src/Pure/meta_simplifier.ML
author haftmann
Tue, 20 Oct 2009 16:13:01 +0200
changeset 33037 b22e44496dc2
parent 32797 2e8fae2d998c
child 33038 8f9594c31de4
permissions -rw-r--r--
replaced old_style infixes eq_set, subset, union, inter and variants by generic versions

(*  Title:      Pure/meta_simplifier.ML
    Author:     Tobias Nipkow and Stefan Berghofer, TU Muenchen

Meta-level Simplification.
*)

infix 4
  addsimps delsimps addeqcongs deleqcongs addcongs delcongs addsimprocs delsimprocs
  setmksimps setmkcong setmksym setmkeqTrue settermless setsubgoaler
  setloop' setloop addloop addloop' delloop setSSolver addSSolver setSolver addSolver;

signature BASIC_META_SIMPLIFIER =
sig
  val debug_simp: bool Unsynchronized.ref
  val trace_simp: bool Unsynchronized.ref
  val trace_simp_depth_limit: int Unsynchronized.ref
  type rrule
  val eq_rrule: rrule * rrule -> bool
  type simpset
  type proc
  type solver
  val mk_solver': string -> (simpset -> int -> tactic) -> solver
  val mk_solver: string -> (thm list -> int -> tactic) -> solver
  val empty_ss: simpset
  val merge_ss: simpset * simpset -> simpset
  val dest_ss: simpset ->
   {simps: (string * thm) list,
    procs: (string * cterm list) list,
    congs: (string * thm) list,
    weak_congs: string list,
    loopers: string list,
    unsafe_solvers: string list,
    safe_solvers: string list}
  type simproc
  val eq_simproc: simproc * simproc -> bool
  val morph_simproc: morphism -> simproc -> simproc
  val make_simproc: {name: string, lhss: cterm list,
    proc: morphism -> simpset -> cterm -> thm option, identifier: thm list} -> simproc
  val mk_simproc: string -> cterm list -> (theory -> simpset -> term -> thm option) -> simproc
  val add_prems: thm list -> simpset -> simpset
  val prems_of_ss: simpset -> thm list
  val addsimps: simpset * thm list -> simpset
  val delsimps: simpset * thm list -> simpset
  val addeqcongs: simpset * thm list -> simpset
  val deleqcongs: simpset * thm list -> simpset
  val addcongs: simpset * thm list -> simpset
  val delcongs: simpset * thm list -> simpset
  val addsimprocs: simpset * simproc list -> simpset
  val delsimprocs: simpset * simproc list -> simpset
  val mksimps: simpset -> thm -> thm list
  val setmksimps: simpset * (thm -> thm list) -> simpset
  val setmkcong: simpset * (thm -> thm) -> simpset
  val setmksym: simpset * (thm -> thm option) -> simpset
  val setmkeqTrue: simpset * (thm -> thm option) -> simpset
  val settermless: simpset * (term * term -> bool) -> simpset
  val setsubgoaler: simpset * (simpset -> int -> tactic) -> simpset
  val setloop': simpset * (simpset -> int -> tactic) -> simpset
  val setloop: simpset * (int -> tactic) -> simpset
  val addloop': simpset * (string * (simpset -> int -> tactic)) -> simpset
  val addloop: simpset * (string * (int -> tactic)) -> simpset
  val delloop: simpset * string -> simpset
  val setSSolver: simpset * solver -> simpset
  val addSSolver: simpset * solver -> simpset
  val setSolver: simpset * solver -> simpset
  val addSolver: simpset * solver -> simpset

  val rewrite_rule: thm list -> thm -> thm
  val rewrite_goals_rule: thm list -> thm -> thm
  val rewrite_goals_tac: thm list -> tactic
  val rewrite_goal_tac: thm list -> int -> tactic
  val rewtac: thm -> tactic
  val prune_params_tac: tactic
  val fold_rule: thm list -> thm -> thm
  val fold_goals_tac: thm list -> tactic
  val norm_hhf: thm -> thm
  val norm_hhf_protect: thm -> thm
end;

signature META_SIMPLIFIER =
sig
  include BASIC_META_SIMPLIFIER
  exception SIMPLIFIER of string * thm
  val internal_ss: simpset ->
   {rules: rrule Net.net,
    prems: thm list,
    bounds: int * ((string * typ) * string) list,
    depth: int * bool Unsynchronized.ref,
    context: Proof.context option} *
   {congs: (string * thm) list * string list,
    procs: proc Net.net,
    mk_rews:
     {mk: thm -> thm list,
      mk_cong: thm -> thm,
      mk_sym: thm -> thm option,
      mk_eq_True: thm -> thm option,
      reorient: theory -> term list -> term -> term -> bool},
    termless: term * term -> bool,
    subgoal_tac: simpset -> int -> tactic,
    loop_tacs: (string * (simpset -> int -> tactic)) list,
    solvers: solver list * solver list}
  val add_simp: thm -> simpset -> simpset
  val del_simp: thm -> simpset -> simpset
  val solver: simpset -> solver -> int -> tactic
  val simp_depth_limit_value: Config.value Config.T
  val simp_depth_limit: int Config.T
  val clear_ss: simpset -> simpset
  val simproc_i: theory -> string -> term list
    -> (theory -> simpset -> term -> thm option) -> simproc
  val simproc: theory -> string -> string list
    -> (theory -> simpset -> term -> thm option) -> simproc
  val inherit_context: simpset -> simpset -> simpset
  val the_context: simpset -> Proof.context
  val context: Proof.context -> simpset -> simpset
  val theory_context: theory  -> simpset -> simpset
  val debug_bounds: bool Unsynchronized.ref
  val set_reorient: (theory -> term list -> term -> term -> bool) -> simpset -> simpset
  val set_solvers: solver list -> simpset -> simpset
  val rewrite_cterm: bool * bool * bool -> (simpset -> thm -> thm option) -> simpset -> conv
  val rewrite_term: theory -> thm list -> (term -> term option) list -> term -> term
  val rewrite_thm: bool * bool * bool ->
    (simpset -> thm -> thm option) -> simpset -> thm -> thm
  val rewrite_goal_rule: bool * bool * bool ->
    (simpset -> thm -> thm option) -> simpset -> int -> thm -> thm
  val asm_rewrite_goal_tac: bool * bool * bool ->
    (simpset -> tactic) -> simpset -> int -> tactic
  val rewrite: bool -> thm list -> conv
  val simplify: bool -> thm list -> thm -> thm
end;

structure MetaSimplifier: META_SIMPLIFIER =
struct

(** datatype simpset **)

(* rewrite rules *)

type rrule =
 {thm: thm,         (*the rewrite rule*)
  name: string,     (*name of theorem from which rewrite rule was extracted*)
  lhs: term,        (*the left-hand side*)
  elhs: cterm,      (*the etac-contracted lhs*)
  extra: bool,      (*extra variables outside of elhs*)
  fo: bool,         (*use first-order matching*)
  perm: bool};      (*the rewrite rule is permutative*)

(*
Remarks:
  - elhs is used for matching,
    lhs only for preservation of bound variable names;
  - fo is set iff
    either elhs is first-order (no Var is applied),
      in which case fo-matching is complete,
    or elhs is not a pattern,
      in which case there is nothing better to do;
*)

fun eq_rrule ({thm = thm1, ...}: rrule, {thm = thm2, ...}: rrule) =
  Thm.eq_thm_prop (thm1, thm2);


(* simplification sets, procedures, and solvers *)

