), All (map dest_Free all_vars_more) (P $ r_rec0))
  2160       end;
  2161 
  2162     val split_object_prop =
  2163       let val ALL = fold_rev (fn (v, T) => fn t => HOLogic.mk_all (v, T, t))
  2164       in ALL [dest_Free r0] (P $ r0) === ALL (map dest_Free all_vars_more) (P $ r_rec0) end;
  2165 
  2166     val split_ex_prop =
  2167       let val EX = fold_rev (fn (v, T) => fn t => HOLogic.mk_exists (v, T, t))
  2168       in EX [dest_Free r0] (P $ r0) === EX (map dest_Free all_vars_more) (P $ r_rec0) end;
  2169 
  2170     (*equality*)
  2171     val equality_prop =
  2172       let
  2173         val s' = Free (rN ^ "'", rec_schemeT0);
  2174         fun mk_sel_eq (c, Free (_, T)) = mk_sel r0 (c, T) === mk_sel s' (c, T);
  2175         val seleqs = map mk_sel_eq all_named_vars_more;
  2176       in All (map dest_Free [r0, s']) (Logic.list_implies (seleqs, r0 === s')) end;
  2177 
  2178 
  2179     (* 3rd stage: thms_thy *)
  2180 
  2181     fun prove stndrd = prove_future_global stndrd defs_thy;
  2182     val prove_standard = prove_future_global true defs_thy;
  2183     val future_forward_prf = future_forward_prf_standard defs_thy;
  2184 
  2185     fun prove_simp stndrd ss simps =
  2186       let val tac = simp_all_tac ss simps
  2187       in fn prop => prove stndrd [] prop (K tac) end;
  2188 
  2189     val ss = get_simpset defs_thy;
  2190 
  2191     fun sel_convs_prf () =
  2192       map (prove_simp false ss (sel_defs @ accessor_thms)) sel_conv_props;
  2193     val sel_convs = timeit_msg "record sel_convs proof:" sel_convs_prf;
  2194     fun sel_convs_standard_prf () = map Drule.export_without_context sel_convs;
  2195     val sel_convs_standard =
  2196       timeit_msg "record sel_convs_standard proof:" sel_convs_standard_prf;
  2197 
  2198     fun upd_convs_prf () =
  2199       map (prove_simp false ss (upd_defs @ updator_thms)) upd_conv_props;
  2200     val upd_convs = timeit_msg "record upd_convs proof:" upd_convs_prf;
  2201     fun upd_convs_standard_prf () = map Drule.export_without_context upd_convs;
  2202     val upd_convs_standard =
  2203       timeit_msg "record upd_convs_standard proof:" upd_convs_standard_prf;
  2204 
  2205     fun get_upd_acc_congs () =
  2206       let
  2207         val symdefs = map symmetric (sel_defs @ upd_defs);
  2208         val fold_ss = HOL_basic_ss addsimps symdefs;
  2209         val ua_congs = map (Drule.export_without_context o simplify fold_ss) upd_acc_cong_assists;
  2210       in (ua_congs RL [updacc_foldE], ua_congs RL [updacc_unfoldE]) end;
  2211     val (fold_congs, unfold_congs) =
  2212       timeit_msg "record upd fold/unfold congs:" get_upd_acc_congs;
  2213 
  2214     val parent_induct = Option.map #induct_scheme (try List.last parents);
  2215 
  2216     fun induct_scheme_prf () =
  2217       prove_standard [] induct_scheme_prop
  2218         (fn _ =>
  2219           EVERY
  2220            [case parent_induct of NONE => all_tac | SOME ind => try_param_tac rN ind 1,
  2221             try_param_tac rN ext_induct 1,
  2222             asm_simp_tac HOL_basic_ss 1]);
  2223     val induct_scheme = timeit_msg "record induct_scheme proof:" induct_scheme_prf;
  2224 
  2225     fun induct_prf () =
  2226       let val (assm, concl) = induct_prop in
  2227         prove_standard [assm] concl (fn {prems, ...} =>
  2228           try_param_tac rN induct_scheme 1
  2229           THEN try_param_tac "more" @{thm unit.induct} 1
  2230           THEN resolve_tac prems 1)
  2231       end;
  2232     val induct = timeit_msg "record induct proof:" induct_prf;
  2233 
  2234     fun cases_scheme_prf () =
  2235       let
  2236         val _ $ (Pvar $ _) = concl_of induct_scheme;
  2237         val ind =
  2238           cterm_instantiate
  2239             [(cterm_of defs_thy Pvar, cterm_of defs_thy
  2240               (lambda w (HOLogic.imp $ HOLogic.mk_eq (r0, w) $ C)))]
  2241             induct_scheme;
  2242         in ObjectLogic.rulify (mp OF [ind, refl]) end;
  2243 
  2244     val cases_scheme_prf = future_forward_prf cases_scheme_prf cases_scheme_prop;
