1 (* Title: HOL/Library/Parity.thy
2 Author: Jeremy Avigad, Jacques D. Fleuriot
5 header {* Even and Odd for int and nat *}
8 imports Plain Presburger Main
12 fixes even :: "'a \<Rightarrow> bool"
15 odd :: "'a\<Colon>even_odd \<Rightarrow> bool" where
16 "odd x \<equiv> \<not> even x"
18 instantiation nat and int :: even_odd
22 even_def [presburger]: "even x \<longleftrightarrow> (x\<Colon>int) mod 2 = 0"
25 even_nat_def [presburger]: "even x \<longleftrightarrow> even (int x)"
32 subsection {* Even and odd are mutually exclusive *}
34 lemma int_pos_lt_two_imp_zero_or_one:
35 "0 <= x ==> (x::int) < 2 ==> x = 0 | x = 1"
38 lemma neq_one_mod_two [simp, presburger]:
39 "((x::int) mod 2 ~= 0) = (x mod 2 = 1)" by presburger
42 subsection {* Behavior under integer arithmetic operations *}
43 declare dvd_def[algebra]
44 lemma nat_even_iff_2_dvd[algebra]: "even (x::nat) \<longleftrightarrow> 2 dvd x"
45 by (presburger add: even_nat_def even_def)
46 lemma int_even_iff_2_dvd[algebra]: "even (x::int) \<longleftrightarrow> 2 dvd x"
49 lemma even_times_anything: "even (x::int) ==> even (x * y)"
52 lemma anything_times_even: "even (y::int) ==> even (x * y)" by algebra
54 lemma odd_times_odd: "odd (x::int) ==> odd y ==> odd (x * y)"
55 by (simp add: even_def zmod_zmult1_eq)
57 lemma even_product[presburger]: "even((x::int) * y) = (even x | even y)"
58 apply (auto simp add: even_times_anything anything_times_even)
60 apply (auto simp add: odd_times_odd)
63 lemma even_plus_even: "even (x::int) ==> even y ==> even (x + y)"
66 lemma even_plus_odd: "even (x::int) ==> odd y ==> odd (x + y)"
69 lemma odd_plus_even: "odd (x::int) ==> even y ==> odd (x + y)"
72 lemma odd_plus_odd: "odd (x::int) ==> odd y ==> even (x + y)" by presburger
74 lemma even_sum[presburger]: "even ((x::int) + y) = ((even x & even y) | (odd x & odd y))"
77 lemma even_neg[presburger, algebra]: "even (-(x::int)) = even x" by presburger
79 lemma even_difference:
80 "even ((x::int) - y) = ((even x & even y) | (odd x & odd y))" by presburger
82 lemma even_pow_gt_zero:
83 "even (x::int) ==> 0 < n ==> even (x^n)"
84 by (induct n) (auto simp add: even_product)
86 lemma odd_pow_iff[presburger, algebra]:
87 "odd ((x::int) ^ n) \<longleftrightarrow> (n = 0 \<or> odd x)"
88 apply (induct n, simp_all)
90 apply (case_tac n, auto)
91 apply (simp_all add: even_product)
94 lemma odd_pow: "odd x ==> odd((x::int)^n)" by (simp add: odd_pow_iff)
96 lemma even_power[presburger]: "even ((x::int)^n) = (even x & 0 < n)"
97 apply (auto simp add: even_pow_gt_zero)
98 apply (erule contrapos_pp, erule odd_pow)
99 apply (erule contrapos_pp, simp add: even_def)
102 lemma even_zero[presburger]: "even (0::int)" by presburger
104 lemma odd_one[presburger]: "odd (1::int)" by presburger
106 lemmas even_odd_simps [simp] = even_def[of "number_of v",standard] even_zero
107 odd_one even_product even_sum even_neg even_difference even_power
110 subsection {* Equivalent definitions *}
112 lemma two_times_even_div_two: "even (x::int) ==> 2 * (x div 2) = x"
115 lemma two_times_odd_div_two_plus_one: "odd (x::int) ==>
116 2 * (x div 2) + 1 = x" by presburger
118 lemma even_equiv_def: "even (x::int) = (EX y. x = 2 * y)" by presburger
120 lemma odd_equiv_def: "odd (x::int) = (EX y. x = 2 * y + 1)" by presburger
122 subsection {* even and odd for nats *}