(*A simpset contains data required during conversion:
    rules: discrimination net of rewrite rules;
    prems: current premises;
    bounds: maximal index of bound variables already used
      (for generating new names when rewriting under lambda abstractions);
    depth: simp_depth and exceeded flag;
    congs: association list of congruence rules and
           a list of `weak' congruence constants.
           A congruence is `weak' if it avoids normalization of some argument.
    procs: discrimination net of simplification procedures
      (functions that prove rewrite rules on the fly);
    mk_rews:
      mk: turn simplification thms into rewrite rules;
      mk_cong: prepare congruence rules;
      mk_sym: turn == around;
      mk_eq_True: turn P into P == True;
    termless: relation for ordered rewriting;*)

type mk_rews =
 {mk: thm -> thm list,
  mk_cong: thm -> thm,
  mk_sym: thm -> thm option,
  mk_eq_True: thm -> thm option,
  reorient: theory -> term list -> term -> term -> bool};

datatype simpset =
  Simpset of
   {rules: rrule Net.net,
    prems: thm list,
    bounds: int * ((string * typ) * string) list,
    depth: int * bool Unsynchronized.ref,
    context: Proof.context option} *
   {congs: (string * thm) list * string list,
    procs: proc Net.net,
    mk_rews: mk_rews,
    termless: term * term -> bool,
    subgoal_tac: simpset -> int -> tactic,
    loop_tacs: (string * (simpset -> int -> tactic)) list,
    solvers: solver list * solver list}
and proc =
  Proc of
   {name: string,
    lhs: cterm,
    proc: simpset -> cterm -> thm option,
    id: stamp * thm list}
and solver =
  Solver of
   {name: string,
    solver: simpset -> int -> tactic,
    id: stamp};


fun internal_ss (Simpset args) = args;

fun make_ss1 (rules, prems, bounds, depth, context) =
  {rules = rules, prems = prems, bounds = bounds, depth = depth, context = context};

fun map_ss1 f {rules, prems, bounds, depth, context} =
  make_ss1 (f (rules, prems, bounds, depth, context));

fun make_ss2 (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =
  {congs = congs, procs = procs, mk_rews = mk_rews, termless = termless,
    subgoal_tac = subgoal_tac, loop_tacs = loop_tacs, solvers = solvers};

fun map_ss2 f {congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers} =
  make_ss2 (f (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers));

fun make_simpset (args1, args2) = Simpset (make_ss1 args1, make_ss2 args2);

fun map_simpset1 f (Simpset (r1, r2)) = Simpset (map_ss1 f r1, r2);
fun map_simpset2 f (Simpset (r1, r2)) = Simpset (r1, map_ss2 f r2);

fun prems_of_ss (Simpset ({prems, ...}, _)) = prems;

fun eq_procid ((s1: stamp, ths1: thm list), (s2, ths2)) =
  s1 = s2 andalso eq_list Thm.eq_thm (ths1, ths2);
fun eq_proc (Proc {id = id1, ...}, Proc {id = id2, ...}) = eq_procid (id1, id2);

fun mk_solver' name solver = Solver {name = name, solver = solver, id = stamp ()};
fun mk_solver name solver = mk_solver' name (solver o prems_of_ss);

fun solver_name (Solver {name, ...}) = name;
fun solver ss (Solver {solver = tac, ...}) = tac ss;
fun eq_solver (Solver {id = id1, ...}, Solver {id = id2, ...}) = (id1 = id2);


(* simp depth *)

val simp_depth_limit_value = Config.declare false "simp_depth_limit" (Config.Int 100);
val simp_depth_limit = Config.int simp_depth_limit_value;

val trace_simp_depth_limit = Unsynchronized.ref 1;

fun trace_depth (Simpset ({depth = (depth, exceeded), ...}, _)) msg =
  if depth > ! trace_simp_depth_limit then
    if ! exceeded then () else (tracing "trace_simp_depth_limit exceeded!"; exceeded := true)
  else
    (tracing (enclose "[" "]" (string_of_int depth) ^ msg); exceeded := false);

val inc_simp_depth = map_simpset1 (fn (rules, prems, bounds, (depth, exceeded), context) =>
  (rules, prems, bounds,
    (depth + 1,
      if depth = ! trace_simp_depth_limit then Unsynchronized.ref false else exceeded), context));

fun simp_depth (Simpset ({depth = (depth, _), ...}, _)) = depth;


(* diagnostics *)

exception SIMPLIFIER of string * thm;

val debug_simp = Unsynchronized.ref false;
val trace_simp = Unsynchronized.ref false;

local

fun prnt ss warn a = if warn then warning a else trace_depth ss a;

fun show_bounds (Simpset ({bounds = (_, bs), ...}, _)) t =
  let
    val names = Term.declare_term_names t Name.context;
    val xs = rev (#1 (Name.variants (rev (map #2 bs)) names));
    fun subst (((b, T), _), x') = (Free (b, T), Syntax.mark_boundT (x', T));
  in Term.subst_atomic (ListPair.map subst (bs, xs)) t end;

in

fun print_term ss warn a thy t = prnt ss warn (a ^ "\n" ^
  Syntax.string_of_term_global thy (if ! debug_simp then t else show_bounds ss t));

fun debug warn a ss = if ! debug_simp then prnt ss warn (a ()) else ();
fun trace warn a ss = if ! trace_simp then prnt ss warn (a ()) else ();

fun debug_term warn a ss thy t = if ! debug_simp then print_term ss warn (a ()) thy t else ();
fun trace_term warn a ss thy t = if ! trace_simp then print_term ss warn (a ()) thy t else ();

fun trace_cterm warn a ss ct =
  if ! trace_simp then print_term ss warn (a ()) (Thm.theory_of_cterm ct) (Thm.term_of ct)
  else ();

fun trace_thm a ss th =
  if ! trace_simp then print_term ss false (a ()) (Thm.theory_of_thm th) (Thm.full_prop_of th)
  else ();

fun trace_named_thm a ss (th, name) =
  if ! trace_simp then
    print_term ss false (if name = "" then a () else a () ^ " " ^ quote name ^ ":")
      (Thm.theory_of_thm th) (Thm.full_prop_of th)
  else ();

fun warn_thm a ss th =
  print_term ss true a (Thm.theory_of_thm th) (Thm.full_prop_of th);

fun cond_warn_thm a (ss as Simpset ({context, ...}, _)) th =
  if is_some context then () else warn_thm a ss th;

end;



(** simpset operations **)

(* context *)

fun eq_bound (x: string, (y, _)) = x = y;

fun add_bound bound = map_simpset1 (fn (rules, prems, (count, bounds), depth, context) =>
  (rules, prems, (count + 1, bound :: bounds), depth, context));

fun add_prems ths = map_simpset1 (fn (rules, prems, bounds, depth, context) =>
  (rules, ths @ prems, bounds, depth, context));

fun inherit_context (Simpset ({bounds, depth, context, ...}, _)) =
  map_simpset1 (fn (rules, prems, _, _, _) => (rules, prems, bounds, depth, context));

fun the_context (Simpset ({context = SOME ctxt, ...}, _)) = ctxt
  | the_context _ = raise Fail "Simplifier: no proof context in simpset";

fun context ctxt =
  map_simpset1 (fn (rules, prems, bounds, depth, _) => (rules, prems, bounds, depth, SOME ctxt));

val theory_context = context o ProofContext.init;

fun activate_context thy ss =
  let
    val ctxt = the_context ss;
    val ctxt' = Context.transfer_proof (Theory.merge (thy, ProofContext.theory_of ctxt)) ctxt;
  in context ctxt' ss end;


