1 (* Title: HOL/Hilbert_Choice.thy
2 Author: Lawrence C Paulson
3 Copyright 2001 University of Cambridge
6 header {* Hilbert's Epsilon-Operator and the Axiom of Choice *}
9 imports Nat Wellfounded Plain
10 uses ("Tools/meson.ML") ("Tools/specification_package.ML")
13 subsection {* Hilbert's epsilon *}
16 Eps :: "('a => bool) => 'a"
18 someI: "P x ==> P (Eps P)"
21 "_Eps" :: "[pttrn, bool] => 'a" ("(3\<some>_./ _)" [0, 10] 10)
23 "_Eps" :: "[pttrn, bool] => 'a" ("(3@ _./ _)" [0, 10] 10)
25 "_Eps" :: "[pttrn, bool] => 'a" ("(3SOME _./ _)" [0, 10] 10)
27 "SOME x. P" == "CONST Eps (%x. P)"
30 (* to avoid eta-contraction of body *)
31 [(@{const_syntax Eps}, fn [Abs abs] =>
32 let val (x,t) = atomic_abs_tr' abs
33 in Syntax.const "_Eps" $ x $ t end)]
37 inv :: "('a => 'b) => ('b => 'a)"
38 "inv(f :: 'a => 'b) == %y. SOME x. f x = y"
40 Inv :: "'a set => ('a => 'b) => ('b => 'a)"
41 "Inv A f == %x. SOME y. y \<in> A & f y = x"
44 subsection {*Hilbert's Epsilon-operator*}
46 text{*Easier to apply than @{text someI} if the witness comes from an
48 lemma someI_ex [elim?]: "\<exists>x. P x ==> P (SOME x. P x)"
53 text{*Easier to apply than @{text someI} because the conclusion has only one
54 occurrence of @{term P}.*}
55 lemma someI2: "[| P a; !!x. P x ==> Q x |] ==> Q (SOME x. P x)"
56 by (blast intro: someI)
58 text{*Easier to apply than @{text someI2} if the witness comes from an
60 lemma someI2_ex: "[| \<exists>a. P a; !!x. P x ==> Q x |] ==> Q (SOME x. P x)"
61 by (blast intro: someI2)
63 lemma some_equality [intro]:
64 "[| P a; !!x. P x ==> x=a |] ==> (SOME x. P x) = a"
65 by (blast intro: someI2)
67 lemma some1_equality: "[| EX!x. P x; P a |] ==> (SOME x. P x) = a"
68 by (blast intro: some_equality)
70 lemma some_eq_ex: "P (SOME x. P x) = (\<exists>x. P x)"
71 by (blast intro: someI)
73 lemma some_eq_trivial [simp]: "(SOME y. y=x) = x"
74 apply (rule some_equality)
75 apply (rule refl, assumption)
78 lemma some_sym_eq_trivial [simp]: "(SOME y. x=y) = x"
79 apply (rule some_equality)
85 subsection{*Axiom of Choice, Proved Using the Description Operator*}
87 text{*Used in @{text "Tools/meson.ML"}*}
88 lemma choice: "\<forall>x. \<exists>y. Q x y ==> \<exists>f. \<forall>x. Q x (f x)"
91 lemma bchoice: "\<forall>x\<in>S. \<exists>y. Q x y ==> \<exists>f. \<forall>x\<in>S. Q x (f x)"
95 subsection {*Function Inverse*}
97 lemma inv_id [simp]: "inv id = id"
98 by (simp add: inv_def id_def)
100 text{*A one-to-one function has an inverse.*}
101 lemma inv_f_f [simp]: "inj f ==> inv f (f x) = x"
102 by (simp add: inv_def inj_eq)
104 lemma inv_f_eq: "[| inj f; f x = y |] ==> inv f y = x"
106 apply (erule inv_f_f)
109 lemma inj_imp_inv_eq: "[| inj f; \<forall>x. f(g x) = x |] ==> inv f = g"
110 by (blast intro: ext inv_f_eq)
112 text{*But is it useful?*}
114 assumes injf: "inj f" and minor: "!!y. y \<in> range(f) ==> P(inv f y)"
117 have "f x \<in> range f" by auto
118 hence "P(inv f (f x))" by (rule minor)
119 thus "P x" by (simp add: inv_f_f [OF injf])
123 lemma inj_iff: "(inj f) = (inv f o f = id)"
124 apply (simp add: o_def expand_fun_eq)
125 apply (blast intro: inj_on_inverseI inv_f_f)