124 lemma pos_int_even_equiv_nat_even: "0 \<le> x ==> even x = even (nat x)"
125 by (simp add: even_nat_def)
127 lemma even_nat_product[presburger, algebra]: "even((x::nat) * y) = (even x | even y)"
128 by (simp add: even_nat_def int_mult)
130 lemma even_nat_sum[presburger, algebra]: "even ((x::nat) + y) =
131 ((even x & even y) | (odd x & odd y))" by presburger
133 lemma even_nat_difference[presburger, algebra]:
134 "even ((x::nat) - y) = (x < y | (even x & even y) | (odd x & odd y))"
137 lemma even_nat_Suc[presburger, algebra]: "even (Suc x) = odd x" by presburger
139 lemma even_nat_power[presburger, algebra]: "even ((x::nat)^y) = (even x & 0 < y)"
140 by (simp add: even_nat_def int_power)
142 lemma even_nat_zero[presburger]: "even (0::nat)" by presburger
144 lemmas even_odd_nat_simps [simp] = even_nat_def[of "number_of v",standard]
145 even_nat_zero even_nat_Suc even_nat_product even_nat_sum even_nat_power
148 subsection {* Equivalent definitions *}
150 lemma nat_lt_two_imp_zero_or_one: "(x::nat) < Suc (Suc 0) ==>
151 x = 0 | x = Suc 0" by presburger
153 lemma even_nat_mod_two_eq_zero: "even (x::nat) ==> x mod (Suc (Suc 0)) = 0"
156 lemma odd_nat_mod_two_eq_one: "odd (x::nat) ==> x mod (Suc (Suc 0)) = Suc 0"
159 lemma even_nat_equiv_def: "even (x::nat) = (x mod Suc (Suc 0) = 0)"
162 lemma odd_nat_equiv_def: "odd (x::nat) = (x mod Suc (Suc 0) = Suc 0)"
165 lemma even_nat_div_two_times_two: "even (x::nat) ==>
166 Suc (Suc 0) * (x div Suc (Suc 0)) = x" by presburger
168 lemma odd_nat_div_two_times_two_plus_one: "odd (x::nat) ==>
169 Suc( Suc (Suc 0) * (x div Suc (Suc 0))) = x" by presburger
171 lemma even_nat_equiv_def2: "even (x::nat) = (EX y. x = Suc (Suc 0) * y)"
174 lemma odd_nat_equiv_def2: "odd (x::nat) = (EX y. x = Suc(Suc (Suc 0) * y))"
178 subsection {* Parity and powers *}
180 lemma minus_one_even_odd_power:
181 "(even x --> (- 1::'a::{comm_ring_1,recpower})^x = 1) &
182 (odd x --> (- 1::'a)^x = - 1)"
186 apply (insert even_nat_zero, blast)
187 apply (simp add: power_Suc)
190 lemma minus_one_even_power [simp]:
191 "even x ==> (- 1::'a::{comm_ring_1,recpower})^x = 1"
192 using minus_one_even_odd_power by blast
194 lemma minus_one_odd_power [simp]:
195 "odd x ==> (- 1::'a::{comm_ring_1,recpower})^x = - 1"
196 using minus_one_even_odd_power by blast
198 lemma neg_one_even_odd_power:
199 "(even x --> (-1::'a::{number_ring,recpower})^x = 1) &
200 (odd x --> (-1::'a)^x = -1)"
202 apply (simp, simp add: power_Suc)
205 lemma neg_one_even_power [simp]:
206 "even x ==> (-1::'a::{number_ring,recpower})^x = 1"
207 using neg_one_even_odd_power by blast
209 lemma neg_one_odd_power [simp]:
210 "odd x ==> (-1::'a::{number_ring,recpower})^x = -1"
211 using neg_one_even_odd_power by blast
214 "(-x::'a::{comm_ring_1,recpower}) ^ n =
215 (if even n then (x ^ n) else -(x ^ n))"
217 apply (simp_all split: split_if_asm add: power_Suc)
220 lemma zero_le_even_power: "even n ==>
221 0 <= (x::'a::{recpower,ordered_ring_strict}) ^ n"
222 apply (simp add: even_nat_equiv_def2)
225 apply (subst power_add)
226 apply (rule zero_le_square)
229 lemma zero_le_odd_power: "odd n ==>
230 (0 <= (x::'a::{recpower,ordered_idom}) ^ n) = (0 <= x)"
231 apply (auto simp: odd_nat_equiv_def2 power_Suc power_add zero_le_mult_iff)
232 apply (metis field_power_not_zero no_zero_divirors_neq0 order_antisym_conv zero_le_square)