  2245     val cases_scheme = timeit_msg "record cases_scheme proof:" cases_scheme_prf;
  2246 
  2247     fun cases_prf () =
  2248       prove_standard [] cases_prop
  2249         (fn _ =>
  2250           try_param_tac rN cases_scheme 1 THEN
  2251           simp_all_tac HOL_basic_ss [unit_all_eq1]);
  2252     val cases = timeit_msg "record cases proof:" cases_prf;
  2253 
  2254     fun surjective_prf () =
  2255       let
  2256         val leaf_ss = get_sel_upd_defs defs_thy addsimps (sel_defs @ (o_assoc :: id_o_apps));
  2257         val init_ss = HOL_basic_ss addsimps ext_defs;
  2258       in
  2259         prove_standard [] surjective_prop
  2260           (fn _ =>
  2261             EVERY
  2262              [rtac surject_assist_idE 1,
  2263               simp_tac init_ss 1,
  2264               REPEAT
  2265                 (Iso_Tuple_Support.iso_tuple_intros_tac 1 ORELSE
  2266                   (rtac surject_assistI 1 THEN simp_tac leaf_ss 1))])
  2267       end;
  2268     val surjective = timeit_msg "record surjective proof:" surjective_prf;
  2269 
  2270     fun split_meta_prf () =
  2271       prove false [] split_meta_prop
  2272         (fn _ =>
  2273           EVERY1
  2274            [rtac equal_intr_rule, Goal.norm_hhf_tac,
  2275             etac meta_allE, atac,
  2276             rtac (prop_subst OF [surjective]),
  2277             REPEAT o etac meta_allE, atac]);
  2278     val split_meta = timeit_msg "record split_meta proof:" split_meta_prf;
  2279     fun split_meta_standardise () = Drule.export_without_context split_meta;
  2280     val split_meta_standard =
  2281       timeit_msg "record split_meta standard:" split_meta_standardise;
  2282 
  2283     fun split_object_prf () =
  2284       let
  2285         val cPI= cterm_of defs_thy (lambda r0 (Trueprop (P $ r0)));
  2286         val _ $ Abs (_, _, P $ _) = fst (Logic.dest_equals (concl_of split_meta_standard));
  2287         val cP = cterm_of defs_thy P;
  2288         val split_meta' = cterm_instantiate [(cP, cPI)] split_meta_standard;
  2289         val (l, r) = HOLogic.dest_eq (HOLogic.dest_Trueprop split_object_prop);
  2290         val cl = cterm_of defs_thy (HOLogic.mk_Trueprop l);
  2291         val cr = cterm_of defs_thy (HOLogic.mk_Trueprop r);
  2292         val thl =
  2293           assume cl                   (*All r. P r*) (* 1 *)
  2294           |> obj_to_meta_all          (*!!r. P r*)
  2295           |> equal_elim split_meta'   (*!!n m more. P (ext n m more)*)
  2296           |> meta_to_obj_all          (*All n m more. P (ext n m more)*) (* 2*)
  2297           |> implies_intr cl          (* 1 ==> 2 *)
  2298         val thr =
  2299           assume cr                             (*All n m more. P (ext n m more)*)
  2300           |> obj_to_meta_all                    (*!!n m more. P (ext n m more)*)
  2301           |> equal_elim (symmetric split_meta') (*!!r. P r*)
  2302           |> meta_to_obj_all                    (*All r. P r*)
  2303           |> implies_intr cr                    (* 2 ==> 1 *)
  2304      in thr COMP (thl COMP iffI) end;
  2305 
  2306 
  2307     val split_object_prf = future_forward_prf split_object_prf split_object_prop;
  2308     val split_object = timeit_msg "record split_object proof:" split_object_prf;
  2309 
  2310 
  2311     fun split_ex_prf () =
  2312       let
  2313         val ss = HOL_basic_ss addsimps [not_ex RS sym, Not_eq_iff];
  2314         val P_nm = fst (dest_Free P);
  2315         val not_P = cterm_of defs_thy (lambda r0 (HOLogic.mk_not (P $ r0)));
  2316         val so' = named_cterm_instantiate ([(P_nm, not_P)]) split_object;
  2317         val so'' = simplify ss so';
  2318       in
  2319         prove_standard [] split_ex_prop (fn _ => resolve_tac [so''] 1)
  2320       end;
  2321     val split_ex = timeit_msg "record split_ex proof:" split_ex_prf;
  2322 
  2323     fun equality_tac thms =
  2324       let
  2325         val s' :: s :: eqs = rev thms;
  2326         val ss' = ss addsimps (s' :: s :: sel_convs_standard);