128 lemma inv_o_cancel[simp]: "inj f ==> inv f o f = id"
129 by (simp add: inj_iff)
131 lemma o_inv_o_cancel[simp]: "inj f ==> g o inv f o f = g"
132 by (simp add: o_assoc[symmetric])
134 lemma inv_image_cancel[simp]:
135 "inj f ==> inv f ` f ` S = S"
136 by (simp add: image_compose[symmetric])
138 lemma inj_imp_surj_inv: "inj f ==> surj (inv f)"
139 by (blast intro: surjI inv_f_f)
141 lemma f_inv_f: "y \<in> range(f) ==> f(inv f y) = y"
142 apply (simp add: inv_def)
143 apply (fast intro: someI)
146 lemma surj_f_inv_f: "surj f ==> f(inv f y) = y"
147 by (simp add: f_inv_f surj_range)
150 assumes eq: "inv f x = inv f y"
155 have "f (inv f x) = f (inv f y)" using eq by simp
156 thus ?thesis by (simp add: f_inv_f x y)
159 lemma inj_on_inv: "A <= range(f) ==> inj_on (inv f) A"
160 by (fast intro: inj_onI elim: inv_injective injD)
162 lemma surj_imp_inj_inv: "surj f ==> inj (inv f)"
163 by (simp add: inj_on_inv surj_range)
165 lemma surj_iff: "(surj f) = (f o inv f = id)"
166 apply (simp add: o_def expand_fun_eq)
167 apply (blast intro: surjI surj_f_inv_f)
170 lemma surj_imp_inv_eq: "[| surj f; \<forall>x. g(f x) = x |] ==> inv f = g"
172 apply (drule_tac x = "inv f x" in spec)
173 apply (simp add: surj_f_inv_f)
176 lemma bij_imp_bij_inv: "bij f ==> bij (inv f)"
177 by (simp add: bij_def inj_imp_surj_inv surj_imp_inj_inv)
179 lemma inv_equality: "[| !!x. g (f x) = x; !!y. f (g y) = y |] ==> inv f = g"
181 apply (auto simp add: inv_def)
184 lemma inv_inv_eq: "bij f ==> inv (inv f) = f"
185 apply (rule inv_equality)
186 apply (auto simp add: bij_def surj_f_inv_f)
189 (** bij(inv f) implies little about f. Consider f::bool=>bool such that
190 f(True)=f(False)=True. Then it's consistent with axiom someI that
191 inv f could be any function at all, including the identity function.
192 If inv f=id then inv f is a bijection, but inj f, surj(f) and
193 inv(inv f)=f all fail.
196 lemma o_inv_distrib: "[| bij f; bij g |] ==> inv (f o g) = inv g o inv f"
197 apply (rule inv_equality)
198 apply (auto simp add: bij_def surj_f_inv_f)
202 lemma image_surj_f_inv_f: "surj f ==> f ` (inv f ` A) = A"
203 by (simp add: image_eq_UN surj_f_inv_f)
205 lemma image_inv_f_f: "inj f ==> (inv f) ` (f ` A) = A"
206 by (simp add: image_eq_UN)
208 lemma inv_image_comp: "inj f ==> inv f ` (f`X) = X"
209 by (auto simp add: image_def)
211 lemma bij_image_Collect_eq: "bij f ==> f ` Collect P = {y. P (inv f y)}"
213 apply (force simp add: bij_is_inj)
214 apply (blast intro: bij_is_surj [THEN surj_f_inv_f, symmetric])
217 lemma bij_vimage_eq_inv_image: "bij f ==> f -` A = inv f ` A"
218 apply (auto simp add: bij_is_surj [THEN surj_f_inv_f])
219 apply (blast intro: bij_is_inj [THEN inv_f_f, symmetric])
223 subsection {*Inverse of a PI-function (restricted domain)*}
225 lemma Inv_f_f: "[| inj_on f A; x \<in> A |] ==> Inv A f (f x) = x"
226 apply (simp add: Inv_def inj_on_def)
227 apply (blast intro: someI2)
230 lemma f_Inv_f: "y \<in> f`A ==> f (Inv A f y) = y"
231 apply (simp add: Inv_def)
232 apply (fast intro: someI2)
236 assumes eq: "Inv A f x = Inv A f y"
241 have "f (Inv A f x) = f (Inv A f y)" using eq by simp
242 thus ?thesis by (simp add: f_Inv_f x y)
