src/HOL/Library/Countable.thy
 author wenzelm Sat Jul 18 20:47:08 2015 +0200 (2015-07-18) changeset 60752 b48830b670a1 parent 60500 903bb1495239 child 60801 7664e0916eec permissions -rw-r--r--
prefer tactics with explicit context;
```     1 (*  Title:      HOL/Library/Countable.thy
```
```     2     Author:     Alexander Krauss, TU Muenchen
```
```     3     Author:     Brian Huffman, Portland State University
```
```     4     Author:     Jasmin Blanchette, TU Muenchen
```
```     5 *)
```
```     6
```
```     7 section \<open>Encoding (almost) everything into natural numbers\<close>
```
```     8
```
```     9 theory Countable
```
```    10 imports Old_Datatype Rat Nat_Bijection
```
```    11 begin
```
```    12
```
```    13 subsection \<open>The class of countable types\<close>
```
```    14
```
```    15 class countable =
```
```    16   assumes ex_inj: "\<exists>to_nat \<Colon> 'a \<Rightarrow> nat. inj to_nat"
```
```    17
```
```    18 lemma countable_classI:
```
```    19   fixes f :: "'a \<Rightarrow> nat"
```
```    20   assumes "\<And>x y. f x = f y \<Longrightarrow> x = y"
```
```    21   shows "OFCLASS('a, countable_class)"
```
```    22 proof (intro_classes, rule exI)
```
```    23   show "inj f"
```
```    24     by (rule injI [OF assms]) assumption
```
```    25 qed
```
```    26
```
```    27
```
```    28 subsection \<open>Conversion functions\<close>
```
```    29
```
```    30 definition to_nat :: "'a\<Colon>countable \<Rightarrow> nat" where
```
```    31   "to_nat = (SOME f. inj f)"
```
```    32
```
```    33 definition from_nat :: "nat \<Rightarrow> 'a\<Colon>countable" where
```
```    34   "from_nat = inv (to_nat \<Colon> 'a \<Rightarrow> nat)"
```
```    35
```
```    36 lemma inj_to_nat [simp]: "inj to_nat"
```
```    37   by (rule exE_some [OF ex_inj]) (simp add: to_nat_def)
```
```    38
```
```    39 lemma inj_on_to_nat[simp, intro]: "inj_on to_nat S"
```
```    40   using inj_to_nat by (auto simp: inj_on_def)
```
```    41
```
```    42 lemma surj_from_nat [simp]: "surj from_nat"
```
```    43   unfolding from_nat_def by (simp add: inj_imp_surj_inv)
```
```    44
```
```    45 lemma to_nat_split [simp]: "to_nat x = to_nat y \<longleftrightarrow> x = y"
```
```    46   using injD [OF inj_to_nat] by auto
```
```    47
```
```    48 lemma from_nat_to_nat [simp]:
```
```    49   "from_nat (to_nat x) = x"
```
```    50   by (simp add: from_nat_def)
```
```    51
```
```    52
```
```    53 subsection \<open>Finite types are countable\<close>
```
```    54
```
```    55 subclass (in finite) countable
```
```    56 proof
```
```    57   have "finite (UNIV\<Colon>'a set)" by (rule finite_UNIV)
```
```    58   with finite_conv_nat_seg_image [of "UNIV::'a set"]
```
```    59   obtain n and f :: "nat \<Rightarrow> 'a"
```
```    60     where "UNIV = f ` {i. i < n}" by auto
```
```    61   then have "surj f" unfolding surj_def by auto
```
```    62   then have "inj (inv f)" by (rule surj_imp_inj_inv)
```
```    63   then show "\<exists>to_nat \<Colon> 'a \<Rightarrow> nat. inj to_nat" by (rule exI[of inj])
```
```    64 qed
```
```    65
```
```    66
```
```    67 subsection \<open>Automatically proving countability of old-style datatypes\<close>
```
```    68
```