  2327         val eqs' = map (simplify ss') eqs;
  2328       in simp_tac (HOL_basic_ss addsimps (s' :: s :: eqs')) 1 end;
  2329 
  2330     fun equality_prf () =
  2331       prove_standard [] equality_prop (fn {context, ...} =>
  2332         fn st =>
  2333           let val [s, s'] = map #1 (rev (Tactic.innermost_params 1 st)) in
  2334             st |> (res_inst_tac context [((rN, 0), s)] cases_scheme 1 THEN
  2335               res_inst_tac context [((rN, 0), s')] cases_scheme 1 THEN
  2336               Subgoal.FOCUS (fn {prems, ...} => equality_tac prems) context 1)
  2337              (*simp_all_tac ss (sel_convs) would also work but is less efficient*)
  2338           end);
  2339     val equality = timeit_msg "record equality proof:" equality_prf;
  2340 
  2341     val ((([sel_convs', upd_convs', sel_defs', upd_defs',
  2342             fold_congs', unfold_congs',
  2343           splits' as [split_meta', split_object', split_ex'], derived_defs'],
  2344           [surjective', equality']),
  2345           [induct_scheme', induct', cases_scheme', cases']), thms_thy) =
  2346       defs_thy
  2347       |> (PureThy.add_thmss o map (Thm.no_attributes o apfst Binding.name))
  2348          [("select_convs", sel_convs_standard),
  2349           ("update_convs", upd_convs_standard),
  2350           ("select_defs", sel_defs),
  2351           ("update_defs", upd_defs),
  2352           ("fold_congs", fold_congs),
  2353           ("unfold_congs", unfold_congs),
  2354           ("splits", [split_meta_standard, split_object, split_ex]),
  2355           ("defs", derived_defs)]
  2356       ||>> (PureThy.add_thms o map (Thm.no_attributes o apfst Binding.name))
  2357           [("surjective", surjective),
  2358            ("equality", equality)]
  2359       ||>> (PureThy.add_thms o (map o apfst o apfst) Binding.name)
  2360         [(("induct_scheme", induct_scheme), induct_type_global (suffix schemeN name)),
  2361          (("induct", induct), induct_type_global name),
  2362          (("cases_scheme", cases_scheme), cases_type_global (suffix schemeN name)),
  2363          (("cases", cases), cases_type_global name)];
  2364 
  2365     val sel_upd_simps = sel_convs' @ upd_convs';
  2366     val sel_upd_defs = sel_defs' @ upd_defs';
  2367     val iffs = [ext_inject]
  2368     val depth = parent_len + 1;
  2369 
  2370     val ([simps', iffs'], thms_thy') =
  2371       thms_thy
  2372       |> PureThy.add_thmss
  2373           [((Binding.name "simps", sel_upd_simps), [Simplifier.simp_add]),
  2374            ((Binding.name "iffs", iffs), [iff_add])];
  2375 
  2376     val info =
  2377       make_record_info args parent fields extension
  2378         ext_induct ext_inject ext_surjective ext_split ext_def
  2379         sel_convs' upd_convs' sel_defs' upd_defs' fold_congs' unfold_congs' splits' derived_defs'
  2380         surjective' equality' induct_scheme' induct' cases_scheme' cases' simps' iffs';
  2381 
  2382     val final_thy =
  2383       thms_thy'
  2384       |> put_record name info
  2385       |> put_sel_upd names full_moreN depth sel_upd_simps sel_upd_defs (fold_congs', unfold_congs')
  2386       |> add_record_equalities extension_id equality'
  2387       |> add_extinjects ext_inject
  2388       |> add_extsplit extension_name ext_split
  2389       |> add_record_splits extension_id (split_meta', split_object', split_ex', induct_scheme')
  2390       |> add_extfields extension_name (fields @ [(full_moreN, moreT)])
  2391       |> add_fieldext (extension_name, snd extension) (names @ [full_moreN])
  2392       |> Sign.restore_naming thy;
  2393 
  2394   in final_thy end;
  2395 
  2396 
  2397 (* add_record *)
  2398 
  2399 (*We do all preparations and error checks here, deferring the real
  2400   work to record_definition.*)
  2401 fun gen_add_record prep_typ prep_raw_parent quiet_mode
  2402     (params, binding) raw_parent raw_fields thy =
  2403   let
  2404     val _ = Theory.requires thy "Record" "record definitions";
  2405     val _ =
  2406       if quiet_mode then ()