235 lemma zero_le_power_eq[presburger]: "(0 <= (x::'a::{recpower,ordered_idom}) ^ n) =
236 (even n | (odd n & 0 <= x))"
238 apply (subst zero_le_odd_power [symmetric])
240 apply (erule zero_le_even_power)
243 lemma zero_less_power_eq[presburger]: "(0 < (x::'a::{recpower,ordered_idom}) ^ n) =
244 (n = 0 | (even n & x ~= 0) | (odd n & 0 < x))"
246 unfolding order_less_le zero_le_power_eq by auto
248 lemma power_less_zero_eq[presburger]: "((x::'a::{recpower,ordered_idom}) ^ n < 0) =
250 apply (subst linorder_not_le [symmetric])+
251 apply (subst zero_le_power_eq)
255 lemma power_le_zero_eq[presburger]: "((x::'a::{recpower,ordered_idom}) ^ n <= 0) =
256 (n ~= 0 & ((odd n & x <= 0) | (even n & x = 0)))"
257 apply (subst linorder_not_less [symmetric])+
258 apply (subst zero_less_power_eq)
262 lemma power_even_abs: "even n ==>
263 (abs (x::'a::{recpower,ordered_idom}))^n = x^n"
264 apply (subst power_abs [symmetric])
265 apply (simp add: zero_le_even_power)
268 lemma zero_less_power_nat_eq[presburger]: "(0 < (x::nat) ^ n) = (n = 0 | 0 < x)"
271 lemma power_minus_even [simp]: "even n ==>
272 (- x)^n = (x^n::'a::{recpower,comm_ring_1})"
273 apply (subst power_minus)
277 lemma power_minus_odd [simp]: "odd n ==>
278 (- x)^n = - (x^n::'a::{recpower,comm_ring_1})"
279 apply (subst power_minus)
283 lemma power_mono_even: fixes x y :: "'a :: {recpower, ordered_idom}"
284 assumes "even n" and "\<bar>x\<bar> \<le> \<bar>y\<bar>"
285 shows "x^n \<le> y^n"
287 have "0 \<le> \<bar>x\<bar>" by auto
288 with `\<bar>x\<bar> \<le> \<bar>y\<bar>`
289 have "\<bar>x\<bar>^n \<le> \<bar>y\<bar>^n" by (rule power_mono)
290 thus ?thesis unfolding power_even_abs[OF `even n`] .
293 lemma odd_pos: "odd (n::nat) \<Longrightarrow> 0 < n" by presburger
295 lemma power_mono_odd: fixes x y :: "'a :: {recpower, ordered_idom}"
296 assumes "odd n" and "x \<le> y"
297 shows "x^n \<le> y^n"
298 proof (cases "y < 0")
299 case True with `x \<le> y` have "-y \<le> -x" and "0 \<le> -y" by auto
300 hence "(-y)^n \<le> (-x)^n" by (rule power_mono)
301 thus ?thesis unfolding power_minus_odd[OF `odd n`] by auto
305 proof (cases "x < 0")
306 case True hence "n \<noteq> 0" and "x \<le> 0" using `odd n`[THEN odd_pos] by auto
307 hence "x^n \<le> 0" unfolding power_le_zero_eq using `odd n` by auto
309 from `\<not> y < 0` have "0 \<le> y" by auto
310 hence "0 \<le> y^n" by auto
311 ultimately show ?thesis by auto
313 case False hence "0 \<le> x" by auto
314 with `x \<le> y` show ?thesis using power_mono by auto
318 subsection {* General Lemmas About Division *}
320 lemma Suc_times_mod_eq: "1<k ==> Suc (k * m) mod k = 1"
322 apply (simp_all add: mod_Suc)
325 declare Suc_times_mod_eq [of "number_of w", standard, simp]
327 lemma [simp]: "n div k \<le> (Suc n) div k"
328 by (simp add: div_le_mono)
330 lemma Suc_n_div_2_gt_zero [simp]: "(0::nat) < n ==> 0 < (n + 1) div 2"
333 lemma div_2_gt_zero [simp]: "(1::nat) < n ==> 0 < n div 2"
336 (* Potential use of algebra : Equality modulo n*)
337 lemma mod_mult_self3 [simp]: "(k*n + m) mod n = m mod (n::nat)"
338 by (simp add: mult_ac add_ac)
340 lemma mod_mult_self4 [simp]: "Suc (k*n + m) mod n = Suc m mod n"
342 have "Suc (k * n + m) mod n = (k * n + Suc m) mod n" by simp
343 also have "... = Suc m mod n" by (rule mod_mult_self3)
344 finally show ?thesis .
