1 (* Author : Jacques D. Fleuriot
2 Copyright : 2001 University of Edinburgh
3 Conversion to Isar and new proofs by Lawrence C Paulson, 2004
6 header{*MacLaurin Series*}
12 subsection{*Maclaurin's Theorem with Lagrange Form of Remainder*}
14 text{*This is a very long, messy proof even now that it's been broken down
17 lemma Maclaurin_lemma:
19 \<exists>B. f h = (\<Sum>m=0..<n. (j m / real (fact m)) * (h^m)) +
20 (B * ((h^n) / real(fact n)))"
21 apply (rule_tac x = "(f h - (\<Sum>m=0..<n. (j m / real (fact m)) * h^m)) *
27 lemma eq_diff_eq': "(x = y - z) = (y = x + (z::real))"
30 text{*A crude tactic to differentiate by proof.*}
33 DERIV_ident DERIV_const DERIV_cos DERIV_cmult
34 DERIV_sin DERIV_exp DERIV_inverse DERIV_pow
35 DERIV_add DERIV_diff DERIV_mult DERIV_minus
36 DERIV_inverse_fun DERIV_quotient DERIV_fun_pow
37 DERIV_fun_exp DERIV_fun_sin DERIV_fun_cos
38 DERIV_ident DERIV_const DERIV_cos
44 fun get_fun_name (_ $ (Const ("Lim.deriv",_) $ Abs(_,_, Const (f,_) $ _) $ _ $ _)) = f
45 | get_fun_name (_ $ (_ $ (Const ("Lim.deriv",_) $ Abs(_,_, Const (f,_) $ _) $ _ $ _))) = f
46 | get_fun_name _ = raise DERIV_name;
50 fun deriv_tac ctxt = SUBGOAL (fn (prem, i) =>
51 resolve_tac @{thms deriv_rulesI} i ORELSE
52 ((rtac (read_instantiate ctxt [(("f", 0), get_fun_name prem)]
53 @{thm DERIV_chain2}) i) handle DERIV_name => no_tac));
55 fun DERIV_tac ctxt = ALLGOALS (fn i => REPEAT (deriv_tac ctxt i));
60 lemma Maclaurin_lemma2:
61 assumes diff: "\<forall>m t. m < n \<and> 0\<le>t \<and> t\<le>h \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t"
62 assumes n: "n = Suc k"
64 (\<lambda>m t. diff m t -
65 ((\<Sum>p = 0..<n - m. diff (m + p) 0 / real (fact p) * t ^ p) +
66 B * (t ^ (n - m) / real (fact (n - m)))))"
68 "\<forall>m t. m < n & 0 \<le> t & t \<le> h --> DERIV (difg m) t :> difg (Suc m) t"
71 apply (rule DERIV_diff)
72 apply (simp add: diff)
74 apply (rule DERIV_add)
75 apply (rule_tac [2] DERIV_cmult)
76 apply (rule_tac [2] lemma_DERIV_subst)
77 apply (rule_tac [2] DERIV_quotient)
78 apply (rule_tac [3] DERIV_const)
79 apply (rule_tac [2] DERIV_pow)
80 prefer 3 apply (simp add: fact_diff_Suc)
82 apply (frule less_iff_Suc_add [THEN iffD1], clarify)
83 apply (simp del: setsum_op_ivl_Suc)
84 apply (insert sumr_offset4 [of "Suc 0"])
85 apply (simp del: setsum_op_ivl_Suc fact_Suc power_Suc)
86 apply (rule lemma_DERIV_subst)
87 apply (rule DERIV_add)
88 apply (rule_tac [2] DERIV_const)
89 apply (rule DERIV_sumr, clarify)
91 apply (simp (no_asm) add: divide_inverse mult_assoc del: fact_Suc power_Suc)
92 apply (rule DERIV_cmult)
93 apply (rule lemma_DERIV_subst)
94 apply (best intro: DERIV_chain2 intro!: DERIV_intros)
95 apply (subst fact_Suc)
96 apply (subst real_of_nat_mult)
97 apply (simp add: mult_ac)
104 assumes diff_0: "diff 0 = f"
106 "\<forall>m t. m < n & 0 \<le> t & t \<le> h --> DERIV (diff m) t :> diff (Suc m) t"
108 "\<exists>t. 0 < t & t < h &
110 setsum (%m. (diff m 0 / real (fact m)) * h ^ m) {0..<n} +
111 (diff n t / real (fact n)) * h ^ n"
113 from n obtain m where m: "n = Suc m"
114 by (cases n, simp add: n)
116 obtain B where f_h: "f h =
117 (\<Sum>m = 0..<n. diff m (0\<Colon>real) / real (fact m) * h ^ m) +
118 B * (h ^ n / real (fact n))"
119 using Maclaurin_lemma [OF h] ..