245 lemma inj_on_Inv: "B <= f`A ==> inj_on (Inv A f) B"
247 apply (blast intro: inj_onI dest: Inv_injective injD)
250 lemma Inv_mem: "[| f ` A = B; x \<in> B |] ==> Inv A f x \<in> A"
251 apply (simp add: Inv_def)
252 apply (fast intro: someI2)
255 lemma Inv_f_eq: "[| inj_on f A; f x = y; x \<in> A |] ==> Inv A f y = x"
257 apply (erule Inv_f_f, assumption)
261 "[| inj_on f (g ` A); inj_on g A; x \<in> f ` g ` A |] ==>
262 Inv A (f o g) x = (Inv A g o Inv (g ` A) f) x"
264 apply (rule Inv_f_eq)
265 apply (fast intro: comp_inj_on)
266 apply (simp add: f_Inv_f Inv_mem)
267 apply (simp add: Inv_mem)
270 lemma bij_betw_Inv: "bij_betw f A B \<Longrightarrow> bij_betw (Inv A f) B A"
271 apply (auto simp add: bij_betw_def inj_on_Inv Inv_mem)
272 apply (simp add: image_compose [symmetric] o_def)
273 apply (simp add: image_def Inv_f_f)
276 subsection {*Other Consequences of Hilbert's Epsilon*}
278 text {*Hilbert's Epsilon and the @{term split} Operator*}
280 text{*Looping simprule*}
281 lemma split_paired_Eps: "(SOME x. P x) = (SOME (a,b). P(a,b))"
284 lemma Eps_split: "Eps (split P) = (SOME xy. P (fst xy) (snd xy))"
285 by (simp add: split_def)
287 lemma Eps_split_eq [simp]: "(@(x',y'). x = x' & y = y') = (x,y)"
291 text{*A relation is wellfounded iff it has no infinite descending chain*}
292 lemma wf_iff_no_infinite_down_chain:
293 "wf r = (~(\<exists>f. \<forall>i. (f(Suc i),f i) \<in> r))"
294 apply (simp only: wf_eq_minimal)
298 apply (erule_tac x = "{w. \<exists>i. w=f i}" in allE, blast)
299 apply (erule contrapos_np, simp, clarify)
300 apply (subgoal_tac "\<forall>n. nat_rec x (%i y. @z. z:Q & (z,y) :r) n \<in> Q")
301 apply (rule_tac x = "nat_rec x (%i y. @z. z:Q & (z,y) :r)" in exI)
302 apply (rule allI, simp)
303 apply (rule someI2_ex, blast, blast)
305 apply (induct_tac "n", simp_all)
306 apply (rule someI2_ex, blast+)
309 lemma wf_no_infinite_down_chainE:
310 assumes "wf r" obtains k where "(f (Suc k), f k) \<notin> r"
311 using `wf r` wf_iff_no_infinite_down_chain[of r] by blast
314 text{*A dynamically-scoped fact for TFL *}
315 lemma tfl_some: "\<forall>P x. P x --> P (Eps P)"
316 by (blast intro: someI)
319 subsection {* Least value operator *}
322 LeastM :: "['a => 'b::ord, 'a => bool] => 'a"
323 "LeastM m P == SOME x. P x & (\<forall>y. P y --> m x <= m y)"
326 "_LeastM" :: "[pttrn, 'a => 'b::ord, bool] => 'a" ("LEAST _ WRT _. _" [0, 4, 10] 10)
328 "LEAST x WRT m. P" == "LeastM m (%x. P)"
331 "P x ==> (!!y. P y ==> m x <= m y)
332 ==> (!!x. P x ==> \<forall>y. P y --> m x \<le> m y ==> Q x)
334 apply (simp add: LeastM_def)
335 apply (rule someI2_ex, blast, blast)
338 lemma LeastM_equality:
339 "P k ==> (!!x. P x ==> m k <= m x)
340 ==> m (LEAST x WRT m. P x) = (m k::'a::order)"
341 apply (rule LeastMI2, assumption, blast)
342 apply (blast intro!: order_antisym)
345 lemma wf_linord_ex_has_least:
346 "wf r ==> \<forall>x y. ((x,y):r^+) = ((y,x)~:r^*) ==> P k
347 ==> \<exists>x. P x & (!y. P y --> (m x,m y):r^*)"
348 apply (drule wf_trancl [THEN wf_eq_minimal [THEN iffD1]])
349 apply (drule_tac x = "m`Collect P" in spec, force)
352 lemma ex_has_least_nat:
353 "P k ==> \<exists>x. P x & (\<forall>y. P y --> m x <= (m y::nat))"
354 apply (simp only: pred_nat_trancl_eq_le [symmetric])
355 apply (rule wf_pred_nat [THEN wf_linord_ex_has_least])
356 apply (simp add: less_eq linorder_not_le pred_nat_trancl_eq_le, assumption)
359 lemma LeastM_nat_lemma:
360 "P k ==> P (LeastM m P) & (\<forall>y. P y --> m (LeastM m P) <= (m y::nat))"
361 apply (simp add: LeastM_def)
362 apply (rule someI_ex)
363 apply (erule ex_has_least_nat)
366 lemmas LeastM_natI = LeastM_nat_lemma [THEN conjunct1, standard]
368 lemma LeastM_nat_le: "P x ==> m (LeastM m P) <= (m x::nat)"
369 by (rule LeastM_nat_lemma [THEN conjunct2, THEN spec, THEN mp], assumption, assumption)
372 subsection {* Greatest value operator *}
375 GreatestM :: "['a => 'b::ord, 'a => bool] => 'a"
376 "GreatestM m P == SOME x. P x & (\<forall>y. P y --> m y <= m x)"
378 Greatest :: "('a::ord => bool) => 'a" (binder "GREATEST " 10)
379 "Greatest == GreatestM (%x. x)"
382 "_GreatestM" :: "[pttrn, 'a=>'b::ord, bool] => 'a"
383 ("GREATEST _ WRT _. _" [0, 4, 10] 10)
386 "GREATEST x WRT m. P" == "GreatestM m (%x. P)"
389 "P x ==> (!!y. P y ==> m y <= m x)
390 ==> (!!x. P x ==> \<forall>y. P y --> m y \<le> m x ==> Q x)
391 ==> Q (GreatestM m P)"
392 apply (simp add: GreatestM_def)
393 apply (rule someI2_ex, blast, blast)
396 lemma GreatestM_equality:
397 "P k ==> (!!x. P x ==> m x <= m k)
398 ==> m (GREATEST x WRT m. P x) = (m k::'a::order)"
399 apply (rule_tac m = m in GreatestMI2, assumption, blast)
400 apply (blast intro!: order_antisym)
403 lemma Greatest_equality:
404 "P (k::'a::order) ==> (!!x. P x ==> x <= k) ==> (GREATEST x. P x) = k"
405 apply (simp add: Greatest_def)
406 apply (erule GreatestM_equality, blast)
409 lemma ex_has_greatest_nat_lemma:
410 "P k ==> \<forall>x. P x --> (\<exists>y. P y & ~ ((m y::nat) <= m x))
411 ==> \<exists>y. P y & ~ (m y < m k + n)"
412 apply (induct n, force)
413 apply (force simp add: le_Suc_eq)
416 lemma ex_has_greatest_nat:
417 "P k ==> \<forall>y. P y --> m y < b
418 ==> \<exists>x. P x & (\<forall>y. P y --> (m y::nat) <= m x)"
420 apply (cut_tac P = P and n = "b - m k" in ex_has_greatest_nat_lemma)
421 apply (subgoal_tac [3] "m k <= b", auto)
424 lemma GreatestM_nat_lemma:
425 "P k ==> \<forall>y. P y --> m y < b
426 ==> P (GreatestM m P) & (\<forall>y. P y --> (m y::nat) <= m (GreatestM m P))"
427 apply (simp add: GreatestM_def)
428 apply (rule someI_ex)
429 apply (erule ex_has_greatest_nat, assumption)
432 lemmas GreatestM_natI = GreatestM_nat_lemma [THEN conjunct1, standard]
434 lemma GreatestM_nat_le:
435 "P x ==> \<forall>y. P y --> m y < b
436 ==> (m x::nat) <= m (GreatestM m P)"
437 apply (blast dest: GreatestM_nat_lemma [THEN conjunct2, THEN spec, of P])
441 text {* \medskip Specialization to @{text GREATEST}. *}
443 lemma GreatestI: "P (k::nat) ==> \<forall>y. P y --> y < b ==> P (GREATEST x. P x)"
444 apply (simp add: Greatest_def)
445 apply (rule GreatestM_natI, auto)
449 "P x ==> \<forall>y. P y --> y < b ==> (x::nat) <= (GREATEST x. P x)"
450 apply (simp add: Greatest_def)
451 apply (rule GreatestM_nat_le, auto)
455 subsection {* The Meson proof procedure *}
