src/Tools/Code/code_thingol.ML
author haftmann
Thu Jun 17 11:33:04 2010 +0200 (2010-06-17)
changeset 37447 ad3e04f289b6
parent 37446 fc55011cfdfd
child 37448 3bd4b3809bee
permissions -rw-r--r--
transitive superclasses were also only a misunderstanding
     1 (*  Title:      Tools/code/code_thingol.ML
     2     Author:     Florian Haftmann, TU Muenchen
     3 
     4 Intermediate language ("Thin-gol") representing executable code.
     5 Representation and translation.
     6 *)
     7 
     8 infix 8 `%%;
     9 infix 4 `$;
    10 infix 4 `$$;
    11 infixr 3 `|=>;
    12 infixr 3 `|==>;
    13 
    14 signature BASIC_CODE_THINGOL =
    15 sig
    16   type vname = string;
    17   datatype dict =
    18       DictConst of string * dict list list
    19     | DictVar of string list * (vname * (int * int));
    20   datatype itype =
    21       `%% of string * itype list
    22     | ITyVar of vname;
    23   type const = string * ((itype list * dict list list) * itype list (*types of arguments*))
    24   datatype iterm =
    25       IConst of const
    26     | IVar of vname option
    27     | `$ of iterm * iterm
    28     | `|=> of (vname option * itype) * iterm
    29     | ICase of ((iterm * itype) * (iterm * iterm) list) * iterm;
    30         (*((term, type), [(selector pattern, body term )]), primitive term)*)
    31   val `$$ : iterm * iterm list -> iterm;
    32   val `|==> : (vname option * itype) list * iterm -> iterm;
    33   type typscheme = (vname * sort) list * itype;
    34 end;
    35 
    36 signature CODE_THINGOL =
    37 sig
    38   include BASIC_CODE_THINGOL
    39   val fun_tyco: string
    40   val unfoldl: ('a -> ('a * 'b) option) -> 'a -> 'a * 'b list
    41   val unfoldr: ('a -> ('b * 'a) option) -> 'a -> 'b list * 'a
    42   val unfold_fun: itype -> itype list * itype
    43   val unfold_app: iterm -> iterm * iterm list
    44   val unfold_abs: iterm -> (vname option * itype) list * iterm
    45   val split_let: iterm -> (((iterm * itype) * iterm) * iterm) option
    46   val unfold_let: iterm -> ((iterm * itype) * iterm) list * iterm
    47   val split_pat_abs: iterm -> ((iterm * itype) * iterm) option
    48   val unfold_pat_abs: iterm -> (iterm * itype) list * iterm
    49   val unfold_const_app: iterm -> (const * iterm list) option
    50   val is_IVar: iterm -> bool
    51   val eta_expand: int -> const * iterm list -> iterm
    52   val contains_dictvar: iterm -> bool
    53   val locally_monomorphic: iterm -> bool
    54   val add_constnames: iterm -> string list -> string list
    55   val add_tyconames: iterm -> string list -> string list
    56   val fold_varnames: (string -> 'a -> 'a) -> iterm -> 'a -> 'a
    57 
    58   type naming
    59   val empty_naming: naming
    60   val lookup_class: naming -> class -> string option
    61   val lookup_classrel: naming -> class * class -> string option
    62   val lookup_tyco: naming -> string -> string option
    63   val lookup_instance: naming -> class * string -> string option
    64   val lookup_const: naming -> string -> string option
    65   val ensure_declared_const: theory -> string -> naming -> string * naming
    66 
    67   datatype stmt =
    68       NoStmt
    69     | Fun of string * ((typscheme * ((iterm list * iterm) * (thm option * bool)) list) * thm option)
    70     | Datatype of string * ((vname * sort) list * (string * itype list) list)
    71     | Datatypecons of string * string
    72     | Class of class * (vname * ((class * string) list * (string * itype) list))
    73     | Classrel of class * class
    74     | Classparam of string * class
    75     | Classinst of (class * (string * (vname * sort) list) (*class and arity*) )
    76           * ((class * (string * (string * dict list list))) list (*super instances*)
    77         * ((string * const) * (thm * bool)) list (*class parameter instances*))
    78   type program = stmt Graph.T
    79   val empty_funs: program -> string list
    80   val map_terms_bottom_up: (iterm -> iterm) -> iterm -> iterm
    81   val map_terms_stmt: (iterm -> iterm) -> stmt -> stmt
    82   val is_cons: program -> string -> bool
    83   val is_case: stmt -> bool
    84   val contr_classparam_typs: program -> string -> itype option list
    85   val labelled_name: theory -> program -> string -> string
    86   val group_stmts: theory -> program
    87     -> ((string * stmt) list * (string * stmt) list
    88       * ((string * stmt) list * (string * stmt) list)) list
    89 
    90   val read_const_exprs: theory -> string list -> string list * string list
    91   val consts_program: theory -> bool -> string list -> string list * (naming * program)
    92   val eval_conv: theory
    93     -> (naming -> program -> ((string * sort) list * typscheme) * iterm -> string list -> cterm -> thm)
    94     -> cterm -> thm
    95   val eval: theory -> ((term -> term) -> 'a -> 'a)
    96     -> (naming -> program -> ((string * sort) list * typscheme) * iterm -> string list -> 'a)
    97     -> term -> 'a
    98 end;
    99 
   100 structure Code_Thingol: CODE_THINGOL =
   101 struct
   102 
   103 (** auxiliary **)
   104 
   105 fun unfoldl dest x =
   106   case dest x
   107    of NONE => (x, [])
   108     | SOME (x1, x2) =>
   109         let val (x', xs') = unfoldl dest x1 in (x', xs' @ [x2]) end;
   110 
   111 fun unfoldr dest x =
   112   case dest x
   113    of NONE => ([], x)
   114     | SOME (x1, x2) =>
   115         let val (xs', x') = unfoldr dest x2 in (x1::xs', x') end;
   116 
   117 
   118 (** language core - types, terms **)
   119 
   120 type vname = string;
   121 
   122 datatype dict =
   123     DictConst of string * dict list list