(* maintain simp rules *)

(* FIXME: it seems that the conditions on extra variables are too liberal if
prems are nonempty: does solving the prems really guarantee instantiation of
all its Vars? Better: a dynamic check each time a rule is applied.
*)
fun rewrite_rule_extra_vars prems elhs erhs =
  let
    val elhss = elhs :: prems;
    val tvars = fold Term.add_tvars elhss [];
    val vars = fold Term.add_vars elhss [];
  in
    erhs |> Term.exists_type (Term.exists_subtype
      (fn TVar v => not (member (op =) tvars v) | _ => false)) orelse
    erhs |> Term.exists_subterm
      (fn Var v => not (member (op =) vars v) | _ => false)
  end;

fun rrule_extra_vars elhs thm =
  rewrite_rule_extra_vars [] (term_of elhs) (Thm.full_prop_of thm);

fun mk_rrule2 {thm, name, lhs, elhs, perm} =
  let
    val t = term_of elhs;
    val fo = Pattern.first_order t orelse not (Pattern.pattern t);
    val extra = rrule_extra_vars elhs thm;
  in {thm = thm, name = name, lhs = lhs, elhs = elhs, extra = extra, fo = fo, perm = perm} end;

fun del_rrule (rrule as {thm, elhs, ...}) ss =
  ss |> map_simpset1 (fn (rules, prems, bounds, depth, context) =>
    (Net.delete_term eq_rrule (term_of elhs, rrule) rules, prems, bounds, depth, context))
  handle Net.DELETE => (cond_warn_thm "Rewrite rule not in simpset:" ss thm; ss);

fun insert_rrule (rrule as {thm, name, ...}) ss =
 (trace_named_thm (fn () => "Adding rewrite rule") ss (thm, name);
  ss |> map_simpset1 (fn (rules, prems, bounds, depth, context) =>
    let
      val rrule2 as {elhs, ...} = mk_rrule2 rrule;
      val rules' = Net.insert_term eq_rrule (term_of elhs, rrule2) rules;
    in (rules', prems, bounds, depth, context) end)
  handle Net.INSERT => (cond_warn_thm "Ignoring duplicate rewrite rule:" ss thm; ss));

fun vperm (Var _, Var _) = true
  | vperm (Abs (_, _, s), Abs (_, _, t)) = vperm (s, t)
  | vperm (t1 $ t2, u1 $ u2) = vperm (t1, u1) andalso vperm (t2, u2)
  | vperm (t, u) = (t = u);

fun var_perm (t, u) =
  vperm (t, u) andalso gen_eq_set (op =) (Term.add_vars t [], Term.add_vars u []);

(*simple test for looping rewrite rules and stupid orientations*)
fun default_reorient thy prems lhs rhs =
  rewrite_rule_extra_vars prems lhs rhs
    orelse
  is_Var (head_of lhs)
    orelse
(* turns t = x around, which causes a headache if x is a local variable -
   usually it is very useful :-(
  is_Free rhs andalso not(is_Free lhs) andalso not(Logic.occs(rhs,lhs))
  andalso not(exists_subterm is_Var lhs)
    orelse
*)
  exists (fn t => Logic.occs (lhs, t)) (rhs :: prems)
    orelse
  null prems andalso Pattern.matches thy (lhs, rhs)
    (*the condition "null prems" is necessary because conditional rewrites
      with extra variables in the conditions may terminate although
      the rhs is an instance of the lhs; example: ?m < ?n ==> f(?n) == f(?m)*)
    orelse
  is_Const lhs andalso not (is_Const rhs);

fun decomp_simp thm =
  let
    val thy = Thm.theory_of_thm thm;
    val prop = Thm.prop_of thm;
    val prems = Logic.strip_imp_prems prop;
    val concl = Drule.strip_imp_concl (Thm.cprop_of thm);
    val (lhs, rhs) = Thm.dest_equals concl handle TERM _ =>
      raise SIMPLIFIER ("Rewrite rule not a meta-equality", thm);
    val elhs = Thm.dest_arg (Thm.cprop_of (Thm.eta_conversion lhs));
    val elhs = if term_of elhs aconv term_of lhs then lhs else elhs;  (*share identical copies*)
    val erhs = Envir.eta_contract (term_of rhs);
    val perm =
      var_perm (term_of elhs, erhs) andalso
      not (term_of elhs aconv erhs) andalso
      not (is_Var (term_of elhs));
  in (thy, prems, term_of lhs, elhs, term_of rhs, perm) end;

fun decomp_simp' thm =
  let val (_, _, lhs, _, rhs, _) = decomp_simp thm in
    if Thm.nprems_of thm > 0 then raise SIMPLIFIER ("Bad conditional rewrite rule", thm)
    else (lhs, rhs)
  end;

fun mk_eq_True (Simpset (_, {mk_rews = {mk_eq_True, ...}, ...})) (thm, name) =
  (case mk_eq_True thm of
    NONE => []
  | SOME eq_True =>
      let
        val (_, _, lhs, elhs, _, _) = decomp_simp eq_True;
      in [{thm = eq_True, name = name, lhs = lhs, elhs = elhs, perm = false}] end);

(*create the rewrite rule and possibly also the eq_True variant,
  in case there are extra vars on the rhs*)
fun rrule_eq_True (thm, name, lhs, elhs, rhs, ss, thm2) =
  let val rrule = {thm = thm, name = name, lhs = lhs, elhs = elhs, perm = false} in
    if rewrite_rule_extra_vars [] lhs rhs then
      mk_eq_True ss (thm2, name) @ [rrule]
    else [rrule]
  end;

fun mk_rrule ss (thm, name) =
  let val (_, prems, lhs, elhs, rhs, perm) = decomp_simp thm in
    if perm then [{thm = thm, name = name, lhs = lhs, elhs = elhs, perm = true}]
    else
      (*weak test for loops*)
      if rewrite_rule_extra_vars prems lhs rhs orelse is_Var (term_of elhs)
      then mk_eq_True ss (thm, name)
      else rrule_eq_True (thm, name, lhs, elhs, rhs, ss, thm)
  end;

fun orient_rrule ss (thm, name) =
  let
    val (thy, prems, lhs, elhs, rhs, perm) = decomp_simp thm;
    val Simpset (_, {mk_rews = {reorient, mk_sym, ...}, ...}) = ss;
  in
    if perm then [{thm = thm, name = name, lhs = lhs, elhs = elhs, perm = true}]
    else if reorient thy prems lhs rhs then
      if reorient thy prems rhs lhs
      then mk_eq_True ss (thm, name)
      else
        (case mk_sym thm of
          NONE => []
        | SOME thm' =>
            let val (_, _, lhs', elhs', rhs', _) = decomp_simp thm'
            in rrule_eq_True (thm', name, lhs', elhs', rhs', ss, thm) end)
    else rrule_eq_True (thm, name, lhs, elhs, rhs, ss, thm)
  end;

fun extract_rews (Simpset (_, {mk_rews = {mk, ...}, ...}), thms) =
  maps (fn thm => map (rpair (Thm.get_name_hint thm)) (mk thm)) thms;

fun extract_safe_rrules (ss, thm) =
  maps (orient_rrule ss) (extract_rews (ss, [thm]));