457 subsubsection {* Negation Normal Form *}
459 text {* de Morgan laws *}
461 lemma meson_not_conjD: "~(P&Q) ==> ~P | ~Q"
462 and meson_not_disjD: "~(P|Q) ==> ~P & ~Q"
463 and meson_not_notD: "~~P ==> P"
464 and meson_not_allD: "!!P. ~(\<forall>x. P(x)) ==> \<exists>x. ~P(x)"
465 and meson_not_exD: "!!P. ~(\<exists>x. P(x)) ==> \<forall>x. ~P(x)"
468 text {* Removal of @{text "-->"} and @{text "<->"} (positive and
469 negative occurrences) *}
471 lemma meson_imp_to_disjD: "P-->Q ==> ~P | Q"
472 and meson_not_impD: "~(P-->Q) ==> P & ~Q"
473 and meson_iff_to_disjD: "P=Q ==> (~P | Q) & (~Q | P)"
474 and meson_not_iffD: "~(P=Q) ==> (P | Q) & (~P | ~Q)"
475 -- {* Much more efficient than @{prop "(P & ~Q) | (Q & ~P)"} for computing CNF *}
476 and meson_not_refl_disj_D: "x ~= x | P ==> P"
480 subsubsection {* Pulling out the existential quantifiers *}
482 text {* Conjunction *}
484 lemma meson_conj_exD1: "!!P Q. (\<exists>x. P(x)) & Q ==> \<exists>x. P(x) & Q"
485 and meson_conj_exD2: "!!P Q. P & (\<exists>x. Q(x)) ==> \<exists>x. P & Q(x)"
489 text {* Disjunction *}
491 lemma meson_disj_exD: "!!P Q. (\<exists>x. P(x)) | (\<exists>x. Q(x)) ==> \<exists>x. P(x) | Q(x)"
492 -- {* DO NOT USE with forall-Skolemization: makes fewer schematic variables!! *}
493 -- {* With ex-Skolemization, makes fewer Skolem constants *}
494 and meson_disj_exD1: "!!P Q. (\<exists>x. P(x)) | Q ==> \<exists>x. P(x) | Q"
495 and meson_disj_exD2: "!!P Q. P | (\<exists>x. Q(x)) ==> \<exists>x. P | Q(x)"
499 subsubsection {* Generating clauses for the Meson Proof Procedure *}
501 text {* Disjunctions *}
503 lemma meson_disj_assoc: "(P|Q)|R ==> P|(Q|R)"
504 and meson_disj_comm: "P|Q ==> Q|P"
505 and meson_disj_FalseD1: "False|P ==> P"
506 and meson_disj_FalseD2: "P|False ==> P"
510 subsection{*Lemmas for Meson, the Model Elimination Procedure*}
512 text{* Generation of contrapositives *}
514 text{*Inserts negated disjunct after removing the negation; P is a literal.
515 Model elimination requires assuming the negation of every attempted subgoal,
516 hence the negated disjuncts.*}
517 lemma make_neg_rule: "~P|Q ==> ((~P==>P) ==> Q)"
520 text{*Version for Plaisted's "Postive refinement" of the Meson procedure*}
521 lemma make_refined_neg_rule: "~P|Q ==> (P ==> Q)"
524 text{*@{term P} should be a literal*}
525 lemma make_pos_rule: "P|Q ==> ((P==>~P) ==> Q)"
528 text{*Versions of @{text make_neg_rule} and @{text make_pos_rule} that don't
529 insert new assumptions, for ordinary resolution.*}
531 lemmas make_neg_rule' = make_refined_neg_rule
533 lemma make_pos_rule': "[|P|Q; ~P|] ==> Q"
536 text{* Generation of a goal clause -- put away the final literal *}
538 lemma make_neg_goal: "~P ==> ((~P==>P) ==> False)"
541 lemma make_pos_goal: "P ==> ((P==>~P) ==> False)"
545 subsubsection{* Lemmas for Forward Proof*}
547 text{*There is a similarity to congruence rules*}
549 (*NOTE: could handle conjunctions (faster?) by
550 nf(th RS conjunct2) RS (nf(th RS conjunct1) RS conjI) *)
551 lemma conj_forward: "[| P'&Q'; P' ==> P; Q' ==> Q |] ==> P&Q"
554 lemma disj_forward: "[| P'|Q'; P' ==> P; Q' ==> Q |] ==> P|Q"
557 (*Version of @{text disj_forward} for removal of duplicate literals*)
