1 (* Title: HOL/Library/Quotient_Sum.thy
2 Author: Cezary Kaliszyk and Christian Urban
5 header {* Quotient infrastructure for the sum type *}
8 imports Main Quotient_Syntax
11 subsection {* Rules for the Quotient package *}
14 "sum_rel R1 R2 (sum_map f1 f2 x) y \<longleftrightarrow> sum_rel (\<lambda>x. R1 (f1 x)) (\<lambda>x. R2 (f2 x)) x y"
15 by (simp add: sum_rel_def split: sum.split)
18 "sum_rel R1 R2 x (sum_map f1 f2 y) \<longleftrightarrow> sum_rel (\<lambda>x y. R1 x (f1 y)) (\<lambda>x y. R2 x (f2 y)) x y"
19 by (simp add: sum_rel_def split: sum.split)
21 lemma sum_map_id [id_simps]:
23 by (simp add: id_def sum_map.identity fun_eq_iff)
25 lemma sum_rel_eq [id_simps]:
26 "sum_rel (op =) (op =) = (op =)"
27 by (simp add: sum_rel_def fun_eq_iff split: sum.split)
30 "symp R1 \<Longrightarrow> symp R2 \<Longrightarrow> symp (sum_rel R1 R2)"
31 unfolding symp_def split_sum_all sum_rel_simps by fast
34 "transp R1 \<Longrightarrow> transp R2 \<Longrightarrow> transp (sum_rel R1 R2)"
35 unfolding transp_def split_sum_all sum_rel_simps by fast
37 lemma sum_equivp [quot_equiv]:
38 "equivp R1 \<Longrightarrow> equivp R2 \<Longrightarrow> equivp (sum_rel R1 R2)"
39 by (blast intro: equivpI reflp_sum_rel sum_symp sum_transp elim: equivpE)
41 lemma sum_quotient [quot_thm]:
42 assumes q1: "Quotient3 R1 Abs1 Rep1"
43 assumes q2: "Quotient3 R2 Abs2 Rep2"
44 shows "Quotient3 (sum_rel R1 R2) (sum_map Abs1 Abs2) (sum_map Rep1 Rep2)"
45 apply (rule Quotient3I)
46 apply (simp_all add: sum_map.compositionality comp_def sum_map.identity sum_rel_eq sum_rel_map1 sum_rel_map2
47 Quotient3_abs_rep [OF q1] Quotient3_rel_rep [OF q1] Quotient3_abs_rep [OF q2] Quotient3_rel_rep [OF q2])
48 using Quotient3_rel [OF q1] Quotient3_rel [OF q2]
49 apply (simp add: sum_rel_def comp_def split: sum.split)
52 declare [[mapQ3 sum = (sum_rel, sum_quotient)]]
54 lemma sum_Inl_rsp [quot_respect]:
55 assumes q1: "Quotient3 R1 Abs1 Rep1"
56 assumes q2: "Quotient3 R2 Abs2 Rep2"
57 shows "(R1 ===> sum_rel R1 R2) Inl Inl"
60 lemma sum_Inr_rsp [quot_respect]:
61 assumes q1: "Quotient3 R1 Abs1 Rep1"
62 assumes q2: "Quotient3 R2 Abs2 Rep2"
63 shows "(R2 ===> sum_rel R1 R2) Inr Inr"
66 lemma sum_Inl_prs [quot_preserve]:
67 assumes q1: "Quotient3 R1 Abs1 Rep1"
68 assumes q2: "Quotient3 R2 Abs2 Rep2"
69 shows "(Rep1 ---> sum_map Abs1 Abs2) Inl = Inl"
70 apply(simp add: fun_eq_iff)
71 apply(simp add: Quotient3_abs_rep[OF q1])
74 lemma sum_Inr_prs [quot_preserve]:
75 assumes q1: "Quotient3 R1 Abs1 Rep1"
76 assumes q2: "Quotient3 R2 Abs2 Rep2"
77 shows "(Rep2 ---> sum_map Abs1 Abs2) Inr = Inr"
78 apply(simp add: fun_eq_iff)
79 apply(simp add: Quotient3_abs_rep[OF q2])