(* add/del rules explicitly *)

fun comb_simps comb mk_rrule (ss, thms) =
  let
    val rews = extract_rews (ss, thms);
  in fold (fold comb o mk_rrule) rews ss end;

fun ss addsimps thms =
  comb_simps insert_rrule (mk_rrule ss) (ss, thms);

fun ss delsimps thms =
  comb_simps del_rrule (map mk_rrule2 o mk_rrule ss) (ss, thms);

fun add_simp thm ss = ss addsimps [thm];
fun del_simp thm ss = ss delsimps [thm];


(* congs *)

fun cong_name (Const (a, _)) = SOME a
  | cong_name (Free (a, _)) = SOME ("Free: " ^ a)
  | cong_name _ = NONE;

local

fun is_full_cong_prems [] [] = true
  | is_full_cong_prems [] _ = false
  | is_full_cong_prems (p :: prems) varpairs =
      (case Logic.strip_assums_concl p of
        Const ("==", _) $ lhs $ rhs =>
          let val (x, xs) = strip_comb lhs and (y, ys) = strip_comb rhs in
            is_Var x andalso forall is_Bound xs andalso
            not (has_duplicates (op =) xs) andalso xs = ys andalso
            member (op =) varpairs (x, y) andalso
            is_full_cong_prems prems (remove (op =) (x, y) varpairs)
          end
      | _ => false);

fun is_full_cong thm =
  let
    val prems = prems_of thm and concl = concl_of thm;
    val (lhs, rhs) = Logic.dest_equals concl;
    val (f, xs) = strip_comb lhs and (g, ys) = strip_comb rhs;
  in
    f = g andalso not (has_duplicates (op =) (xs @ ys)) andalso length xs = length ys andalso
    is_full_cong_prems prems (xs ~~ ys)
  end;

fun add_cong (ss, thm) = ss |>
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
    let
      val (lhs, _) = Thm.dest_equals (Drule.strip_imp_concl (Thm.cprop_of thm))
        handle TERM _ => raise SIMPLIFIER ("Congruence not a meta-equality", thm);
    (*val lhs = Envir.eta_contract lhs;*)
      val a = the (cong_name (head_of (term_of lhs))) handle Option.Option =>
        raise SIMPLIFIER ("Congruence must start with a constant or free variable", thm);
      val (xs, weak) = congs;
      val _ =  if AList.defined (op =) xs a
        then warning ("Overwriting congruence rule for " ^ quote a)
        else ();
      val xs' = AList.update (op =) (a, thm) xs;
      val weak' = if is_full_cong thm then weak else a :: weak;
    in ((xs', weak'), procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) end);

fun del_cong (ss, thm) = ss |>
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
    let
      val (lhs, _) = Logic.dest_equals (Thm.concl_of thm) handle TERM _ =>
        raise SIMPLIFIER ("Congruence not a meta-equality", thm);
    (*val lhs = Envir.eta_contract lhs;*)
      val a = the (cong_name (head_of lhs)) handle Option.Option =>
        raise SIMPLIFIER ("Congruence must start with a constant", thm);
      val (xs, _) = congs;
      val xs' = filter_out (fn (x : string, _) => x = a) xs;
      val weak' = xs' |> map_filter (fn (a, thm) =>
        if is_full_cong thm then NONE else SOME a);
    in ((xs', weak'), procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) end);

fun mk_cong (Simpset (_, {mk_rews = {mk_cong = f, ...}, ...})) = f;

in

val (op addeqcongs) = Library.foldl add_cong;
val (op deleqcongs) = Library.foldl del_cong;

fun ss addcongs congs = ss addeqcongs map (mk_cong ss) congs;
fun ss delcongs congs = ss deleqcongs map (mk_cong ss) congs;

end;


(* simprocs *)

datatype simproc =
  Simproc of
    {name: string,
     lhss: cterm list,
     proc: morphism -> simpset -> cterm -> thm option,
     id: stamp * thm list};

fun eq_simproc (Simproc {id = id1, ...}, Simproc {id = id2, ...}) = eq_procid (id1, id2);

fun morph_simproc phi (Simproc {name, lhss, proc, id = (s, ths)}) =
  Simproc
   {name = name,
    lhss = map (Morphism.cterm phi) lhss,
    proc = Morphism.transform phi proc,
    id = (s, Morphism.fact phi ths)};

fun make_simproc {name, lhss, proc, identifier} =
  Simproc {name = name, lhss = lhss, proc = proc, id = (stamp (), identifier)};

fun mk_simproc name lhss proc =
  make_simproc {name = name, lhss = lhss, proc = fn _ => fn ss => fn ct =>
    proc (ProofContext.theory_of (the_context ss)) ss (Thm.term_of ct), identifier = []};

(* FIXME avoid global thy and Logic.varify *)
fun simproc_i thy name = mk_simproc name o map (Thm.cterm_of thy o Logic.varify);
fun simproc thy name = simproc_i thy name o map (Syntax.read_term_global thy);


local

fun add_proc (proc as Proc {name, lhs, ...}) ss =
 (trace_cterm false (fn () => "Adding simplification procedure " ^ quote name ^ " for") ss lhs;
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
    (congs, Net.insert_term eq_proc (term_of lhs, proc) procs,
      mk_rews, termless, subgoal_tac, loop_tacs, solvers)) ss
  handle Net.INSERT =>
    (warning ("Ignoring duplicate simplification procedure " ^ quote name); ss));

fun del_proc (proc as Proc {name, lhs, ...}) ss =
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
    (congs, Net.delete_term eq_proc (term_of lhs, proc) procs,
      mk_rews, termless, subgoal_tac, loop_tacs, solvers)) ss
  handle Net.DELETE =>
    (warning ("Simplification procedure " ^ quote name ^ " not in simpset"); ss);

fun prep_procs (Simproc {name, lhss, proc, id}) =
  lhss |> map (fn lhs => Proc {name = name, lhs = lhs, proc = Morphism.form proc, id = id});

in

fun ss addsimprocs ps = fold (fold add_proc o prep_procs) ps ss;
fun ss delsimprocs ps = fold (fold del_proc o prep_procs) ps ss;

end;


(* mk_rews *)

local

fun map_mk_rews f = map_simpset2 (fn (congs, procs, {mk, mk_cong, mk_sym, mk_eq_True, reorient},
      termless, subgoal_tac, loop_tacs, solvers) =>
  let
    val (mk', mk_cong', mk_sym', mk_eq_True', reorient') =
      f (mk, mk_cong, mk_sym, mk_eq_True, reorient);
    val mk_rews' = {mk = mk', mk_cong = mk_cong', mk_sym = mk_sym', mk_eq_True = mk_eq_True',
      reorient = reorient'};
  in (congs, procs, mk_rews', termless, subgoal_tac, loop_tacs, solvers) end);

in

fun mksimps (Simpset (_, {mk_rews = {mk, ...}, ...})) = mk;

fun ss setmksimps mk = ss |> map_mk_rews (fn (_, mk_cong, mk_sym, mk_eq_True, reorient) =>
  (mk, mk_cong, mk_sym, mk_eq_True, reorient));

fun ss setmkcong mk_cong = ss |> map_mk_rews (fn (mk, _, mk_sym, mk_eq_True, reorient) =>
  (mk, mk_cong, mk_sym, mk_eq_True, reorient));

fun ss setmksym mk_sym = ss |> map_mk_rews (fn (mk, mk_cong, _, mk_eq_True, reorient) =>
  (mk, mk_cong, mk_sym, mk_eq_True, reorient));

fun ss setmkeqTrue mk_eq_True = ss |> map_mk_rews (fn (mk, mk_cong, mk_sym, _, reorient) =>
  (mk, mk_cong, mk_sym, mk_eq_True, reorient));

fun set_reorient reorient = map_mk_rews (fn (mk, mk_cong, mk_sym, mk_eq_True, _) =>
  (mk, mk_cong, mk_sym, mk_eq_True, reorient));

end;