  2407       else writeln ("Defining record " ^ quote (Binding.str_of binding) ^ " ...");
  2408 
  2409     val ctxt = ProofContext.init thy;
  2410 
  2411 
  2412     (* parents *)
  2413 
  2414     fun prep_inst T = fst (cert_typ ctxt T []);
  2415 
  2416     val parent = Option.map (apfst (map prep_inst) o prep_raw_parent ctxt) raw_parent
  2417       handle ERROR msg => cat_error msg ("The error(s) above in parent record specification");
  2418     val parents = add_parents thy parent [];
  2419 
  2420     val init_env =
  2421       (case parent of
  2422         NONE => []
  2423       | SOME (types, _) => fold Term.add_tfreesT types []);
  2424 
  2425 
  2426     (* fields *)
  2427 
  2428     fun prep_field (x, raw_T, mx) env =
  2429       let
  2430         val (T, env') =
  2431           prep_typ ctxt raw_T env handle ERROR msg =>
  2432             cat_error msg ("The error(s) above occured in record field " ^ quote (Binding.str_of x));
  2433       in ((x, T, mx), env') end;
  2434 
  2435     val (bfields, envir) = fold_map prep_field raw_fields init_env;
  2436     val envir_names = map fst envir;
  2437 
  2438 
  2439     (* args *)
  2440 
  2441     val defaultS = Sign.defaultS thy;
  2442     val args = map (fn x => (x, AList.lookup (op =) envir x |> the_default defaultS)) params;
  2443 
  2444 
  2445     (* errors *)
  2446 
  2447     val name = Sign.full_name thy binding;
  2448     val err_dup_record =
  2449       if is_none (get_record thy name) then []
  2450       else ["Duplicate definition of record " ^ quote name];
  2451 
  2452     val err_dup_parms =
  2453       (case duplicates (op =) params of
  2454         [] => []
  2455       | dups => ["Duplicate parameter(s) " ^ commas dups]);
  2456 
  2457     val err_extra_frees =
  2458       (case subtract (op =) params envir_names of
  2459         [] => []
  2460       | extras => ["Extra free type variable(s) " ^ commas extras]);
  2461 
  2462     val err_no_fields = if null bfields then ["No fields present"] else [];
  2463 
  2464     val err_dup_fields =
  2465       (case duplicates Binding.eq_name (map #1 bfields) of
  2466         [] => []
  2467       | dups => ["Duplicate field(s) " ^ commas_quote (map Binding.str_of dups)]);
  2468 
  2469     val err_bad_fields =
  2470       if forall (not_equal moreN o Binding.name_of o #1) bfields then []
  2471       else ["Illegal field name " ^ quote moreN];
  2472 
  2473     val err_dup_sorts =
  2474       (case duplicates (op =) envir_names of
  2475         [] => []
  2476       | dups => ["Inconsistent sort constraints for " ^ commas dups]);
  2477 
  2478     val errs =
  2479       err_dup_record @ err_dup_parms @ err_extra_frees @ err_no_fields @
  2480       err_dup_fields @ err_bad_fields @ err_dup_sorts;
  2481 
  2482     val _ = if null errs then () else error (cat_lines errs);
  2483   in
  2484     thy |> record_definition (args, binding) parent parents bfields
  2485   end
  2486   handle ERROR msg => cat_error msg ("Failed to define record " ^ quote (Binding.str_of binding));
  2487 
  2488 val add_record = gen_add_record cert_typ (K I);
  2489 val add_record_cmd = gen_add_record read_typ read_raw_parent;
  2490 
  2491 
  2492 (* setup theory *)
  2493 
  2494 val setup =
  2495   Sign.add_trfuns ([], parse_translation, [], []) #>
  2496   Sign.add_advanced_trfuns ([], advanced_parse_translation, [], []) #>
  2497   Simplifier.map_simpset (fn ss =>
  2498     ss addsimprocs [record_simproc, record_upd_simproc, record_eq_simproc]);
  2499 
  2500 
  2501 (* outer syntax *)
  2502 
  2503 local structure P = OuterParse and K = OuterKeyword in
  2504 
  2505 val _ =
  2506   OuterSyntax.command "record" "define extensible record" K.thy_decl
  2507     (P.type_args -- P.binding --
  2508       (P.$$$ "=" |-- Scan.option (P.typ --| P.$$$ "+") -- Scan.repeat1 P.const_binding)
  2509     >> (fn (x, (y, z)) => Toplevel.theory (add_record_cmd false x y z)));
  2510 
  2511 end;
  2512 
  2513 end;
  2514 
  2515 structure Basic_Record: BASIC_RECORD = Record;
  2516 open Basic_Record;