   124   | DictVar of string list * (vname * (int * int));
   125 
   126 datatype itype =
   127     `%% of string * itype list
   128   | ITyVar of vname;
   129 
   130 type const = string * ((itype list * dict list list) * itype list (*types of arguments*))
   131 
   132 datatype iterm =
   133     IConst of const
   134   | IVar of vname option
   135   | `$ of iterm * iterm
   136   | `|=> of (vname option * itype) * iterm
   137   | ICase of ((iterm * itype) * (iterm * iterm) list) * iterm;
   138     (*see also signature*)
   139 
   140 fun is_IVar (IVar _) = true
   141   | is_IVar _ = false;
   142 
   143 val op `$$ = Library.foldl (op `$);
   144 val op `|==> = Library.foldr (op `|=>);
   145 
   146 val unfold_app = unfoldl
   147   (fn op `$ t => SOME t
   148     | _ => NONE);
   149 
   150 val unfold_abs = unfoldr
   151   (fn op `|=> t => SOME t
   152     | _ => NONE);
   153 
   154 val split_let = 
   155   (fn ICase (((td, ty), [(p, t)]), _) => SOME (((p, ty), td), t)
   156     | _ => NONE);
   157 
   158 val unfold_let = unfoldr split_let;
   159 
   160 fun unfold_const_app t =
   161  case unfold_app t
   162   of (IConst c, ts) => SOME (c, ts)
   163    | _ => NONE;
   164 
   165 fun fold_constexprs f =
   166   let
   167     fun fold' (IConst c) = f c
   168       | fold' (IVar _) = I
   169       | fold' (t1 `$ t2) = fold' t1 #> fold' t2
   170       | fold' (_ `|=> t) = fold' t
   171       | fold' (ICase (((t, _), ds), _)) = fold' t
   172           #> fold (fn (pat, body) => fold' pat #> fold' body) ds
   173   in fold' end;
   174 
   175 val add_constnames = fold_constexprs (fn (c, _) => insert (op =) c);
   176 
   177 fun add_tycos (tyco `%% tys) = insert (op =) tyco #> fold add_tycos tys
   178   | add_tycos (ITyVar _) = I;
   179 
   180 val add_tyconames = fold_constexprs (fn (_, ((tys, _), _)) => fold add_tycos tys);
   181 
   182 fun fold_varnames f =
   183   let
   184     fun fold_aux add f =
   185       let
   186         fun fold_term _ (IConst _) = I
   187           | fold_term vs (IVar (SOME v)) = if member (op =) vs v then I else f v
   188           | fold_term _ (IVar NONE) = I
   189           | fold_term vs (t1 `$ t2) = fold_term vs t1 #> fold_term vs t2
   190           | fold_term vs ((SOME v, _) `|=> t) = fold_term (insert (op =) v vs) t
   191           | fold_term vs ((NONE, _) `|=> t) = fold_term vs t
   192           | fold_term vs (ICase (((t, _), ds), _)) = fold_term vs t #> fold (fold_case vs) ds
   193         and fold_case vs (p, t) = fold_term (add p vs) t;
   194       in fold_term [] end;
   195     fun add t = fold_aux add (insert (op =)) t;
   196   in fold_aux add f end;
   197 
   198 fun exists_var t v = fold_varnames (fn w => fn b => v = w orelse b) t false;
   199 
   200 fun split_pat_abs ((NONE, ty) `|=> t) = SOME ((IVar NONE, ty), t)
   201   | split_pat_abs ((SOME v, ty) `|=> t) = SOME (case t
   202      of ICase (((IVar (SOME w), _), [(p, t')]), _) =>
   203           if v = w andalso (exists_var p v orelse not (exists_var t' v))
   204           then ((p, ty), t')
   205           else ((IVar (SOME v), ty), t)
   206       | _ => ((IVar (SOME v), ty), t))
   207   | split_pat_abs _ = NONE;
   208 
   209 val unfold_pat_abs = unfoldr split_pat_abs;
   210 
   211 fun unfold_abs_eta [] t = ([], t)
   212   | unfold_abs_eta (_ :: tys) (v_ty `|=> t) =
   213       let
   214         val (vs_tys, t') = unfold_abs_eta tys t;
   215       in (v_ty :: vs_tys, t') end
   216   | unfold_abs_eta tys t =
   217       let
   218         val ctxt = fold_varnames Name.declare t Name.context;
   219         val vs_tys = (map o apfst) SOME (Name.names ctxt "a" tys);
   220       in (vs_tys, t `$$ map (IVar o fst) vs_tys) end;
   221 
   222 fun eta_expand k (c as (_, (_, tys)), ts) =
   223   let
   224     val j = length ts;
   225     val l = k - j;
   226     val ctxt = (fold o fold_varnames) Name.declare ts Name.context;
   227     val vs_tys = (map o apfst) SOME
   228       (Name.names ctxt "a" ((take l o drop j) tys));
   229   in vs_tys `|==> IConst c `$$ ts @ map (IVar o fst) vs_tys end;
   230 
   231 fun contains_dictvar t =
   232   let
   233     fun cont_dict (DictConst (_, dss)) = (exists o exists) cont_dict dss
   234       | cont_dict (DictVar _) = true;
   235     fun cont_term (IConst (_, ((_, dss), _))) = (exists o exists) cont_dict dss
   236       | cont_term (IVar _) = false
   237       | cont_term (t1 `$ t2) = cont_term t1 orelse cont_term t2
   238       | cont_term (_ `|=> t) = cont_term t
   239       | cont_term (ICase (_, t)) = cont_term t;
   240   in cont_term t end;
   241   
   242 fun locally_monomorphic (IConst _) = false
   243   | locally_monomorphic (IVar _) = true
   244   | locally_monomorphic (t `$ _) = locally_monomorphic t
   245   | locally_monomorphic (_ `|=> t) = locally_monomorphic t
   246   | locally_monomorphic (ICase ((_, ds), _)) = exists (locally_monomorphic o snd) ds;
   247 
   248 
   249 (** namings **)
   250 
   251 (* policies *)
   252 
   253 local
   254   fun thyname_of_class thy = #theory_name o Name_Space.the_entry (Sign.class_space thy);
   255   fun thyname_of_instance thy inst = case AxClass.thynames_of_arity thy inst
   256    of [] => error ("No such instance: " ^ quote (snd inst ^ " :: " ^ fst inst))
   257     | thyname :: _ => thyname;
   258   fun thyname_of_const thy c = case AxClass.class_of_param thy c
   259    of SOME class => thyname_of_class thy class
   260     | NONE => (case Code.get_type_of_constr_or_abstr thy c
   261        of SOME (tyco, _) => Codegen.thyname_of_type thy tyco
   262         | NONE => Codegen.thyname_of_const thy c);
   263   fun purify_base "==>" = "follows"