(* termless *)

fun ss settermless termless = ss |>
  map_simpset2 (fn (congs, procs, mk_rews, _, subgoal_tac, loop_tacs, solvers) =>
   (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers));


(* tactics *)

fun ss setsubgoaler subgoal_tac = ss |>
  map_simpset2 (fn (congs, procs, mk_rews, termless, _, loop_tacs, solvers) =>
   (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers));

fun ss setloop' tac = ss |>
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, _, solvers) =>
   (congs, procs, mk_rews, termless, subgoal_tac, [("", tac)], solvers));

fun ss setloop tac = ss setloop' (K tac);

fun ss addloop' (name, tac) = ss |>
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
    (congs, procs, mk_rews, termless, subgoal_tac,
      (if AList.defined (op =) loop_tacs name
        then warning ("Overwriting looper " ^ quote name)
        else (); AList.update (op =) (name, tac) loop_tacs),
      solvers));

fun ss addloop (name, tac) = ss addloop' (name, K tac);

fun ss delloop name = ss |>
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
    (congs, procs, mk_rews, termless, subgoal_tac,
      (if AList.defined (op =) loop_tacs name
        then ()
        else warning ("No such looper in simpset: " ^ quote name);
       AList.delete (op =) name loop_tacs), solvers));

fun ss setSSolver solver = ss |> map_simpset2 (fn (congs, procs, mk_rews, termless,
  subgoal_tac, loop_tacs, (unsafe_solvers, _)) =>
    (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, (unsafe_solvers, [solver])));

fun ss addSSolver solver = ss |> map_simpset2 (fn (congs, procs, mk_rews, termless,
  subgoal_tac, loop_tacs, (unsafe_solvers, solvers)) => (congs, procs, mk_rews, termless,
    subgoal_tac, loop_tacs, (unsafe_solvers, insert eq_solver solver solvers)));

fun ss setSolver solver = ss |> map_simpset2 (fn (congs, procs, mk_rews, termless,
  subgoal_tac, loop_tacs, (_, solvers)) => (congs, procs, mk_rews, termless,
    subgoal_tac, loop_tacs, ([solver], solvers)));

fun ss addSolver solver = ss |> map_simpset2 (fn (congs, procs, mk_rews, termless,
  subgoal_tac, loop_tacs, (unsafe_solvers, solvers)) => (congs, procs, mk_rews, termless,
    subgoal_tac, loop_tacs, (insert eq_solver solver unsafe_solvers, solvers)));

fun set_solvers solvers = map_simpset2 (fn (congs, procs, mk_rews, termless,
  subgoal_tac, loop_tacs, _) => (congs, procs, mk_rews, termless,
  subgoal_tac, loop_tacs, (solvers, solvers)));


(* empty *)

fun init_ss mk_rews termless subgoal_tac solvers =
  make_simpset ((Net.empty, [], (0, []), (0, Unsynchronized.ref false), NONE),
    (([], []), Net.empty, mk_rews, termless, subgoal_tac, [], solvers));

fun clear_ss (ss as Simpset (_, {mk_rews, termless, subgoal_tac, solvers, ...})) =
  init_ss mk_rews termless subgoal_tac solvers
  |> inherit_context ss;

val basic_mk_rews: mk_rews =
 {mk = fn th => if can Logic.dest_equals (Thm.concl_of th) then [th] else [],
  mk_cong = I,
  mk_sym = SOME o Drule.symmetric_fun,
  mk_eq_True = K NONE,
  reorient = default_reorient};

val empty_ss = init_ss basic_mk_rews TermOrd.termless (K (K no_tac)) ([], []);


(* merge *)  (*NOTE: ignores some fields of 2nd simpset*)

fun merge_ss (ss1, ss2) =
  if pointer_eq (ss1, ss2) then ss1
  else
    let
      val Simpset ({rules = rules1, prems = prems1, bounds = bounds1, depth = depth1, context = _},
       {congs = (congs1, weak1), procs = procs1, mk_rews, termless, subgoal_tac,
        loop_tacs = loop_tacs1, solvers = (unsafe_solvers1, solvers1)}) = ss1;
      val Simpset ({rules = rules2, prems = prems2, bounds = bounds2, depth = depth2, context = _},
       {congs = (congs2, weak2), procs = procs2, mk_rews = _, termless = _, subgoal_tac = _,
        loop_tacs = loop_tacs2, solvers = (unsafe_solvers2, solvers2)}) = ss2;

      val rules' = Net.merge eq_rrule (rules1, rules2);
      val prems' = merge Thm.eq_thm_prop (prems1, prems2);
      val bounds' = if #1 bounds1 < #1 bounds2 then bounds2 else bounds1;
      val depth' = if #1 depth1 < #1 depth2 then depth2 else depth1;
      val congs' = merge (Thm.eq_thm_prop o pairself #2) (congs1, congs2);
      val weak' = merge (op =) (weak1, weak2);
      val procs' = Net.merge eq_proc (procs1, procs2);
      val loop_tacs' = AList.merge (op =) (K true) (loop_tacs1, loop_tacs2);
      val unsafe_solvers' = merge eq_solver (unsafe_solvers1, unsafe_solvers2);
      val solvers' = merge eq_solver (solvers1, solvers2);
    in
      make_simpset ((rules', prems', bounds', depth', NONE), ((congs', weak'), procs',
        mk_rews, termless, subgoal_tac, loop_tacs', (unsafe_solvers', solvers')))
    end;


(* dest_ss *)

fun dest_ss (Simpset ({rules, ...}, {congs, procs, loop_tacs, solvers, ...})) =
 {simps = Net.entries rules
    |> map (fn {name, thm, ...} => (name, thm)),
  procs = Net.entries procs
    |> map (fn Proc {name, lhs, id, ...} => ((name, lhs), id))
    |> partition_eq (eq_snd eq_procid)
    |> map (fn ps => (fst (fst (hd ps)), map (snd o fst) ps)),
  congs = #1 congs,
  weak_congs = #2 congs,
  loopers = map fst loop_tacs,
  unsafe_solvers = map solver_name (#1 solvers),
  safe_solvers = map solver_name (#2 solvers)};



(** rewriting **)

(*
  Uses conversions, see:
    L C Paulson, A higher-order implementation of rewriting,
    Science of Computer Programming 3 (1983), pages 119-149.
*)

fun check_conv msg ss thm thm' =
  let
    val thm'' = transitive thm thm' handle THM _ =>
     transitive thm (transitive
       (symmetric (Drule.beta_eta_conversion (Thm.lhs_of thm'))) thm')
  in if msg then trace_thm (fn () => "SUCCEEDED") ss thm' else (); SOME thm'' end
  handle THM _ =>
    let
      val thy = Thm.theory_of_thm thm;
      val _ $ _ $ prop0 = Thm.prop_of thm;
    in
      trace_thm (fn () => "Proved wrong thm (Check subgoaler?)") ss thm';
      trace_term false (fn () => "Should have proved:") ss thy prop0;
      NONE
    end;