121 obtain g where g_def: "g = (%t. f t -
122 (setsum (%m. (diff m 0 / real(fact m)) * t^m) {0..<n}
123 + (B * (t^n / real(fact n)))))" by blast
125 have g2: "g 0 = 0 & g h = 0"
126 apply (simp add: m f_h g_def del: setsum_op_ivl_Suc)
127 apply (cut_tac n = m and k = "Suc 0" in sumr_offset2)
128 apply (simp add: eq_diff_eq' diff_0 del: setsum_op_ivl_Suc)
131 obtain difg where difg_def: "difg = (%m t. diff m t -
132 (setsum (%p. (diff (m + p) 0 / real (fact p)) * (t ^ p)) {0..<n-m}
133 + (B * ((t ^ (n - m)) / real (fact (n - m))))))" by blast
135 have difg_0: "difg 0 = g"
136 unfolding difg_def g_def by (simp add: diff_0)
138 have difg_Suc: "\<forall>(m\<Colon>nat) t\<Colon>real.
139 m < n \<and> (0\<Colon>real) \<le> t \<and> t \<le> h \<longrightarrow> DERIV (difg m) t :> difg (Suc m) t"
140 using diff_Suc m difg_def by (rule Maclaurin_lemma2)
142 have difg_eq_0: "\<forall>m. m < n --> difg m 0 = 0"
144 apply (simp add: m difg_def)
145 apply (frule less_iff_Suc_add [THEN iffD1], clarify)
146 apply (simp del: setsum_op_ivl_Suc)
147 apply (insert sumr_offset4 [of "Suc 0"])
148 apply (simp del: setsum_op_ivl_Suc fact_Suc)
151 have isCont_difg: "\<And>m x. \<lbrakk>m < n; 0 \<le> x; x \<le> h\<rbrakk> \<Longrightarrow> isCont (difg m) x"
152 by (rule DERIV_isCont [OF difg_Suc [rule_format]]) simp
154 have differentiable_difg:
155 "\<And>m x. \<lbrakk>m < n; 0 \<le> x; x \<le> h\<rbrakk> \<Longrightarrow> difg m differentiable x"
156 by (rule differentiableI [OF difg_Suc [rule_format]]) simp
158 have difg_Suc_eq_0: "\<And>m t. \<lbrakk>m < n; 0 \<le> t; t \<le> h; DERIV (difg m) t :> 0\<rbrakk>
159 \<Longrightarrow> difg (Suc m) t = 0"
160 by (rule DERIV_unique [OF difg_Suc [rule_format]]) simp
162 have "m < n" using m by simp
164 have "\<exists>t. 0 < t \<and> t < h \<and> DERIV (difg m) t :> 0"
171 show "difg 0 0 = difg 0 h" by (simp add: difg_0 g2)
172 show "\<forall>x. 0 \<le> x \<and> x \<le> h \<longrightarrow> isCont (difg (0\<Colon>nat)) x"
173 by (simp add: isCont_difg n)
174 show "\<forall>x. 0 < x \<and> x < h \<longrightarrow> difg (0\<Colon>nat) differentiable x"
175 by (simp add: differentiable_difg n)
179 hence "\<exists>t. 0 < t \<and> t < h \<and> DERIV (difg m') t :> 0" by simp
180 then obtain t where t: "0 < t" "t < h" "DERIV (difg m') t :> 0" by fast
181 have "\<exists>t'. 0 < t' \<and> t' < t \<and> DERIV (difg (Suc m')) t' :> 0"
184 show "difg (Suc m') 0 = difg (Suc m') t"
185 using t `Suc m' < n` by (simp add: difg_Suc_eq_0 difg_eq_0)
186 show "\<forall>x. 0 \<le> x \<and> x \<le> t \<longrightarrow> isCont (difg (Suc m')) x"
187 using `t < h` `Suc m' < n` by (simp add: isCont_difg)
188 show "\<forall>x. 0 < x \<and> x < t \<longrightarrow> difg (Suc m') differentiable x"
189 using `t < h` `Suc m' < n` by (simp add: differentiable_difg)
192 using `t < h` by auto