   264     | purify_base "op &" = "and"
   265     | purify_base "op |" = "or"
   266     | purify_base "op -->" = "implies"
   267     | purify_base "op :" = "member"
   268     | purify_base "op =" = "eq"
   269     | purify_base "*" = "product"
   270     | purify_base "+" = "sum"
   271     | purify_base s = Name.desymbolize false s;
   272   fun namify thy get_basename get_thyname name =
   273     let
   274       val prefix = get_thyname thy name;
   275       val base = (purify_base o get_basename) name;
   276     in Long_Name.append prefix base end;
   277 in
   278 
   279 fun namify_class thy = namify thy Long_Name.base_name thyname_of_class;
   280 fun namify_classrel thy = namify thy (fn (sub_class, super_class) => 
   281     Long_Name.base_name super_class ^ "_" ^ Long_Name.base_name sub_class)
   282   (fn thy => thyname_of_class thy o fst);
   283   (*order fits nicely with composed projections*)
   284 fun namify_tyco thy "fun" = "Pure.fun"
   285   | namify_tyco thy tyco = namify thy Long_Name.base_name Codegen.thyname_of_type tyco;
   286 fun namify_instance thy = namify thy (fn (class, tyco) => 
   287   Long_Name.base_name class ^ "_" ^ Long_Name.base_name tyco) thyname_of_instance;
   288 fun namify_const thy = namify thy Long_Name.base_name thyname_of_const;
   289 
   290 end; (* local *)
   291 
   292 
   293 (* data *)
   294 
   295 datatype naming = Naming of {
   296   class: class Symtab.table * Name.context,
   297   classrel: string Symreltab.table * Name.context,
   298   tyco: string Symtab.table * Name.context,
   299   instance: string Symreltab.table * Name.context,
   300   const: string Symtab.table * Name.context
   301 }
   302 
   303 fun dest_Naming (Naming naming) = naming;
   304 
   305 val empty_naming = Naming {
   306   class = (Symtab.empty, Name.context),
   307   classrel = (Symreltab.empty, Name.context),
   308   tyco = (Symtab.empty, Name.context),
   309   instance = (Symreltab.empty, Name.context),
   310   const = (Symtab.empty, Name.context)
   311 };
   312 
   313 local
   314   fun mk_naming (class, classrel, tyco, instance, const) =
   315     Naming { class = class, classrel = classrel,
   316       tyco = tyco, instance = instance, const = const };
   317   fun map_naming f (Naming { class, classrel, tyco, instance, const }) =
   318     mk_naming (f (class, classrel, tyco, instance, const));
   319 in
   320   fun map_class f = map_naming
   321     (fn (class, classrel, tyco, inst, const) =>
   322       (f class, classrel, tyco, inst, const));
   323   fun map_classrel f = map_naming
   324     (fn (class, classrel, tyco, inst, const) =>
   325       (class, f classrel, tyco, inst, const));
   326   fun map_tyco f = map_naming
   327     (fn (class, classrel, tyco, inst, const) =>
   328       (class, classrel, f tyco, inst, const));
   329   fun map_instance f = map_naming
   330     (fn (class, classrel, tyco, inst, const) =>
   331       (class, classrel, tyco, f inst, const));
   332   fun map_const f = map_naming
   333     (fn (class, classrel, tyco, inst, const) =>
   334       (class, classrel, tyco, inst, f const));
   335 end; (*local*)
   336 
   337 fun add_variant update (thing, name) (tab, used) =
   338   let
   339     val (name', used') = yield_singleton Name.variants name used;
   340     val tab' = update (thing, name') tab;
   341   in (tab', used') end;
   342 
   343 fun declare thy mapp lookup update namify thing =
   344   mapp (add_variant update (thing, namify thy thing))
   345   #> `(fn naming => the (lookup naming thing));
   346 
   347 
   348 (* lookup and declare *)
   349 
   350 local
   351 
   352 val suffix_class = "class";
   353 val suffix_classrel = "classrel"
   354 val suffix_tyco = "tyco";
   355 val suffix_instance = "inst";
   356 val suffix_const = "const";
   357 
   358 fun add_suffix nsp NONE = NONE
   359   | add_suffix nsp (SOME name) = SOME (Long_Name.append name nsp);
   360 
   361 in
   362 
   363 val lookup_class = add_suffix suffix_class
   364   oo Symtab.lookup o fst o #class o dest_Naming;
   365 val lookup_classrel = add_suffix suffix_classrel
   366   oo Symreltab.lookup o fst o #classrel o dest_Naming;
   367 val lookup_tyco = add_suffix suffix_tyco
   368   oo Symtab.lookup o fst o #tyco o dest_Naming;
   369 val lookup_instance = add_suffix suffix_instance
   370   oo Symreltab.lookup o fst o #instance o dest_Naming;
   371 val lookup_const = add_suffix suffix_const
   372   oo Symtab.lookup o fst o #const o dest_Naming;
   373 
   374 fun declare_class thy = declare thy map_class
   375   lookup_class Symtab.update_new namify_class;
   376 fun declare_classrel thy = declare thy map_classrel
   377   lookup_classrel Symreltab.update_new namify_classrel;
   378 fun declare_tyco thy = declare thy map_tyco
   379   lookup_tyco Symtab.update_new namify_tyco;
   380 fun declare_instance thy = declare thy map_instance
   381   lookup_instance Symreltab.update_new namify_instance;
   382 fun declare_const thy = declare thy map_const
   383   lookup_const Symtab.update_new namify_const;
   384 
   385 fun ensure_declared_const thy const naming =
   386   case lookup_const naming const
   387    of SOME const' => (const', naming)
   388     | NONE => declare_const thy const naming;
   389 
   390 val fun_tyco = Long_Name.append (namify_tyco Pure.thy "fun") suffix_tyco
   391   (*depends on add_suffix*);
   392 
   393 val unfold_fun = unfoldr
   394   (fn tyco `%% [ty1, ty2] => if tyco = fun_tyco then SOME (ty1, ty2) else NONE
   395     | _ => NONE);
   396 
   397 end; (* local *)
   398 
   399 
   400 (** statements, abstract programs **)
   401 