(* mk_procrule *)

fun mk_procrule ss thm =
  let val (_, prems, lhs, elhs, rhs, _) = decomp_simp thm in
    if rewrite_rule_extra_vars prems lhs rhs
    then (warn_thm "Extra vars on rhs:" ss thm; [])
    else [mk_rrule2 {thm = thm, name = "", lhs = lhs, elhs = elhs, perm = false}]
  end;


(* rewritec: conversion to apply the meta simpset to a term *)

(*Since the rewriting strategy is bottom-up, we avoid re-normalizing already
  normalized terms by carrying around the rhs of the rewrite rule just
  applied. This is called the `skeleton'. It is decomposed in parallel
  with the term. Once a Var is encountered, the corresponding term is
  already in normal form.
  skel0 is a dummy skeleton that is to enforce complete normalization.*)

val skel0 = Bound 0;

(*Use rhs as skeleton only if the lhs does not contain unnormalized bits.
  The latter may happen iff there are weak congruence rules for constants
  in the lhs.*)

fun uncond_skel ((_, weak), (lhs, rhs)) =
  if null weak then rhs  (*optimization*)
  else if exists_Const (member (op =) weak o #1) lhs then skel0
  else rhs;

(*Behaves like unconditional rule if rhs does not contain vars not in the lhs.
  Otherwise those vars may become instantiated with unnormalized terms
  while the premises are solved.*)

fun cond_skel (args as (_, (lhs, rhs))) =
  if gen_subset (op =) (Term.add_vars rhs [], Term.add_vars lhs []) then uncond_skel args
  else skel0;

(*
  Rewriting -- we try in order:
    (1) beta reduction
    (2) unconditional rewrite rules
    (3) conditional rewrite rules
    (4) simplification procedures

  IMPORTANT: rewrite rules must not introduce new Vars or TVars!
*)

fun rewritec (prover, thyt, maxt) ss t =
  let
    val ctxt = the_context ss;
    val Simpset ({rules, ...}, {congs, procs, termless, ...}) = ss;
    val eta_thm = Thm.eta_conversion t;
    val eta_t' = Thm.rhs_of eta_thm;
    val eta_t = term_of eta_t';
    fun rew {thm, name, lhs, elhs, extra, fo, perm} =
      let
        val prop = Thm.prop_of thm;
        val (rthm, elhs') =
          if maxt = ~1 orelse not extra then (thm, elhs)
          else (Thm.incr_indexes (maxt + 1) thm, Thm.incr_indexes_cterm (maxt + 1) elhs);
        val insts =
          if fo then Thm.first_order_match (elhs', eta_t')
          else Thm.match (elhs', eta_t');
        val thm' = Thm.instantiate insts (Thm.rename_boundvars lhs eta_t rthm);
        val prop' = Thm.prop_of thm';
        val unconditional = (Logic.count_prems prop' = 0);
        val (lhs', rhs') = Logic.dest_equals (Logic.strip_imp_concl prop')
      in
        if perm andalso not (termless (rhs', lhs'))
        then (trace_named_thm (fn () => "Cannot apply permutative rewrite rule") ss (thm, name);
              trace_thm (fn () => "Term does not become smaller:") ss thm'; NONE)
        else (trace_named_thm (fn () => "Applying instance of rewrite rule") ss (thm, name);
           if unconditional
           then
             (trace_thm (fn () => "Rewriting:") ss thm';
              let val lr = Logic.dest_equals prop;
                  val SOME thm'' = check_conv false ss eta_thm thm'
              in SOME (thm'', uncond_skel (congs, lr)) end)
           else
             (trace_thm (fn () => "Trying to rewrite:") ss thm';
              if simp_depth ss > Config.get ctxt simp_depth_limit
              then let val s = "simp_depth_limit exceeded - giving up"
                   in trace false (fn () => s) ss; warning s; NONE end
              else
              case prover ss thm' of
                NONE => (trace_thm (fn () => "FAILED") ss thm'; NONE)
              | SOME thm2 =>
                  (case check_conv true ss eta_thm thm2 of
                     NONE => NONE |
                     SOME thm2' =>
                       let val concl = Logic.strip_imp_concl prop
                           val lr = Logic.dest_equals concl
                       in SOME (thm2', cond_skel (congs, lr)) end)))
      end

    fun rews [] = NONE
      | rews (rrule :: rrules) =
          let val opt = rew rrule handle Pattern.MATCH => NONE
          in case opt of NONE => rews rrules | some => some end;

    fun sort_rrules rrs = let
      fun is_simple({thm, ...}:rrule) = case Thm.prop_of thm of
                                      Const("==",_) $ _ $ _ => true
                                      | _                   => false
      fun sort []        (re1,re2) = re1 @ re2
        | sort (rr::rrs) (re1,re2) = if is_simple rr
                                     then sort rrs (rr::re1,re2)
                                     else sort rrs (re1,rr::re2)
    in sort rrs ([],[]) end

    fun proc_rews [] = NONE
      | proc_rews (Proc {name, proc, lhs, ...} :: ps) =
          if Pattern.matches thyt (Thm.term_of lhs, Thm.term_of t) then
            (debug_term false (fn () => "Trying procedure " ^ quote name ^ " on:") ss thyt eta_t;
             case proc ss eta_t' of
               NONE => (debug false (fn () => "FAILED") ss; proc_rews ps)
             | SOME raw_thm =>
                 (trace_thm (fn () => "Procedure " ^ quote name ^ " produced rewrite rule:")
                   ss raw_thm;
                  (case rews (mk_procrule ss raw_thm) of
                    NONE => (trace_cterm true (fn () => "IGNORED result of simproc " ^ quote name ^
                      " -- does not match") ss t; proc_rews ps)
                  | some => some)))
          else proc_rews ps;
  in case eta_t of
       Abs _ $ _ => SOME (transitive eta_thm
         (beta_conversion false eta_t'), skel0)
     | _ => (case rews (sort_rrules (Net.match_term rules eta_t)) of
               NONE => proc_rews (Net.match_term procs eta_t)
             | some => some)
  end;


(* conversion to apply a congruence rule to a term *)

fun congc prover ss maxt cong t =
  let val rthm = Thm.incr_indexes (maxt + 1) cong;
      val rlhs = fst (Thm.dest_equals (Drule.strip_imp_concl (cprop_of rthm)));
      val insts = Thm.match (rlhs, t)
      (* Thm.match can raise Pattern.MATCH;
         is handled when congc is called *)
      val thm' = Thm.instantiate insts (Thm.rename_boundvars (term_of rlhs) (term_of t) rthm);
      val _ = trace_thm (fn () => "Applying congruence rule:") ss thm';
      fun err (msg, thm) = (trace_thm (fn () => msg) ss thm; NONE)
  in case prover thm' of
       NONE => err ("Congruence proof failed.  Could not prove", thm')
     | SOME thm2 => (case check_conv true ss (Drule.beta_eta_conversion t) thm2 of
          NONE => err ("Congruence proof failed.  Should not have proved", thm2)
        | SOME thm2' =>
            if op aconv (pairself term_of (Thm.dest_equals (cprop_of thm2')))
            then NONE else SOME thm2')
  end;

val (cA, (cB, cC)) =
  apsnd Thm.dest_equals (Thm.dest_implies (hd (cprems_of Drule.imp_cong)));

fun transitive1 NONE NONE = NONE
  | transitive1 (SOME thm1) NONE = SOME thm1
  | transitive1 NONE (SOME thm2) = SOME thm2
  | transitive1 (SOME thm1) (SOME thm2) = SOME (transitive thm1 thm2)