195 then obtain t where "0 < t" "t < h" "DERIV (difg m) t :> 0" by fast
197 hence "difg (Suc m) t = 0"
198 using `m < n` by (simp add: difg_Suc_eq_0)
201 proof (intro exI conjI)
205 (\<Sum>m = 0..<n. diff m 0 / real (fact m) * h ^ m) +
206 diff n t / real (fact n) * h ^ n"
207 using `difg (Suc m) t = 0`
208 by (simp add: m f_h difg_def del: fact_Suc)
213 lemma Maclaurin_objl:
214 "0 < h & n>0 & diff 0 = f &
215 (\<forall>m t. m < n & 0 \<le> t & t \<le> h --> DERIV (diff m) t :> diff (Suc m) t)
216 --> (\<exists>t. 0 < t & t < h &
217 f h = (\<Sum>m=0..<n. diff m 0 / real (fact m) * h ^ m) +
218 diff n t / real (fact n) * h ^ n)"
219 by (blast intro: Maclaurin)
223 "[| 0 < h; diff 0 = f;
225 m < n & 0 \<le> t & t \<le> h --> DERIV (diff m) t :> diff (Suc m) t |]
226 ==> \<exists>t. 0 < t &
229 (\<Sum>m=0..<n. diff m 0 / real (fact m) * h ^ m) +
230 diff n t / real (fact n) * h ^ n"
231 apply (case_tac "n", auto)
232 apply (drule Maclaurin, auto)
235 lemma Maclaurin2_objl:
236 "0 < h & diff 0 = f &
238 m < n & 0 \<le> t & t \<le> h --> DERIV (diff m) t :> diff (Suc m) t)
239 --> (\<exists>t. 0 < t &
242 (\<Sum>m=0..<n. diff m 0 / real (fact m) * h ^ m) +
243 diff n t / real (fact n) * h ^ n)"
244 by (blast intro: Maclaurin2)
246 lemma Maclaurin_minus:
247 "[| h < 0; n > 0; diff 0 = f;
248 \<forall>m t. m < n & h \<le> t & t \<le> 0 --> DERIV (diff m) t :> diff (Suc m) t |]
249 ==> \<exists>t. h < t &
252 (\<Sum>m=0..<n. diff m 0 / real (fact m) * h ^ m) +
253 diff n t / real (fact n) * h ^ n"
254 apply (cut_tac f = "%x. f (-x)"
255 and diff = "%n x. (-1 ^ n) * diff n (-x)"
256 and h = "-h" and n = n in Maclaurin_objl)
259 apply (subst minus_mult_right)
260 apply (rule DERIV_cmult)
261 apply (rule lemma_DERIV_subst)
262 apply (rule DERIV_chain2 [where g=uminus])
263 apply (rule_tac [2] DERIV_minus, rule_tac [2] DERIV_ident)
266 apply (rule_tac x = "-t" in exI, auto)
267 apply (subgoal_tac "(\<Sum>m = 0..<n. -1 ^ m * diff m 0 * (-h)^m / real(fact m)) =
268 (\<Sum>m = 0..<n. diff m 0 * h ^ m / real(fact m))")
269 apply (rule_tac [2] setsum_cong[OF refl])
270 apply (auto simp add: divide_inverse power_mult_distrib [symmetric])
273 lemma Maclaurin_minus_objl:
274 "(h < 0 & n > 0 & diff 0 = f &
276 m < n & h \<le> t & t \<le> 0 --> DERIV (diff m) t :> diff (Suc m) t))
277 --> (\<exists>t. h < t &
280 (\<Sum>m=0..<n. diff m 0 / real (fact m) * h ^ m) +
281 diff n t / real (fact n) * h ^ n)"
282 by (blast intro: Maclaurin_minus)
285 subsection{*More Convenient "Bidirectional" Version.*}
287 (* not good for PVS sin_approx, cos_approx *)
289 lemma Maclaurin_bi_le_lemma [rule_format]:
290 "n>0 \<longrightarrow>
292 (\<Sum>m = 0..<n. diff m 0 * 0 ^ m / real (fact m)) +
293 diff n 0 * 0 ^ n / real (fact n)"
294 by (induct "n", auto)
296 lemma Maclaurin_bi_le:
298 \<forall>m t. m < n & abs t \<le> abs x --> DERIV (diff m) t :> diff (Suc m) t |]
299 ==> \<exists>t. abs t \<le> abs x &