347 lemma mod_Suc_eq_Suc_mod: "Suc m mod n = Suc (m mod n) mod n"
348 apply (subst mod_Suc [of m])
349 apply (subst mod_Suc [of "m mod n"], simp)
353 subsection {* More Even/Odd Results *}
355 lemma even_mult_two_ex: "even(n) = (\<exists>m::nat. n = 2*m)" by presburger
356 lemma odd_Suc_mult_two_ex: "odd(n) = (\<exists>m. n = Suc (2*m))" by presburger
357 lemma even_add [simp]: "even(m + n::nat) = (even m = even n)" by presburger
359 lemma odd_add [simp]: "odd(m + n::nat) = (odd m \<noteq> odd n)" by presburger
361 lemma div_Suc: "Suc a div c = a div c + Suc 0 div c +
362 (a mod c + Suc 0 mod c) div c"
363 apply (subgoal_tac "Suc a = a + Suc 0")
365 apply (rule div_add1_eq, simp)
368 lemma lemma_even_div2 [simp]: "even (n::nat) ==> (n + 1) div 2 = n div 2" by presburger
370 lemma lemma_not_even_div2 [simp]: "~even n ==> (n + 1) div 2 = Suc (n div 2)"
373 lemma even_num_iff: "0 < n ==> even n = (~ even(n - 1 :: nat))" by presburger
374 lemma even_even_mod_4_iff: "even (n::nat) = even (n mod 4)" by presburger
376 lemma lemma_odd_mod_4_div_2: "n mod 4 = (3::nat) ==> odd((n - 1) div 2)" by presburger
378 lemma lemma_even_mod_4_div_2: "n mod 4 = (1::nat) ==> even ((n - 1) div 2)"
381 text {* Simplify, when the exponent is a numeral *}
383 lemmas power_0_left_number_of = power_0_left [of "number_of w", standard]
384 declare power_0_left_number_of [simp]
386 lemmas zero_le_power_eq_number_of [simp] =
387 zero_le_power_eq [of _ "number_of w", standard]
389 lemmas zero_less_power_eq_number_of [simp] =
390 zero_less_power_eq [of _ "number_of w", standard]
392 lemmas power_le_zero_eq_number_of [simp] =
393 power_le_zero_eq [of _ "number_of w", standard]
395 lemmas power_less_zero_eq_number_of [simp] =
396 power_less_zero_eq [of _ "number_of w", standard]
398 lemmas zero_less_power_nat_eq_number_of [simp] =
399 zero_less_power_nat_eq [of _ "number_of w", standard]
401 lemmas power_eq_0_iff_number_of [simp] = power_eq_0_iff [of _ "number_of w", standard]
403 lemmas power_even_abs_number_of [simp] = power_even_abs [of "number_of w" _, standard]
406 subsection {* An Equivalence for @{term [source] "0 \<le> a^n"} *}
408 lemma even_power_le_0_imp_0:
409 "a ^ (2*k) \<le> (0::'a::{ordered_idom,recpower}) ==> a=0"
410 by (induct k) (auto simp add: zero_le_mult_iff mult_le_0_iff power_Suc)
412 lemma zero_le_power_iff[presburger]:
413 "(0 \<le> a^n) = (0 \<le> (a::'a::{ordered_idom,recpower}) | even n)"
415 assume even: "even n"
416 then obtain k where "n = 2*k"
417 by (auto simp add: even_nat_equiv_def2 numeral_2_eq_2)
418 thus ?thesis by (simp add: zero_le_even_power even)
421 then obtain k where "n = Suc(2*k)"
422 by (auto simp add: odd_nat_equiv_def2 numeral_2_eq_2)
424 by (auto simp add: power_Suc zero_le_mult_iff zero_le_even_power
425 dest!: even_power_le_0_imp_0)
429 subsection {* Miscellaneous *}
431 lemma [presburger]:"(x + 1) div 2 = x div 2 \<longleftrightarrow> even (x::int)" by presburger
432 lemma [presburger]: "(x + 1) div 2 = x div 2 + 1 \<longleftrightarrow> odd (x::int)" by presburger
433 lemma even_plus_one_div_two: "even (x::int) ==> (x + 1) div 2 = x div 2" by presburger
434 lemma odd_plus_one_div_two: "odd (x::int) ==> (x + 1) div 2 = x div 2 + 1" by presburger
436 lemma [presburger]: "(Suc x) div Suc (Suc 0) = x div Suc (Suc 0) \<longleftrightarrow> even x" by presburger
437 lemma [presburger]: "(Suc x) div Suc (Suc 0) = x div Suc (Suc 0) \<longleftrightarrow> even x" by presburger
438 lemma even_nat_plus_one_div_two: "even (x::nat) ==>
439 (Suc x) div Suc (Suc 0) = x div Suc (Suc 0)" by presburger
441 lemma odd_nat_plus_one_div_two: "odd (x::nat) ==>
442 (Suc x) div Suc (Suc 0) = Suc (x div Suc (Suc 0))" by presburger