   402 type typscheme = (vname * sort) list * itype;
   403 datatype stmt =
   404     NoStmt
   405   | Fun of string * ((typscheme * ((iterm list * iterm) * (thm option * bool)) list) * thm option)
   406   | Datatype of string * ((vname * sort) list * (string * itype list) list)
   407   | Datatypecons of string * string
   408   | Class of class * (vname * ((class * string) list * (string * itype) list))
   409   | Classrel of class * class
   410   | Classparam of string * class
   411   | Classinst of (class * (string * (vname * sort) list))
   412         * ((class * (string * (string * dict list list))) list
   413       * ((string * const) * (thm * bool)) list) (*see also signature*);
   414 
   415 type program = stmt Graph.T;
   416 
   417 fun empty_funs program =
   418   Graph.fold (fn (name, (Fun (c, ((_, []), _)), _)) => cons c
   419                | _ => I) program [];
   420 
   421 fun map_terms_bottom_up f (t as IConst _) = f t
   422   | map_terms_bottom_up f (t as IVar _) = f t
   423   | map_terms_bottom_up f (t1 `$ t2) = f
   424       (map_terms_bottom_up f t1 `$ map_terms_bottom_up f t2)
   425   | map_terms_bottom_up f ((v, ty) `|=> t) = f
   426       ((v, ty) `|=> map_terms_bottom_up f t)
   427   | map_terms_bottom_up f (ICase (((t, ty), ps), t0)) = f
   428       (ICase (((map_terms_bottom_up f t, ty), (map o pairself)
   429         (map_terms_bottom_up f) ps), map_terms_bottom_up f t0));
   430 
   431 fun map_terms_stmt f NoStmt = NoStmt
   432   | map_terms_stmt f (Fun (c, ((tysm, eqs), case_cong))) = Fun (c, ((tysm, (map o apfst)
   433       (fn (ts, t) => (map f ts, f t)) eqs), case_cong))
   434   | map_terms_stmt f (stmt as Datatype _) = stmt
   435   | map_terms_stmt f (stmt as Datatypecons _) = stmt
   436   | map_terms_stmt f (stmt as Class _) = stmt
   437   | map_terms_stmt f (stmt as Classrel _) = stmt
   438   | map_terms_stmt f (stmt as Classparam _) = stmt
   439   | map_terms_stmt f (Classinst (arity, (super_instances, classparams))) =
   440       Classinst (arity, (super_instances, (map o apfst o apsnd) (fn const =>
   441         case f (IConst const) of IConst const' => const') classparams));
   442 
   443 fun is_cons program name = case Graph.get_node program name
   444  of Datatypecons _ => true
   445   | _ => false;
   446 
   447 fun is_case (Fun (_, (_, SOME _))) = true
   448   | is_case _ = false;
   449 
   450 fun contr_classparam_typs program name = case Graph.get_node program name
   451  of Classparam (_, class) => let
   452         val Class (_, (_, (_, params))) = Graph.get_node program class;
   453         val SOME ty = AList.lookup (op =) params name;
   454         val (tys, res_ty) = unfold_fun ty;
   455         fun no_tyvar (_ `%% tys) = forall no_tyvar tys
   456           | no_tyvar (ITyVar _) = false;
   457       in if no_tyvar res_ty
   458         then map (fn ty => if no_tyvar ty then NONE else SOME ty) tys
   459         else []
   460       end
   461   | _ => [];
   462 
   463 fun labelled_name thy program name = case Graph.get_node program name
   464  of Fun (c, _) => quote (Code.string_of_const thy c)
   465   | Datatype (tyco, _) => "type " ^ quote (Sign.extern_type thy tyco)
   466   | Datatypecons (c, _) => quote (Code.string_of_const thy c)
   467   | Class (class, _) => "class " ^ quote (Sign.extern_class thy class)
   468   | Classrel (sub, super) => let
   469         val Class (sub, _) = Graph.get_node program sub
   470         val Class (super, _) = Graph.get_node program super
   471       in quote (Sign.extern_class thy sub ^ " < " ^ Sign.extern_class thy super) end
   472   | Classparam (c, _) => quote (Code.string_of_const thy c)
   473   | Classinst ((class, (tyco, _)), _) => let
   474         val Class (class, _) = Graph.get_node program class
   475         val Datatype (tyco, _) = Graph.get_node program tyco
   476       in quote (Sign.extern_type thy tyco ^ " :: " ^ Sign.extern_class thy class) end
   477 
   478 fun linear_stmts program =
   479   rev (Graph.strong_conn program)
   480   |> map (AList.make (Graph.get_node program));
   481 
   482 fun group_stmts thy program =
   483   let
   484     fun is_fun (_, Fun _) = true | is_fun _ = false;
   485     fun is_datatypecons (_, Datatypecons _) = true | is_datatypecons _ = false;
   486     fun is_datatype (_, Datatype _) = true | is_datatype _ = false;
   487     fun is_class (_, Class _) = true | is_class _ = false;
   488     fun is_classrel (_, Classrel _) = true | is_classrel _ = false;
   489     fun is_classparam (_, Classparam _) = true | is_classparam _ = false;
   490     fun is_classinst (_, Classinst _) = true | is_classinst _ = false;
   491     fun group stmts =
   492       if forall (is_datatypecons orf is_datatype) stmts
   493       then (filter is_datatype stmts, [], ([], []))
   494       else if forall (is_class orf is_classrel orf is_classparam) stmts
   495       then ([], filter is_class stmts, ([], []))
   496       else if forall (is_fun orf is_classinst) stmts
   497       then ([], [], List.partition is_fun stmts)
   498       else error ("Illegal mutual dependencies: " ^
   499         (commas o map (labelled_name thy program o fst)) stmts)
   500   in
   501     linear_stmts program
   502     |> map group
   503   end;
   504 
   505 
   506 (** translation kernel **)
   507 
   508 (* generic mechanisms *)
   509 
   510 fun ensure_stmt lookup declare generate thing (dep, (naming, program)) =
   511   let
   512     fun add_dep name = case dep of NONE => I
   513       | SOME dep => Graph.add_edge (dep, name);
   514     val (name, naming') = case lookup naming thing
   515      of SOME name => (name, naming)