559 "[| P'|Q'; P' ==> P; [| Q'; P==>False |] ==> Q |] ==> P|Q"
563 lemma all_forward: "[| \<forall>x. P'(x); !!x. P'(x) ==> P(x) |] ==> \<forall>x. P(x)"
566 lemma ex_forward: "[| \<exists>x. P'(x); !!x. P'(x) ==> P(x) |] ==> \<exists>x. P(x)"
570 text{*Many of these bindings are used by the ATP linkup, and not just by
571 legacy proof scripts.*}
574 val inv_def = thm "inv_def";
575 val Inv_def = thm "Inv_def";
577 val someI = thm "someI";
578 val someI_ex = thm "someI_ex";
579 val someI2 = thm "someI2";
580 val someI2_ex = thm "someI2_ex";
581 val some_equality = thm "some_equality";
582 val some1_equality = thm "some1_equality";
583 val some_eq_ex = thm "some_eq_ex";
584 val some_eq_trivial = thm "some_eq_trivial";
585 val some_sym_eq_trivial = thm "some_sym_eq_trivial";
586 val choice = thm "choice";
587 val bchoice = thm "bchoice";
588 val inv_id = thm "inv_id";
589 val inv_f_f = thm "inv_f_f";
590 val inv_f_eq = thm "inv_f_eq";
591 val inj_imp_inv_eq = thm "inj_imp_inv_eq";
592 val inj_transfer = thm "inj_transfer";
593 val inj_iff = thm "inj_iff";
594 val inj_imp_surj_inv = thm "inj_imp_surj_inv";
595 val f_inv_f = thm "f_inv_f";
596 val surj_f_inv_f = thm "surj_f_inv_f";
597 val inv_injective = thm "inv_injective";
598 val inj_on_inv = thm "inj_on_inv";
599 val surj_imp_inj_inv = thm "surj_imp_inj_inv";
600 val surj_iff = thm "surj_iff";
601 val surj_imp_inv_eq = thm "surj_imp_inv_eq";
602 val bij_imp_bij_inv = thm "bij_imp_bij_inv";
603 val inv_equality = thm "inv_equality";
604 val inv_inv_eq = thm "inv_inv_eq";
605 val o_inv_distrib = thm "o_inv_distrib";
606 val image_surj_f_inv_f = thm "image_surj_f_inv_f";
607 val image_inv_f_f = thm "image_inv_f_f";
608 val inv_image_comp = thm "inv_image_comp";
609 val bij_image_Collect_eq = thm "bij_image_Collect_eq";
610 val bij_vimage_eq_inv_image = thm "bij_vimage_eq_inv_image";
611 val Inv_f_f = thm "Inv_f_f";
612 val f_Inv_f = thm "f_Inv_f";
613 val Inv_injective = thm "Inv_injective";
614 val inj_on_Inv = thm "inj_on_Inv";
615 val split_paired_Eps = thm "split_paired_Eps";
616 val Eps_split = thm "Eps_split";
617 val Eps_split_eq = thm "Eps_split_eq";
618 val wf_iff_no_infinite_down_chain = thm "wf_iff_no_infinite_down_chain";
619 val Inv_mem = thm "Inv_mem";
620 val Inv_f_eq = thm "Inv_f_eq";
621 val Inv_comp = thm "Inv_comp";
622 val tfl_some = thm "tfl_some";
623 val make_neg_rule = thm "make_neg_rule";
624 val make_refined_neg_rule = thm "make_refined_neg_rule";
625 val make_pos_rule = thm "make_pos_rule";
626 val make_neg_rule' = thm "make_neg_rule'";
627 val make_pos_rule' = thm "make_pos_rule'";
628 val make_neg_goal = thm "make_neg_goal";
629 val make_pos_goal = thm "make_pos_goal";
630 val conj_forward = thm "conj_forward";
631 val disj_forward = thm "disj_forward";
632 val disj_forward2 = thm "disj_forward2";
633 val all_forward = thm "all_forward";
634 val ex_forward = thm "ex_forward";
638 subsection {* Meson package *}
645 subsection {* Specification package -- Hilbertized version *}
647 lemma exE_some: "[| Ex P ; c == Eps P |] ==> P c"
648 by (simp only: someI_ex)
650 use "Tools/specification_package.ML"