src/HOL/Induct/README.html
author urbanc
Tue Jun 05 09:56:19 2007 +0200 (2007-06-05)
changeset 23243 a37d3e6e8323
parent 15582 7219facb3fd0
child 33688 1a97dcd8dc6a
permissions -rw-r--r--
included Class.thy in the compiling process for Nominal/Examples
     1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
     2 
     3 <!-- $Id$ -->
     4 
     5 <HTML>
     6 
     7 <HEAD>
     8   <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
     9   <TITLE>HOL/Induct/README</TITLE>
    10 </HEAD>
    11 
    12 <BODY>
    13 
    14 <H2>Induct--Examples of (Co)Inductive Definitions</H2>
    15 
    16 <P>This directory is a collection of small examples to demonstrate
    17 Isabelle/HOL's (co)inductive definitions package.  Large examples appear on
    18 many other directories, such as Auth, IMP and Lambda.
    19 
    20 <UL>
    21 
    22 <LI><KBD>Comb</KBD> proves the Church-Rosser theorem for combinators (<A
    23 HREF="http://www.cl.cam.ac.uk/ftp/papers/reports/TR396-lcp-generic-automatic-proof-tools.ps.gz">paper
    24 available</A>).
    25 
    26 <LI><KBD>Mutil</KBD> is the famous Mutilated Chess Board problem (<A
    27 HREF="http://www.cl.cam.ac.uk/ftp/papers/reports/TR394-lcp-mutilated-chess-board.dvi.gz">paper
    28 available</A>).
    29 
    30 <LI><KBD>PropLog</KBD> proves the completeness of a formalization of
    31 propositional logic (<A
    32 HREF="http://www.cl.cam.ac.uk/Research/Reports/TR312-lcp-set-II.ps.gz">paper
    33 available</A>).
    34 
    35 <LI><KBD>LFilter</KBD> is an inductive/corecursive formalization of the
    36 <EM>filter</EM> functional for infinite streams.
    37 
    38 <LI><KBD>Exp</KBD> demonstrates the use of iterated inductive definitions to
    39 reason about mutually recursive relations.
    40 </UL>
    41 
    42 <HR>
    43 
    44 <ADDRESS>
    45 <A NAME="lcp@cl.cam.ac.uk" HREF="mailto:lcp@cl.cam.ac.uk">lcp@cl.cam.ac.uk</A>
    46 </ADDRESS>
    47 </BODY></HTML>