   516       | NONE => declare thing naming;
   517   in case try (Graph.get_node program) name
   518    of SOME stmt => program
   519         |> add_dep name
   520         |> pair naming'
   521         |> pair dep
   522         |> pair name
   523     | NONE => program
   524         |> Graph.default_node (name, NoStmt)
   525         |> add_dep name
   526         |> pair naming'
   527         |> curry generate (SOME name)
   528         ||> snd
   529         |-> (fn stmt => (apsnd o Graph.map_node name) (K stmt))
   530         |> pair dep
   531         |> pair name
   532   end;
   533 
   534 exception PERMISSIVE of unit;
   535 
   536 fun translation_error thy permissive some_thm msg sub_msg =
   537   if permissive
   538   then raise PERMISSIVE ()
   539   else let
   540     val err_thm = case some_thm
   541      of SOME thm => "\n(in code equation " ^ Display.string_of_thm_global thy thm ^ ")"
   542       | NONE => "";
   543   in error (msg ^ err_thm ^ ":\n" ^ sub_msg) end;
   544 
   545 fun not_wellsorted thy permissive some_thm ty sort e =
   546   let
   547     val err_class = Sorts.class_error (Syntax.pp_global thy) e;
   548     val err_typ = "Type " ^ Syntax.string_of_typ_global thy ty ^ " not of sort "
   549       ^ Syntax.string_of_sort_global thy sort;
   550   in translation_error thy permissive some_thm "Wellsortedness error" (err_typ ^ "\n" ^ err_class) end;
   551 
   552 
   553 (* translation *)
   554 
   555 fun ensure_tyco thy algbr eqngr permissive tyco =
   556   let
   557     val (vs, cos) = Code.get_type thy tyco;
   558     val stmt_datatype =
   559       fold_map (translate_tyvar_sort thy algbr eqngr permissive) vs
   560       ##>> fold_map (fn (c, tys) =>
   561         ensure_const thy algbr eqngr permissive c
   562         ##>> fold_map (translate_typ thy algbr eqngr permissive) tys) cos
   563       #>> (fn info => Datatype (tyco, info));
   564   in ensure_stmt lookup_tyco (declare_tyco thy) stmt_datatype tyco end
   565 and ensure_const thy algbr eqngr permissive c =
   566   let
   567     fun stmt_datatypecons tyco =
   568       ensure_tyco thy algbr eqngr permissive tyco
   569       #>> (fn tyco => Datatypecons (c, tyco));
   570     fun stmt_classparam class =
   571       ensure_class thy algbr eqngr permissive class
   572       #>> (fn class => Classparam (c, class));
   573     fun stmt_fun cert =
   574       let
   575         val ((vs, ty), eqns) = Code.equations_of_cert thy cert;
   576         val some_case_cong = Code.get_case_cong thy c;
   577       in
   578         fold_map (translate_tyvar_sort thy algbr eqngr permissive) vs
   579         ##>> translate_typ thy algbr eqngr permissive ty
   580         ##>> translate_eqns thy algbr eqngr permissive eqns
   581         #>> (fn info => Fun (c, (info, some_case_cong)))
   582       end;
   583     val stmt_const = case Code.get_type_of_constr_or_abstr thy c
   584      of SOME (tyco, _) => stmt_datatypecons tyco
   585       | NONE => (case AxClass.class_of_param thy c
   586          of SOME class => stmt_classparam class
   587           | NONE => stmt_fun (Code_Preproc.cert eqngr c))
   588   in ensure_stmt lookup_const (declare_const thy) stmt_const c end
   589 and ensure_class thy (algbr as (_, algebra)) eqngr permissive class =
   590   let
   591     val super_classes = (Sorts.minimize_sort algebra o Sorts.super_classes algebra) class;
   592     val cs = #params (AxClass.get_info thy class);
   593     val stmt_class =
   594       fold_map (fn super_class => ensure_class thy algbr eqngr permissive super_class
   595         ##>> ensure_classrel thy algbr eqngr permissive (class, super_class)) super_classes
   596       ##>> fold_map (fn (c, ty) => ensure_const thy algbr eqngr permissive c
   597         ##>> translate_typ thy algbr eqngr permissive ty) cs
   598       #>> (fn info => Class (class, (unprefix "'" Name.aT, info)))
   599   in ensure_stmt lookup_class (declare_class thy) stmt_class class end
   600 and ensure_classrel thy algbr eqngr permissive (sub_class, super_class) =
   601   let
   602     val stmt_classrel =
   603       ensure_class thy algbr eqngr permissive sub_class
   604       ##>> ensure_class thy algbr eqngr permissive super_class
   605       #>> Classrel;
   606   in ensure_stmt lookup_classrel (declare_classrel thy) stmt_classrel (sub_class, super_class) end
   607 and ensure_inst thy (algbr as (_, algebra)) eqngr permissive (class, tyco) =
   608   let
   609     val super_classes = (Sorts.minimize_sort algebra o Sorts.super_classes algebra) class;
   610     val classparams = these (try (#params o AxClass.get_info thy) class);
   611     val vs = Name.names Name.context "'a" (Sorts.mg_domain algebra tyco [class]);
   612     val sorts' = Sorts.mg_domain (Sign.classes_of thy) tyco [class];
   613     val vs' = map2 (fn (v, sort1) => fn sort2 => (v,
   614       Sorts.inter_sort (Sign.classes_of thy) (sort1, sort2))) vs sorts';
   615     val arity_typ = Type (tyco, map TFree vs);
   616     val arity_typ' = Type (tyco, map (fn (v, sort) => TVar ((v, 0), sort)) vs');
   617     fun translate_super_instance super_class =
   618       ensure_class thy algbr eqngr permissive super_class
   619       ##>> ensure_classrel thy algbr eqngr permissive (class, super_class)
   620       ##>> translate_dicts thy algbr eqngr permissive NONE (arity_typ, [super_class])
   621       #>> (fn ((super_class, classrel), [DictConst (inst, dss)]) =>
   622             (super_class, (classrel, (inst, dss))));
   623     fun translate_classparam_instance (c, ty) =
   624       let
   625         val raw_const = Const (c, map_type_tfree (K arity_typ') ty);