301 (\<Sum>m=0..<n. diff m 0 / real (fact m) * x ^ m) +
302 diff n t / real (fact n) * x ^ n"
303 apply (case_tac "n = 0", force)
304 apply (case_tac "x = 0")
305 apply (rule_tac x = 0 in exI)
306 apply (force simp add: Maclaurin_bi_le_lemma)
307 apply (cut_tac x = x and y = 0 in linorder_less_linear, auto)
308 txt{*Case 1, where @{term "x < 0"}*}
309 apply (cut_tac f = "diff 0" and diff = diff and h = x and n = n in Maclaurin_minus_objl, safe)
310 apply (simp add: abs_if)
311 apply (rule_tac x = t in exI)
312 apply (simp add: abs_if)
313 txt{*Case 2, where @{term "0 < x"}*}
314 apply (cut_tac f = "diff 0" and diff = diff and h = x and n = n in Maclaurin_objl, safe)
315 apply (simp add: abs_if)
316 apply (rule_tac x = t in exI)
317 apply (simp add: abs_if)
320 lemma Maclaurin_all_lt:
322 \<forall>m x. DERIV (diff m) x :> diff(Suc m) x;
324 |] ==> \<exists>t. 0 < abs t & abs t < abs x &
325 f x = (\<Sum>m=0..<n. (diff m 0 / real (fact m)) * x ^ m) +
326 (diff n t / real (fact n)) * x ^ n"
327 apply (rule_tac x = x and y = 0 in linorder_cases)
329 apply (drule_tac [2] diff=diff in Maclaurin)
330 apply (drule_tac diff=diff in Maclaurin_minus, simp_all, safe)
331 apply (rule_tac [!] x = t in exI, auto)
334 lemma Maclaurin_all_lt_objl:
336 (\<forall>m x. DERIV (diff m) x :> diff(Suc m) x) &
338 --> (\<exists>t. 0 < abs t & abs t < abs x &
339 f x = (\<Sum>m=0..<n. (diff m 0 / real (fact m)) * x ^ m) +
340 (diff n t / real (fact n)) * x ^ n)"
341 by (blast intro: Maclaurin_all_lt)
343 lemma Maclaurin_zero [rule_format]:
346 (\<Sum>m=0..<n. (diff m (0::real) / real (fact m)) * x ^ m) =
350 lemma Maclaurin_all_le: "[| diff 0 = f;
351 \<forall>m x. DERIV (diff m) x :> diff (Suc m) x
352 |] ==> \<exists>t. abs t \<le> abs x &
353 f x = (\<Sum>m=0..<n. (diff m 0 / real (fact m)) * x ^ m) +
354 (diff n t / real (fact n)) * x ^ n"
357 apply (case_tac "x = 0")
358 apply (frule_tac diff = diff and n = n in Maclaurin_zero, assumption)
359 apply (drule not0_implies_Suc)
360 apply (rule_tac x = 0 in exI, force)
361 apply (frule_tac diff = diff and n = n in Maclaurin_all_lt, auto)
362 apply (rule_tac x = t in exI, auto)
365 lemma Maclaurin_all_le_objl: "diff 0 = f &
366 (\<forall>m x. DERIV (diff m) x :> diff (Suc m) x)
367 --> (\<exists>t. abs t \<le> abs x &
368 f x = (\<Sum>m=0..<n. (diff m 0 / real (fact m)) * x ^ m) +
369 (diff n t / real (fact n)) * x ^ n)"
370 by (blast intro: Maclaurin_all_le)
373 subsection{*Version for Exponential Function*}
375 lemma Maclaurin_exp_lt: "[| x ~= 0; n > 0 |]
376 ==> (\<exists>t. 0 < abs t &
378 exp x = (\<Sum>m=0..<n. (x ^ m) / real (fact m)) +
379 (exp t / real (fact n)) * x ^ n)"
380 by (cut_tac diff = "%n. exp" and f = exp and x = x and n = n in Maclaurin_all_lt_objl, auto)
383 lemma Maclaurin_exp_le:
384 "\<exists>t. abs t \<le> abs x &
385 exp x = (\<Sum>m=0..<n. (x ^ m) / real (fact m)) +