fun transitive2 thm = transitive1 (SOME thm);
fun transitive3 thm = transitive1 thm o SOME;

fun bottomc ((simprem, useprem, mutsimp), prover, thy, maxidx) =
  let
    fun botc skel ss t =
          if is_Var skel then NONE
          else
          (case subc skel ss t of
             some as SOME thm1 =>
               (case rewritec (prover, thy, maxidx) ss (Thm.rhs_of thm1) of
                  SOME (thm2, skel2) =>
                    transitive2 (transitive thm1 thm2)
                      (botc skel2 ss (Thm.rhs_of thm2))
                | NONE => some)
           | NONE =>
               (case rewritec (prover, thy, maxidx) ss t of
                  SOME (thm2, skel2) => transitive2 thm2
                    (botc skel2 ss (Thm.rhs_of thm2))
                | NONE => NONE))

    and try_botc ss t =
          (case botc skel0 ss t of
             SOME trec1 => trec1 | NONE => (reflexive t))

    and subc skel (ss as Simpset ({bounds, ...}, {congs, ...})) t0 =
       (case term_of t0 of
           Abs (a, T, _) =>
             let
                 val b = Name.bound (#1 bounds);
                 val (v, t') = Thm.dest_abs (SOME b) t0;
                 val b' = #1 (Term.dest_Free (Thm.term_of v));
                 val _ =
                   if b <> b' then
                     warning ("Simplifier: renamed bound variable " ^ quote b ^ " to " ^ quote b')
                   else ();
                 val ss' = add_bound ((b', T), a) ss;
                 val skel' = case skel of Abs (_, _, sk) => sk | _ => skel0;
             in case botc skel' ss' t' of
                  SOME thm => SOME (abstract_rule a v thm)
                | NONE => NONE
             end
         | t $ _ => (case t of
             Const ("==>", _) $ _  => impc t0 ss
           | Abs _ =>
               let val thm = beta_conversion false t0
               in case subc skel0 ss (Thm.rhs_of thm) of
                    NONE => SOME thm
                  | SOME thm' => SOME (transitive thm thm')
               end
           | _  =>
               let fun appc () =
                     let
                       val (tskel, uskel) = case skel of
                           tskel $ uskel => (tskel, uskel)
                         | _ => (skel0, skel0);
                       val (ct, cu) = Thm.dest_comb t0
                     in
                     (case botc tskel ss ct of
                        SOME thm1 =>
                          (case botc uskel ss cu of
                             SOME thm2 => SOME (combination thm1 thm2)
                           | NONE => SOME (combination thm1 (reflexive cu)))
                      | NONE =>
                          (case botc uskel ss cu of
                             SOME thm1 => SOME (combination (reflexive ct) thm1)
                           | NONE => NONE))
                     end
                   val (h, ts) = strip_comb t
               in case cong_name h of
                    SOME a =>
                      (case AList.lookup (op =) (fst congs) a of
                         NONE => appc ()
                       | SOME cong =>
  (*post processing: some partial applications h t1 ... tj, j <= length ts,
    may be a redex. Example: map (%x. x) = (%xs. xs) wrt map_cong*)
                          (let
                             val thm = congc (prover ss) ss maxidx cong t0;
                             val t = the_default t0 (Option.map Thm.rhs_of thm);
                             val (cl, cr) = Thm.dest_comb t
                             val dVar = Var(("", 0), dummyT)
                             val skel =
                               list_comb (h, replicate (length ts) dVar)
                           in case botc skel ss cl of
                                NONE => thm
                              | SOME thm' => transitive3 thm
                                  (combination thm' (reflexive cr))
                           end handle Pattern.MATCH => appc ()))
                  | _ => appc ()
               end)
         | _ => NONE)

    and impc ct ss =
      if mutsimp then mut_impc0 [] ct [] [] ss else nonmut_impc ct ss

    and rules_of_prem ss prem =
      if maxidx_of_term (term_of prem) <> ~1
      then (trace_cterm true
        (fn () => "Cannot add premise as rewrite rule because it contains (type) unknowns:")
          ss prem; ([], NONE))
      else
        let val asm = assume prem
        in (extract_safe_rrules (ss, asm), SOME asm) end

    and add_rrules (rrss, asms) ss =
      (fold o fold) insert_rrule rrss ss |> add_prems (map_filter I asms)

    and disch r prem eq =
      let
        val (lhs, rhs) = Thm.dest_equals (Thm.cprop_of eq);
        val eq' = implies_elim (Thm.instantiate
          ([], [(cA, prem), (cB, lhs), (cC, rhs)]) Drule.imp_cong)
          (implies_intr prem eq)
      in if not r then eq' else
        let
          val (prem', concl) = Thm.dest_implies lhs;
          val (prem'', _) = Thm.dest_implies rhs
        in transitive (transitive
          (Thm.instantiate ([], [(cA, prem'), (cB, prem), (cC, concl)])
             Drule.swap_prems_eq) eq')
          (Thm.instantiate ([], [(cA, prem), (cB, prem''), (cC, concl)])
             Drule.swap_prems_eq)
        end
      end

    and rebuild [] _ _ _ _ eq = eq
      | rebuild (prem :: prems) concl (_ :: rrss) (_ :: asms) ss eq =
          let
            val ss' = add_rrules (rev rrss, rev asms) ss;
            val concl' =
              Drule.mk_implies (prem, the_default concl (Option.map Thm.rhs_of eq));
            val dprem = Option.map (disch false prem)
          in case rewritec (prover, thy, maxidx) ss' concl' of
              NONE => rebuild prems concl' rrss asms ss (dprem eq)
            | SOME (eq', _) => transitive2 (fold (disch false)
                  prems (the (transitive3 (dprem eq) eq')))
                (mut_impc0 (rev prems) (Thm.rhs_of eq') (rev rrss) (rev asms) ss)
          end

    and mut_impc0 prems concl rrss asms ss =
      let
        val prems' = strip_imp_prems concl;
        val (rrss', asms') = split_list (map (rules_of_prem ss) prems')
      in mut_impc (prems @ prems') (strip_imp_concl concl) (rrss @ rrss')
        (asms @ asms') [] [] [] [] ss ~1 ~1
      end

    and mut_impc [] concl [] [] prems' rrss' asms' eqns ss changed k =
        transitive1 (Library.foldl (fn (eq2, (eq1, prem)) => transitive1 eq1
            (Option.map (disch false prem) eq2)) (NONE, eqns ~~ prems'))
          (if changed > 0 then
             mut_impc (rev prems') concl (rev rrss') (rev asms')
               [] [] [] [] ss ~1 changed
           else rebuild prems' concl rrss' asms' ss
             (botc skel0 (add_rrules (rev rrss', rev asms') ss) concl))

      | mut_impc (prem :: prems) concl (rrs :: rrss) (asm :: asms)
          prems' rrss' asms' eqns ss changed k =
        case (if k = 0 then NONE else botc skel0 (add_rrules
          (rev rrss' @ rrss, rev asms' @ asms) ss) prem) of
            NONE => mut_impc prems concl rrss asms (prem :: prems')
              (rrs :: rrss') (asm :: asms') (NONE :: eqns) ss changed
              (if k = 0 then 0 else k - 1)
          | SOME eqn =>
            let
              val prem' = Thm.rhs_of eqn;
              val tprems = map term_of prems;
              val i = 1 + Library.foldl Int.max (~1, map (fn p =>
                find_index (fn q => q aconv p) tprems) (#hyps (rep_thm eqn)));
              val (rrs', asm') = rules_of_prem ss prem'
            in mut_impc prems concl rrss asms (prem' :: prems')
              (rrs' :: rrss') (asm' :: asms') (SOME (fold_rev (disch true)
                (Library.take (i, prems))
                (Drule.imp_cong_rule eqn (reflexive (Drule.list_implies
                  (Library.drop (i, prems), concl))))) :: eqns)
                  ss (length prems') ~1
            end