   626         val thm = AxClass.unoverload_conv thy (Thm.cterm_of thy raw_const);
   627         val const = (apsnd Logic.unvarifyT_global o dest_Const o snd
   628           o Logic.dest_equals o Thm.prop_of) thm;
   629       in
   630         ensure_const thy algbr eqngr permissive c
   631         ##>> translate_const thy algbr eqngr permissive (SOME thm) (const, NONE)
   632         #>> (fn (c, IConst const') => ((c, const'), (thm, true)))
   633       end;
   634     val stmt_inst =
   635       ensure_class thy algbr eqngr permissive class
   636       ##>> ensure_tyco thy algbr eqngr permissive tyco
   637       ##>> fold_map (translate_tyvar_sort thy algbr eqngr permissive) vs
   638       ##>> fold_map translate_super_instance super_classes
   639       ##>> fold_map translate_classparam_instance classparams
   640       #>> (fn ((((class, tyco), arity_args), super_instances), classparam_instances) =>
   641              Classinst ((class, (tyco, arity_args)), (super_instances, classparam_instances)));
   642   in ensure_stmt lookup_instance (declare_instance thy) stmt_inst (class, tyco) end
   643 and translate_typ thy algbr eqngr permissive (TFree (v, _)) =
   644       pair (ITyVar (unprefix "'" v))
   645   | translate_typ thy algbr eqngr permissive (Type (tyco, tys)) =
   646       ensure_tyco thy algbr eqngr permissive tyco
   647       ##>> fold_map (translate_typ thy algbr eqngr permissive) tys
   648       #>> (fn (tyco, tys) => tyco `%% tys)
   649 and translate_term thy algbr eqngr permissive some_thm (Const (c, ty), some_abs) =
   650       translate_app thy algbr eqngr permissive some_thm (((c, ty), []), some_abs)
   651   | translate_term thy algbr eqngr permissive some_thm (Free (v, _), some_abs) =
   652       pair (IVar (SOME v))
   653   | translate_term thy algbr eqngr permissive some_thm (Abs (v, ty, t), some_abs) =
   654       let
   655         val (v', t') = Syntax.variant_abs (Name.desymbolize false v, ty, t);
   656         val v'' = if member (op =) (Term.add_free_names t' []) v'
   657           then SOME v' else NONE
   658       in
   659         translate_typ thy algbr eqngr permissive ty
   660         ##>> translate_term thy algbr eqngr permissive some_thm (t', some_abs)
   661         #>> (fn (ty, t) => (v'', ty) `|=> t)
   662       end
   663   | translate_term thy algbr eqngr permissive some_thm (t as _ $ _, some_abs) =
   664       case strip_comb t
   665        of (Const (c, ty), ts) =>
   666             translate_app thy algbr eqngr permissive some_thm (((c, ty), ts), some_abs)
   667         | (t', ts) =>
   668             translate_term thy algbr eqngr permissive some_thm (t', some_abs)
   669             ##>> fold_map (translate_term thy algbr eqngr permissive some_thm o rpair NONE) ts
   670             #>> (fn (t, ts) => t `$$ ts)
   671 and translate_eqn thy algbr eqngr permissive ((args, (rhs, some_abs)), (some_thm, proper)) =
   672   fold_map (translate_term thy algbr eqngr permissive some_thm) args
   673   ##>> translate_term thy algbr eqngr permissive some_thm (rhs, some_abs)
   674   #>> rpair (some_thm, proper)
   675 and translate_eqns thy algbr eqngr permissive eqns prgrm =
   676   prgrm |> fold_map (translate_eqn thy algbr eqngr permissive) eqns
   677     handle PERMISSIVE () => ([], prgrm)
   678 and translate_const thy algbr eqngr permissive some_thm ((c, ty), some_abs) =
   679   let
   680     val _ = if (case some_abs of NONE => true | SOME abs => not (c = abs))
   681         andalso Code.is_abstr thy c
   682         then translation_error thy permissive some_thm
   683           "Abstraction violation" ("constant " ^ Code.string_of_const thy c)
   684       else ()
   685     val tys = Sign.const_typargs thy (c, ty);
   686     val sorts = Code_Preproc.sortargs eqngr c;
   687     val tys_args = (fst o Term.strip_type) ty;
   688   in
   689     ensure_const thy algbr eqngr permissive c
   690     ##>> fold_map (translate_typ thy algbr eqngr permissive) tys
   691     ##>> fold_map (translate_dicts thy algbr eqngr permissive some_thm) (tys ~~ sorts)
   692     ##>> fold_map (translate_typ thy algbr eqngr permissive) tys_args
   693     #>> (fn (((c, tys), iss), tys_args) => IConst (c, ((tys, iss), tys_args)))
   694   end
   695 and translate_app_const thy algbr eqngr permissive some_thm ((c_ty, ts), some_abs) =
   696   translate_const thy algbr eqngr permissive some_thm (c_ty, some_abs)
   697   ##>> fold_map (translate_term thy algbr eqngr permissive some_thm o rpair NONE) ts
   698   #>> (fn (t, ts) => t `$$ ts)
   699 and translate_case thy algbr eqngr permissive some_thm (num_args, (t_pos, case_pats)) (c_ty, ts) =
   700   let
   701     fun arg_types num_args ty = (fst o chop num_args o fst o strip_type) ty;
   702     val tys = arg_types num_args (snd c_ty);
   703     val ty = nth tys t_pos;
   704     fun mk_constr c t = let val n = Code.args_number thy c
   705       in ((c, arg_types n (fastype_of t) ---> ty), n) end;
   706     val constrs = if null case_pats then []
   707       else map2 mk_constr case_pats (nth_drop t_pos ts);
   708     fun casify naming constrs ty ts =
   709       let
   710         val undefineds = map_filter (lookup_const naming) (Code.undefineds thy);
   711         fun collapse_clause vs_map ts body =
   712           let
   713           in case body
   714            of IConst (c, _) => if member (op =) undefineds c
   715                 then []
   716                 else [(ts, body)]
   717             | ICase (((IVar (SOME v), _), subclauses), _) =>
   718                 if forall (fn (pat', body') => exists_var pat' v
   719                   orelse not (exists_var body' v)) subclauses
   720                 then case AList.lookup (op =) vs_map v