```    69 inductive finite_item :: "'a Old_Datatype.item \<Rightarrow> bool" where
```
```    70   undefined: "finite_item undefined"
```
```    71 | In0: "finite_item x \<Longrightarrow> finite_item (Old_Datatype.In0 x)"
```
```    72 | In1: "finite_item x \<Longrightarrow> finite_item (Old_Datatype.In1 x)"
```
```    73 | Leaf: "finite_item (Old_Datatype.Leaf a)"
```
```    74 | Scons: "\<lbrakk>finite_item x; finite_item y\<rbrakk> \<Longrightarrow> finite_item (Old_Datatype.Scons x y)"
```
```    75
```
```    76 function
```
```    77   nth_item :: "nat \<Rightarrow> ('a::countable) Old_Datatype.item"
```
```    78 where
```
```    79   "nth_item 0 = undefined"
```
```    80 | "nth_item (Suc n) =
```
```    81   (case sum_decode n of
```
```    82     Inl i \<Rightarrow>
```
```    83     (case sum_decode i of
```
```    84       Inl j \<Rightarrow> Old_Datatype.In0 (nth_item j)
```
```    85     | Inr j \<Rightarrow> Old_Datatype.In1 (nth_item j))
```
```    86   | Inr i \<Rightarrow>
```
```    87     (case sum_decode i of
```
```    88       Inl j \<Rightarrow> Old_Datatype.Leaf (from_nat j)
```
```    89     | Inr j \<Rightarrow>
```
```    90       (case prod_decode j of
```
```    91         (a, b) \<Rightarrow> Old_Datatype.Scons (nth_item a) (nth_item b))))"
```
```    92 by pat_completeness auto
```
```    93
```
```    94 lemma le_sum_encode_Inl: "x \<le> y \<Longrightarrow> x \<le> sum_encode (Inl y)"
```
```    95 unfolding sum_encode_def by simp
```
```    96
```
```    97 lemma le_sum_encode_Inr: "x \<le> y \<Longrightarrow> x \<le> sum_encode (Inr y)"
```
```    98 unfolding sum_encode_def by simp
```
```    99
```
```   100 termination
```
```   101 by (relation "measure id")
```
```   102   (auto simp add: sum_encode_eq [symmetric] prod_encode_eq [symmetric]
```
```   103     le_imp_less_Suc le_sum_encode_Inl le_sum_encode_Inr
```
```   104     le_prod_encode_1 le_prod_encode_2)
```
```   105
```
```   106 lemma nth_item_covers: "finite_item x \<Longrightarrow> \<exists>n. nth_item n = x"
```
```   107 proof (induct set: finite_item)
```
```   108   case undefined
```
```   109   have "nth_item 0 = undefined" by simp
```
```   110   thus ?case ..
```
```   111 next
```
```   112   case (In0 x)
```
```   113   then obtain n where "nth_item n = x" by fast
```
```   114   hence "nth_item (Suc (sum_encode (Inl (sum_encode (Inl n))))) = Old_Datatype.In0 x" by simp
```
```   115   thus ?case ..
```
```   116 next
```
```   117   case (In1 x)
```
```   118   then obtain n where "nth_item n = x" by fast
```
```   119   hence "nth_item (Suc (sum_encode (Inl (sum_encode (Inr n))))) = Old_Datatype.In1 x" by simp
```
```   120   thus ?case ..
```
```   121 next
```
```   122   case (Leaf a)
```
```   123   have "nth_item (Suc (sum_encode (Inr (sum_encode (Inl (to_nat a)))))) = Old_Datatype.Leaf a"
```
```   124     by simp
```
```   125   thus ?case ..
```
```   126 next
```
```   127   case (Scons x y)
```
```   128   then obtain i j where "nth_item i = x" and "nth_item j = y" by fast
```
```   129   hence "nth_item
```
```   130     (Suc (sum_encode (Inr (sum_encode (Inr (prod_encode (i, j))))))) = Old_Datatype.Scons x y"
```
```   131     by simp
```
```   132   thus ?case ..