386 (exp t / real (fact n)) * x ^ n"
387 by (cut_tac diff = "%n. exp" and f = exp and x = x and n = n in Maclaurin_all_le_objl, auto)
390 subsection{*Version for Sine Function*}
392 lemma mod_exhaust_less_4:
393 "m mod 4 = 0 | m mod 4 = 1 | m mod 4 = 2 | m mod 4 = (3::nat)"
396 lemma Suc_Suc_mult_two_diff_two [rule_format, simp]:
397 "n\<noteq>0 --> Suc (Suc (2 * n - 2)) = 2*n"
398 by (induct "n", auto)
400 lemma lemma_Suc_Suc_4n_diff_2 [rule_format, simp]:
401 "n\<noteq>0 --> Suc (Suc (4*n - 2)) = 4*n"
402 by (induct "n", auto)
404 lemma Suc_mult_two_diff_one [rule_format, simp]:
405 "n\<noteq>0 --> Suc (2 * n - 1) = 2*n"
406 by (induct "n", auto)
409 text{*It is unclear why so many variant results are needed.*}
411 lemma Maclaurin_sin_expansion2:
412 "\<exists>t. abs t \<le> abs x &
414 (\<Sum>m=0..<n. (if even m then 0
415 else (-1 ^ ((m - Suc 0) div 2)) / real (fact m)) *
417 + ((sin(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)"
418 apply (cut_tac f = sin and n = n and x = x
419 and diff = "%n x. sin (x + 1/2*real n * pi)" in Maclaurin_all_lt_objl)
421 apply (simp (no_asm))
422 apply (simp (no_asm))
423 apply (case_tac "n", clarify, simp, simp add: lemma_STAR_sin)
424 apply (rule ccontr, simp)
425 apply (drule_tac x = x in spec, simp)
427 apply (rule_tac x = t in exI, simp)
428 apply (rule setsum_cong[OF refl])
429 apply (auto simp add: sin_zero_iff odd_Suc_mult_two_ex)
432 lemma Maclaurin_sin_expansion:
434 (\<Sum>m=0..<n. (if even m then 0
435 else (-1 ^ ((m - Suc 0) div 2)) / real (fact m)) *
437 + ((sin(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)"
438 apply (insert Maclaurin_sin_expansion2 [of x n])
439 apply (blast intro: elim:);
443 lemma Maclaurin_sin_expansion3:
444 "[| n > 0; 0 < x |] ==>
445 \<exists>t. 0 < t & t < x &
447 (\<Sum>m=0..<n. (if even m then 0
448 else (-1 ^ ((m - Suc 0) div 2)) / real (fact m)) *
450 + ((sin(t + 1/2 * real(n) *pi) / real (fact n)) * x ^ n)"
451 apply (cut_tac f = sin and n = n and h = x and diff = "%n x. sin (x + 1/2*real (n) *pi)" in Maclaurin_objl)
454 apply (simp (no_asm))
456 apply (rule_tac x = t in exI, simp)
457 apply (rule setsum_cong[OF refl])
458 apply (auto simp add: sin_zero_iff odd_Suc_mult_two_ex)
461 lemma Maclaurin_sin_expansion4:
463 \<exists>t. 0 < t & t \<le> x &
465 (\<Sum>m=0..<n. (if even m then 0
466 else (-1 ^ ((m - Suc 0) div 2)) / real (fact m)) *
468 + ((sin(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)"
469 apply (cut_tac f = sin and n = n and h = x and diff = "%n x. sin (x + 1/2*real (n) *pi)" in Maclaurin2_objl)
472 apply (simp (no_asm))
474 apply (rule_tac x = t in exI, simp)
475 apply (rule setsum_cong[OF refl])
476 apply (auto simp add: sin_zero_iff odd_Suc_mult_two_ex)
480 subsection{*Maclaurin Expansion for Cosine Function*}
482 lemma sumr_cos_zero_one [simp]:
483 "(\<Sum>m=0..<(Suc n).