   721                  of SOME i => maps (fn (pat', body') =>
   722                       collapse_clause (AList.delete (op =) v vs_map)
   723                         (nth_map i (K pat') ts) body') subclauses
   724                   | NONE => [(ts, body)]
   725                 else [(ts, body)]
   726             | _ => [(ts, body)]
   727           end;
   728         fun mk_clause mk tys t =
   729           let
   730             val (vs, body) = unfold_abs_eta tys t;
   731             val vs_map = fold_index (fn (i, (SOME v, _)) => cons (v, i) | _ => I) vs [];
   732             val ts = map (IVar o fst) vs;
   733           in map mk (collapse_clause vs_map ts body) end;
   734         val t = nth ts t_pos;
   735         val ts_clause = nth_drop t_pos ts;
   736         val clauses = if null case_pats
   737           then mk_clause (fn ([t], body) => (t, body)) [ty] (the_single ts_clause)
   738           else maps (fn ((constr as IConst (_, (_, tys)), n), t) =>
   739             mk_clause (fn (ts, body) => (constr `$$ ts, body)) (take n tys) t)
   740               (constrs ~~ ts_clause);
   741       in ((t, ty), clauses) end;
   742   in
   743     translate_const thy algbr eqngr permissive some_thm (c_ty, NONE)
   744     ##>> fold_map (fn (constr, n) => translate_const thy algbr eqngr permissive some_thm (constr, NONE)
   745       #>> rpair n) constrs
   746     ##>> translate_typ thy algbr eqngr permissive ty
   747     ##>> fold_map (translate_term thy algbr eqngr permissive some_thm o rpair NONE) ts
   748     #-> (fn (((t, constrs), ty), ts) =>
   749       `(fn (_, (naming, _)) => ICase (casify naming constrs ty ts, t `$$ ts)))
   750   end
   751 and translate_app_case thy algbr eqngr permissive some_thm (case_scheme as (num_args, _)) ((c, ty), ts) =
   752   if length ts < num_args then
   753     let
   754       val k = length ts;
   755       val tys = (take (num_args - k) o drop k o fst o strip_type) ty;
   756       val ctxt = (fold o fold_aterms) Term.declare_term_frees ts Name.context;
   757       val vs = Name.names ctxt "a" tys;
   758     in
   759       fold_map (translate_typ thy algbr eqngr permissive) tys
   760       ##>> translate_case thy algbr eqngr permissive some_thm case_scheme ((c, ty), ts @ map Free vs)
   761       #>> (fn (tys, t) => map2 (fn (v, _) => pair (SOME v)) vs tys `|==> t)
   762     end
   763   else if length ts > num_args then
   764     translate_case thy algbr eqngr permissive some_thm case_scheme ((c, ty), take num_args ts)
   765     ##>> fold_map (translate_term thy algbr eqngr permissive some_thm o rpair NONE) (drop num_args ts)
   766     #>> (fn (t, ts) => t `$$ ts)
   767   else
   768     translate_case thy algbr eqngr permissive some_thm case_scheme ((c, ty), ts)
   769 and translate_app thy algbr eqngr permissive some_thm (c_ty_ts as ((c, _), _), some_abs) =
   770   case Code.get_case_scheme thy c
   771    of SOME case_scheme => translate_app_case thy algbr eqngr permissive some_thm case_scheme c_ty_ts
   772     | NONE => translate_app_const thy algbr eqngr permissive some_thm (c_ty_ts, some_abs)
   773 and translate_tyvar_sort thy (algbr as (proj_sort, _)) eqngr permissive (v, sort) =
   774   fold_map (ensure_class thy algbr eqngr permissive) (proj_sort sort)
   775   #>> (fn sort => (unprefix "'" v, sort))
   776 and translate_dicts thy (algbr as (proj_sort, algebra)) eqngr permissive some_thm (ty, sort) =
   777   let
   778     datatype typarg =
   779         Global of (class * string) * typarg list list
   780       | Local of (class * class) list * (string * (int * sort));
   781     fun class_relation (Global ((_, tyco), yss), _) class =
   782           Global ((class, tyco), yss)
   783       | class_relation (Local (classrels, v), sub_class) super_class =
   784           Local ((sub_class, super_class) :: classrels, v);
   785     fun type_constructor (tyco, _) yss class =
   786       Global ((class, tyco), (map o map) fst yss);
   787     fun type_variable (TFree (v, sort)) =
   788       let
   789         val sort' = proj_sort sort;
   790       in map_index (fn (n, class) => (Local ([], (v, (n, sort'))), class)) sort' end;
   791     val typargs = Sorts.of_sort_derivation algebra
   792       {class_relation = K (Sorts.classrel_derivation algebra class_relation),
   793        type_constructor = type_constructor,
   794        type_variable = type_variable} (ty, proj_sort sort)
   795       handle Sorts.CLASS_ERROR e => not_wellsorted thy permissive some_thm ty sort e;
   796     fun mk_dict (Global (inst, yss)) =
   797           ensure_inst thy algbr eqngr permissive inst
   798           ##>> (fold_map o fold_map) mk_dict yss
   799           #>> (fn (inst, dss) => DictConst (inst, dss))
   800       | mk_dict (Local (classrels, (v, (n, sort)))) =
   801           fold_map (ensure_classrel thy algbr eqngr permissive) classrels
   802           #>> (fn classrels => DictVar (classrels, (unprefix "'" v, (n, length sort))))
   803   in fold_map mk_dict typargs end;
   804 
   805 
   806 (* store *)
   807 
   808 structure Program = Code_Data
   809 (
   810   type T = naming * program;
   811   val empty = (empty_naming, Graph.empty);
   812 );
   813 
   814 fun cache_generation thy (algebra, eqngr) f name =
   815   Program.change_yield thy (fn naming_program => (NONE, naming_program)
   816     |> f thy algebra eqngr name
   817     |-> (fn name => fn (_, naming_program) => (name, naming_program)));
   818 
   819 fun transient_generation thy (algebra, eqngr) f name =
   820   (NONE, (empty_naming, Graph.empty))
   821   |> f thy algebra eqngr name