     (*legacy code - only for backwards compatibility*)
     and nonmut_impc ct ss =
       let val (prem, conc) = Thm.dest_implies ct;
           val thm1 = if simprem then botc skel0 ss prem else NONE;
           val prem1 = the_default prem (Option.map Thm.rhs_of thm1);
           val ss1 = if not useprem then ss else add_rrules
             (apsnd single (apfst single (rules_of_prem ss prem1))) ss
       in (case botc skel0 ss1 conc of
           NONE => (case thm1 of
               NONE => NONE
             | SOME thm1' => SOME (Drule.imp_cong_rule thm1' (reflexive conc)))
         | SOME thm2 =>
           let val thm2' = disch false prem1 thm2
           in (case thm1 of
               NONE => SOME thm2'
             | SOME thm1' =>
                 SOME (transitive (Drule.imp_cong_rule thm1' (reflexive conc)) thm2'))
           end)
       end

 in try_botc end;


(* Meta-rewriting: rewrites t to u and returns the theorem t==u *)

(*
  Parameters:
    mode = (simplify A,
            use A in simplifying B,
            use prems of B (if B is again a meta-impl.) to simplify A)
           when simplifying A ==> B
    prover: how to solve premises in conditional rewrites and congruences
*)

val debug_bounds = Unsynchronized.ref false;

fun check_bounds ss ct =
  if ! debug_bounds then
    let
      val Simpset ({bounds = (_, bounds), ...}, _) = ss;
      val bs = fold_aterms (fn Free (x, _) =>
          if Name.is_bound x andalso not (AList.defined eq_bound bounds x)
          then insert (op =) x else I
        | _ => I) (term_of ct) [];
    in
      if null bs then ()
      else print_term ss true ("Simplifier: term contains loose bounds: " ^ commas_quote bs)
        (Thm.theory_of_cterm ct) (Thm.term_of ct)
    end
  else ();

fun rewrite_cterm mode prover raw_ss raw_ct =
  let
    val thy = Thm.theory_of_cterm raw_ct;
    val ct = Thm.adjust_maxidx_cterm ~1 raw_ct;
    val {maxidx, ...} = Thm.rep_cterm ct;
    val ss = inc_simp_depth (activate_context thy raw_ss);
    val depth = simp_depth ss;
    val _ =
      if depth mod 20 = 0 then
        warning ("Simplification depth " ^ string_of_int depth)
      else ();
    val _ = trace_cterm false (fn () => "SIMPLIFIER INVOKED ON THE FOLLOWING TERM:") ss ct;
    val _ = check_bounds ss ct;
  in bottomc (mode, Option.map Drule.flexflex_unique oo prover, thy, maxidx) ss ct end;

val simple_prover =
  SINGLE o (fn ss => ALLGOALS (resolve_tac (prems_of_ss ss)));

fun rewrite _ [] ct = Thm.reflexive ct
  | rewrite full thms ct = rewrite_cterm (full, false, false) simple_prover
      (theory_context (Thm.theory_of_cterm ct) empty_ss addsimps thms) ct;

fun simplify full thms = Conv.fconv_rule (rewrite full thms);
val rewrite_rule = simplify true;

(*simple term rewriting -- no proof*)
fun rewrite_term thy rules procs =
  Pattern.rewrite_term thy (map decomp_simp' rules) procs;

fun rewrite_thm mode prover ss = Conv.fconv_rule (rewrite_cterm mode prover ss);

(*Rewrite the subgoals of a proof state (represented by a theorem)*)
fun rewrite_goals_rule thms th =
  Conv.fconv_rule (Conv.prems_conv ~1 (rewrite_cterm (true, true, true) simple_prover
    (theory_context (Thm.theory_of_thm th) empty_ss addsimps thms))) th;

(*Rewrite the subgoal of a proof state (represented by a theorem)*)
fun rewrite_goal_rule mode prover ss i thm =
  if 0 < i andalso i <= Thm.nprems_of thm
  then Conv.gconv_rule (rewrite_cterm mode prover ss) i thm
  else raise THM ("rewrite_goal_rule", i, [thm]);


(** meta-rewriting tactics **)

(*Rewrite all subgoals*)
fun rewrite_goals_tac defs = PRIMITIVE (rewrite_goals_rule defs);
fun rewtac def = rewrite_goals_tac [def];

(*Rewrite one subgoal*)
fun asm_rewrite_goal_tac mode prover_tac ss i thm =
  if 0 < i andalso i <= Thm.nprems_of thm then
    Seq.single (Conv.gconv_rule (rewrite_cterm mode (SINGLE o prover_tac) ss) i thm)
  else Seq.empty;

fun rewrite_goal_tac rews =
  let val ss = empty_ss addsimps rews in
    fn i => fn st => asm_rewrite_goal_tac (true, false, false) (K no_tac)
      (theory_context (Thm.theory_of_thm st) ss) i st
  end;

(*Prunes all redundant parameters from the proof state by rewriting.
  DOES NOT rewrite main goal, where quantification over an unused bound
    variable is sometimes done to avoid the need for cut_facts_tac.*)
val prune_params_tac = rewrite_goals_tac [triv_forall_equality];


(* for folding definitions, handling critical pairs *)

(*The depth of nesting in a term*)
fun term_depth (Abs (_, _, t)) = 1 + term_depth t
  | term_depth (f $ t) = 1 + Int.max (term_depth f, term_depth t)
  | term_depth _ = 0;

val lhs_of_thm = #1 o Logic.dest_equals o prop_of;

(*folding should handle critical pairs!  E.g. K == Inl(0),  S == Inr(Inl(0))
  Returns longest lhs first to avoid folding its subexpressions.*)
fun sort_lhs_depths defs =
  let val keylist = AList.make (term_depth o lhs_of_thm) defs
      val keys = sort_distinct (rev_order o int_ord) (map #2 keylist)
  in map (AList.find (op =) keylist) keys end;

val rev_defs = sort_lhs_depths o map symmetric;

fun fold_rule defs = fold rewrite_rule (rev_defs defs);
fun fold_goals_tac defs = EVERY (map rewrite_goals_tac (rev_defs defs));


(* HHF normal form: !! before ==>, outermost !! generalized *)

local

fun gen_norm_hhf ss th =
  (if Drule.is_norm_hhf (Thm.prop_of th) then th
   else Conv.fconv_rule
    (rewrite_cterm (true, false, false) (K (K NONE)) (theory_context (Thm.theory_of_thm th) ss)) th)
  |> Thm.adjust_maxidx_thm ~1
  |> Drule.gen_all;

val hhf_ss = empty_ss addsimps Drule.norm_hhf_eqs;

in

val norm_hhf = gen_norm_hhf hhf_ss;
val norm_hhf_protect = gen_norm_hhf (hhf_ss addeqcongs [Drule.protect_cong]);

end;

end;

structure Basic_Meta_Simplifier: BASIC_META_SIMPLIFIER = MetaSimplifier;
open Basic_Meta_Simplifier;