```
```   133 qed
```
```   134
```
```   135 theorem countable_datatype:
```
```   136   fixes Rep :: "'b \<Rightarrow> ('a::countable) Old_Datatype.item"
```
```   137   fixes Abs :: "('a::countable) Old_Datatype.item \<Rightarrow> 'b"
```
```   138   fixes rep_set :: "('a::countable) Old_Datatype.item \<Rightarrow> bool"
```
```   139   assumes type: "type_definition Rep Abs (Collect rep_set)"
```
```   140   assumes finite_item: "\<And>x. rep_set x \<Longrightarrow> finite_item x"
```
```   141   shows "OFCLASS('b, countable_class)"
```
```   142 proof
```
```   143   def f \<equiv> "\<lambda>y. LEAST n. nth_item n = Rep y"
```
```   144   {
```
```   145     fix y :: 'b
```
```   146     have "rep_set (Rep y)"
```
```   147       using type_definition.Rep [OF type] by simp
```
```   148     hence "finite_item (Rep y)"
```
```   149       by (rule finite_item)
```
```   150     hence "\<exists>n. nth_item n = Rep y"
```
```   151       by (rule nth_item_covers)
```
```   152     hence "nth_item (f y) = Rep y"
```
```   153       unfolding f_def by (rule LeastI_ex)
```
```   154     hence "Abs (nth_item (f y)) = y"
```
```   155       using type_definition.Rep_inverse [OF type] by simp
```
```   156   }
```
```   157   hence "inj f"
```
```   158     by (rule inj_on_inverseI)
```
```   159   thus "\<exists>f::'b \<Rightarrow> nat. inj f"
```
```   160     by - (rule exI)
```
```   161 qed
```
```   162
```
```   163 ML \<open>
```
```   164   fun old_countable_datatype_tac ctxt =
```
```   165     SUBGOAL (fn (goal, _) =>
```
```   166       let
```
```   167         val ty_name =
```
```   168           (case goal of
```
```   169             (_ \$ Const (@{const_name Pure.type}, Type (@{type_name itself}, [Type (n, _)]))) => n
```
```   170           | _ => raise Match)
```
```   171         val typedef_info = hd (Typedef.get_info ctxt ty_name)
```
```   172         val typedef_thm = #type_definition (snd typedef_info)
```
```   173         val pred_name =
```
```   174           (case HOLogic.dest_Trueprop (Thm.concl_of typedef_thm) of
```
```   175             (_ \$ _ \$ _ \$ (_ \$ Const (n, _))) => n
```
```   176           | _ => raise Match)
```
```   177         val induct_info = Inductive.the_inductive ctxt pred_name
```
```   178         val pred_names = #names (fst induct_info)
```
```   179         val induct_thms = #inducts (snd induct_info)
```
```   180         val alist = pred_names ~~ induct_thms
```
```   181         val induct_thm = the (AList.lookup (op =) alist pred_name)
```
```   182         val vars = rev (Term.add_vars (Thm.prop_of induct_thm) [])
```
```   183         val insts = vars |> map (fn (_, T) => try (Thm.cterm_of ctxt)
```
```   184           (Const (@{const_name Countable.finite_item}, T)))
```
```   185         val induct_thm' = Drule.instantiate' [] insts induct_thm
```
```   186         val rules = @{thms finite_item.intros}
```
```   187       in
```
```   188         SOLVED' (fn i => EVERY
```
```   189           [resolve_tac ctxt @{thms countable_datatype} i,
```
```   190            resolve_tac ctxt [typedef_thm] i,
```
```   191            eresolve_tac ctxt [induct_thm'] i,
```
```   192            REPEAT (resolve_tac ctxt rules i ORELSE assume_tac ctxt i)]) 1
```
```   193       end)
```
```   194 \<close>
```
```   195
```
```   196 hide_const (open) finite_item nth_item
```
```   197
```
```   198
```
```   199 subsection \<open>Automatically proving countability of datatypes\<close>
```
```   200
```
```   201 ML_file "bnf_lfp_countable.ML"
```
```   202
```
```   203 ML \<open>
```
```   204 fun countable_datatype_tac ctxt st =
```
```   205   (case try (fn () => HEADGOAL (old_countable_datatype_tac ctxt) st) () of
```
```   206     SOME res => res
```
```   207   | NONE => BNF_LFP_Countable.countable_datatype_tac ctxt st);
```
```   208
```
```   209 (* compatibility *)
```
```   210 fun countable_tac ctxt =
```
```   211   SELECT_GOAL (countable_datatype_tac ctxt);
```
```   212 \<close>
```
```   213
```
```   214 method_setup countable_datatype = \<open>
```
```   215   Scan.succeed (SIMPLE_METHOD o countable_datatype_tac)
```
```   216 \<close> "prove countable class instances for datatypes"
```
```   217
```
```   218
```
```   219 subsection \<open>More Countable types\<close>
```
```   220
```
```   221 text \<open>Naturals\<close>
```
```   222
```
```   223 instance nat :: countable
```
```   224   by (rule countable_classI [of "id"]) simp
```
```   225
```
```   226 text \<open>Pairs\<close>
```
```   227
```
```   228 instance prod :: (countable, countable) countable
```
```   229   by (rule countable_classI [of "\<lambda>(x, y). prod_encode (to_nat x, to_nat y)"])
```
```   230     (auto simp add: prod_encode_eq)
```
```   231
```
```   232 text \<open>Sums\<close>
```
```   233
```
```   234 instance sum :: (countable, countable) countable
```
```   235   by (rule countable_classI [of "(\<lambda>x. case x of Inl a \<Rightarrow> to_nat (False, to_nat a)
```
```   236                                      | Inr b \<Rightarrow> to_nat (True, to_nat b))"])
```
```   237     (simp split: sum.split_asm)
```
```   238
```
```   239 text \<open>Integers\<close>
```
```   240
```
```   241 instance int :: countable
```
```   242   by (rule countable_classI [of int_encode]) (simp add: int_encode_eq)
```
```   243
```
```   244 text \<open>Options\<close>
```
```   245
```
```   246 instance option :: (countable) countable
```
```   247   by countable_datatype
```
```   248
```
```   249 text \<open>Lists\<close>
```
```   250
```
```   251 instance list :: (countable) countable
```
```   252   by countable_datatype
```
```   253
```
```   254 text \<open>String literals\<close>
```
```   255
```
```   256 instance String.literal :: countable
```
```   257   by (rule countable_classI [of "to_nat \<circ> String.explode"]) (auto simp add: explode_inject)
```
```   258
```
```   259 text \<open>Functions\<close>
```
```   260
```
```   261 instance "fun" :: (finite, countable) countable
```
```   262 proof
```
```   263   obtain xs :: "'a list" where xs: "set xs = UNIV"
```
```   264     using finite_list [OF finite_UNIV] ..