   822   |-> (fn name => fn (_, naming_program) => (name, naming_program));
   823 
   824 
   825 (* program generation *)
   826 
   827 fun consts_program thy permissive cs =
   828   let
   829     fun project_consts cs (naming, program) =
   830       let
   831         val cs_all = Graph.all_succs program cs;
   832       in (cs, (naming, Graph.subgraph (member (op =) cs_all) program)) end;
   833     fun generate_consts thy algebra eqngr =
   834       fold_map (ensure_const thy algebra eqngr permissive);
   835     val invoke_generation = if permissive
   836       then transient_generation else cache_generation
   837   in
   838     invoke_generation thy (Code_Preproc.obtain thy cs []) generate_consts cs
   839     |-> project_consts
   840   end;
   841 
   842 
   843 (* value evaluation *)
   844 
   845 fun ensure_value thy algbr eqngr t =
   846   let
   847     val ty = fastype_of t;
   848     val vs = fold_term_types (K (fold_atyps (insert (eq_fst op =)
   849       o dest_TFree))) t [];
   850     val stmt_value =
   851       fold_map (translate_tyvar_sort thy algbr eqngr false) vs
   852       ##>> translate_typ thy algbr eqngr false ty
   853       ##>> translate_term thy algbr eqngr false NONE (Code.subst_signatures thy t, NONE)
   854       #>> (fn ((vs, ty), t) => Fun
   855         (Term.dummy_patternN, (((vs, ty), [(([], t), (NONE, true))]), NONE)));
   856     fun term_value (dep, (naming, program1)) =
   857       let
   858         val Fun (_, ((vs_ty, [(([], t), _)]), _)) =
   859           Graph.get_node program1 Term.dummy_patternN;
   860         val deps = Graph.imm_succs program1 Term.dummy_patternN;
   861         val program2 = Graph.del_nodes [Term.dummy_patternN] program1;
   862         val deps_all = Graph.all_succs program2 deps;
   863         val program3 = Graph.subgraph (member (op =) deps_all) program2;
   864       in (((naming, program3), ((vs_ty, t), deps)), (dep, (naming, program2))) end;
   865   in
   866     ensure_stmt ((K o K) NONE) pair stmt_value Term.dummy_patternN
   867     #> snd
   868     #> term_value
   869   end;
   870 
   871 fun base_evaluator thy evaluator algebra eqngr vs t =
   872   let
   873     val (((naming, program), (((vs', ty'), t'), deps)), _) =
   874       cache_generation thy (algebra, eqngr) ensure_value t;
   875     val vs'' = map (fn (v, _) => (v, (the o AList.lookup (op =) vs o prefix "'") v)) vs';
   876   in evaluator naming program ((vs'', (vs', ty')), t') deps end;
   877 
   878 fun eval_conv thy = Code_Preproc.eval_conv thy o base_evaluator thy;
   879 fun eval thy postproc = Code_Preproc.eval thy postproc o base_evaluator thy;
   880 
   881 
   882 (** diagnostic commands **)
   883 
   884 fun read_const_exprs thy =
   885   let
   886     fun consts_of thy' = Symtab.fold (fn (c, (_, NONE)) => cons c | _ => I)
   887       ((snd o #constants o Consts.dest o #consts o Sign.rep_sg) thy') [];
   888     fun belongs_here thy' c = forall
   889       (fn thy'' => not (Sign.declared_const thy'' c)) (Theory.parents_of thy');
   890     fun consts_of_select thy' = filter (belongs_here thy') (consts_of thy');
   891     fun read_const_expr "*" = ([], consts_of thy)
   892       | read_const_expr s = if String.isSuffix ".*" s
   893           then ([], consts_of_select (Thy_Info.the_theory (unsuffix ".*" s) thy))
   894           else ([Code.read_const thy s], []);
   895   in pairself flat o split_list o map read_const_expr end;
   896 
   897 fun code_depgr thy consts =
   898   let
   899     val (_, eqngr) = Code_Preproc.obtain thy consts [];
   900     val all_consts = Graph.all_succs eqngr consts;
   901   in Graph.subgraph (member (op =) all_consts) eqngr end;
   902 
   903 fun code_thms thy = Pretty.writeln o Code_Preproc.pretty thy o code_depgr thy;
   904 
   905 fun code_deps thy consts =
   906   let
   907     val eqngr = code_depgr thy consts;
   908     val constss = Graph.strong_conn eqngr;
   909     val mapping = Symtab.empty |> fold (fn consts => fold (fn const =>
   910       Symtab.update (const, consts)) consts) constss;
   911     fun succs consts = consts
   912       |> maps (Graph.imm_succs eqngr)
   913       |> subtract (op =) consts
   914       |> map (the o Symtab.lookup mapping)
   915       |> distinct (op =);
   916     val conn = [] |> fold (fn consts => cons (consts, succs consts)) constss;
   917     fun namify consts = map (Code.string_of_const thy) consts
   918       |> commas;
   919     val prgr = map (fn (consts, constss) =>
   920       { name = namify consts, ID = namify consts, dir = "", unfold = true,
   921         path = "", parents = map namify constss }) conn;
   922   in Present.display_graph prgr end;
   923 
   924 local
   925 
   926 fun code_thms_cmd thy = code_thms thy o op @ o read_const_exprs thy;
   927 fun code_deps_cmd thy = code_deps thy o op @ o read_const_exprs thy;
   928 
   929 in
   930 
   931 val _ =
   932   Outer_Syntax.improper_command "code_thms" "print system of code equations for code" Keyword.diag
   933     (Scan.repeat1 Parse.term_group
   934       >> (fn cs => Toplevel.no_timing o Toplevel.unknown_theory
   935         o Toplevel.keep ((fn thy => code_thms_cmd thy cs) o Toplevel.theory_of)));
   936 
   937 val _ =
   938   Outer_Syntax.improper_command "code_deps" "visualize dependencies of code equations for code"
   939     Keyword.diag
   940     (Scan.repeat1 Parse.term_group
   941       >> (fn cs => Toplevel.no_timing o Toplevel.unknown_theory
   942         o Toplevel.keep ((fn thy => code_deps_cmd thy cs) o Toplevel.theory_of)));
   943 
   944 end;
   945 
   946 end; (*struct*)
   947 
   948 
   949 structure Basic_Code_Thingol: BASIC_CODE_THINGOL = Code_Thingol;