484 (if even m then -1 ^ (m div 2)/(real (fact m)) else 0) * 0 ^ m) = 1"
485 by (induct "n", auto)
487 lemma Maclaurin_cos_expansion:
488 "\<exists>t. abs t \<le> abs x &
490 (\<Sum>m=0..<n. (if even m
491 then -1 ^ (m div 2)/(real (fact m))
494 + ((cos(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)"
495 apply (cut_tac f = cos and n = n and x = x and diff = "%n x. cos (x + 1/2*real (n) *pi)" in Maclaurin_all_lt_objl)
497 apply (simp (no_asm))
498 apply (simp (no_asm))
499 apply (case_tac "n", simp)
500 apply (simp del: setsum_op_ivl_Suc)
501 apply (rule ccontr, simp)
502 apply (drule_tac x = x in spec, simp)
504 apply (rule_tac x = t in exI, simp)
505 apply (rule setsum_cong[OF refl])
506 apply (auto simp add: cos_zero_iff even_mult_two_ex)
509 lemma Maclaurin_cos_expansion2:
510 "[| 0 < x; n > 0 |] ==>
511 \<exists>t. 0 < t & t < x &
513 (\<Sum>m=0..<n. (if even m
514 then -1 ^ (m div 2)/(real (fact m))
517 + ((cos(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)"
518 apply (cut_tac f = cos and n = n and h = x and diff = "%n x. cos (x + 1/2*real (n) *pi)" in Maclaurin_objl)
521 apply (simp (no_asm))
523 apply (rule_tac x = t in exI, simp)
524 apply (rule setsum_cong[OF refl])
525 apply (auto simp add: cos_zero_iff even_mult_two_ex)
528 lemma Maclaurin_minus_cos_expansion:
529 "[| x < 0; n > 0 |] ==>
530 \<exists>t. x < t & t < 0 &
532 (\<Sum>m=0..<n. (if even m
533 then -1 ^ (m div 2)/(real (fact m))
536 + ((cos(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)"
537 apply (cut_tac f = cos and n = n and h = x and diff = "%n x. cos (x + 1/2*real (n) *pi)" in Maclaurin_minus_objl)
540 apply (simp (no_asm))
542 apply (rule_tac x = t in exI, simp)
543 apply (rule setsum_cong[OF refl])
544 apply (auto simp add: cos_zero_iff even_mult_two_ex)
547 (* ------------------------------------------------------------------------- *)
548 (* Version for ln(1 +/- x). Where is it?? *)
549 (* ------------------------------------------------------------------------- *)
551 lemma sin_bound_lemma:
552 "[|x = y; abs u \<le> (v::real) |] ==> \<bar>(x + u) - y\<bar> \<le> v"
555 text {* TODO: move to Parity.thy *}
556 lemma nat_odd_1 [simp]: "odd (1::nat)"
557 unfolding even_nat_def by simp
559 lemma Maclaurin_sin_bound:
560 "abs(sin x - (\<Sum>m=0..<n. (if even m then 0 else (-1 ^ ((m - Suc 0) div 2)) / real (fact m)) *
561 x ^ m)) \<le> inverse(real (fact n)) * \<bar>x\<bar> ^ n"
563 have "!! x (y::real). x \<le> 1 \<Longrightarrow> 0 \<le> y \<Longrightarrow> x * y \<le> 1 * y"
564 by (rule_tac mult_right_mono,simp_all)
565 note est = this[simplified]
566 let ?diff = "\<lambda>(n::nat) x. if n mod 4 = 0 then sin(x) else if n mod 4 = 1 then cos(x) else if n mod 4 = 2 then -sin(x) else -cos(x)"
567 have diff_0: "?diff 0 = sin" by simp
568 have DERIV_diff: "\<forall>m x. DERIV (?diff m) x :> ?diff (Suc m) x"
570 apply (subst (1 2 3) mod_Suc_eq_Suc_mod)
571 apply (cut_tac m=m in mod_exhaust_less_4)
572 apply (safe, simp_all)
573 apply (rule DERIV_minus, simp)
574 apply (rule lemma_DERIV_subst, rule DERIV_minus, rule DERIV_cos, simp)
576 from Maclaurin_all_le [OF diff_0 DERIV_diff]
577 obtain t where t1: "\<bar>t\<bar> \<le> \<bar>x\<bar>" and
578 t2: "sin x = (\<Sum>m = 0..<n. ?diff m 0 / real (fact m) * x ^ m) +
579 ?diff n t / real (fact n) * x ^ n" by fast
581 "\<And>m. ?diff m 0 = (if even m then 0
582 else -1 ^ ((m - Suc 0) div 2))"
583 apply (subst even_even_mod_4_iff)
584 apply (cut_tac m=m in mod_exhaust_less_4)
585 apply (elim disjE, simp_all)
586 apply (safe dest!: mod_eqD, simp_all)
590 apply (rule sin_bound_lemma)
591 apply (rule setsum_cong[OF refl])
592 apply (subst diff_m_0, simp)
593 apply (auto intro: mult_right_mono [where b=1, simplified] mult_right_mono
594 simp add: est mult_nonneg_nonneg mult_ac divide_inverse
595 power_abs [symmetric] abs_mult)