```
```   265   show "\<exists>to_nat::('a \<Rightarrow> 'b) \<Rightarrow> nat. inj to_nat"
```
```   266   proof
```
```   267     show "inj (\<lambda>f. to_nat (map f xs))"
```
```   268       by (rule injI, simp add: xs fun_eq_iff)
```
```   269   qed
```
```   270 qed
```
```   271
```
```   272 text \<open>Typereps\<close>
```
```   273
```
```   274 instance typerep :: countable
```
```   275   by countable_datatype
```
```   276
```
```   277
```
```   278 subsection \<open>The rationals are countably infinite\<close>
```
```   279
```
```   280 definition nat_to_rat_surj :: "nat \<Rightarrow> rat" where
```
```   281   "nat_to_rat_surj n = (let (a, b) = prod_decode n in Fract (int_decode a) (int_decode b))"
```
```   282
```
```   283 lemma surj_nat_to_rat_surj: "surj nat_to_rat_surj"
```
```   284 unfolding surj_def
```
```   285 proof
```
```   286   fix r::rat
```
```   287   show "\<exists>n. r = nat_to_rat_surj n"
```
```   288   proof (cases r)
```
```   289     fix i j assume [simp]: "r = Fract i j" and "j > 0"
```
```   290     have "r = (let m = int_encode i; n = int_encode j in nat_to_rat_surj (prod_encode (m, n)))"
```
```   291       by (simp add: Let_def nat_to_rat_surj_def)
```
```   292     thus "\<exists>n. r = nat_to_rat_surj n" by(auto simp: Let_def)
```
```   293   qed
```
```   294 qed
```
```   295
```
```   296 lemma Rats_eq_range_nat_to_rat_surj: "\<rat> = range nat_to_rat_surj"
```
```   297   by (simp add: Rats_def surj_nat_to_rat_surj)
```
```   298
```
```   299 context field_char_0
```
```   300 begin
```
```   301
```
```   302 lemma Rats_eq_range_of_rat_o_nat_to_rat_surj:
```
```   303   "\<rat> = range (of_rat \<circ> nat_to_rat_surj)"
```
```   304   using surj_nat_to_rat_surj
```
```   305   by (auto simp: Rats_def image_def surj_def) (blast intro: arg_cong[where f = of_rat])
```
```   306
```
```   307 lemma surj_of_rat_nat_to_rat_surj:
```
```   308   "r \<in> \<rat> \<Longrightarrow> \<exists>n. r = of_rat (nat_to_rat_surj n)"
```
```   309   by (simp add: Rats_eq_range_of_rat_o_nat_to_rat_surj image_def)
```
```   310
```
```   311 end
```
```   312
```
```   313 instance rat :: countable
```
```   314 proof
```
```   315   show "\<exists>to_nat::rat \<Rightarrow> nat. inj to_nat"
```
```   316   proof
```
```   317     have "surj nat_to_rat_surj"
```
```   318       by (rule surj_nat_to_rat_surj)
```
```   319     then show "inj (inv nat_to_rat_surj)"
```
```   320       by (rule surj_imp_inj_inv)
```
```   321   qed
```
```   322 qed
```
```   323
```
```   324 end
```