src/HOL/Int.thy
 author wenzelm Mon, 31 Aug 2015 21:28:08 +0200 changeset 61070 b72a990adfe2 parent 60868 dd18c33c001e child 61076 bdc1e2f0a86a permissions -rw-r--r--
prefer symbols;
```
(*  Title:      HOL/Int.thy
Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
Author:     Tobias Nipkow, Florian Haftmann, TU Muenchen
*)

section \<open>The Integers as Equivalence Classes over Pairs of Natural Numbers\<close>

theory Int
imports Equiv_Relations Power Quotient Fun_Def
begin

subsection \<open>Definition of integers as a quotient type\<close>

definition intrel :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> bool" where
"intrel = (\<lambda>(x, y) (u, v). x + v = u + y)"

lemma intrel_iff [simp]: "intrel (x, y) (u, v) \<longleftrightarrow> x + v = u + y"

quotient_type int = "nat \<times> nat" / "intrel"
morphisms Rep_Integ Abs_Integ
proof (rule equivpI)
show "reflp intrel"
unfolding reflp_def by auto
show "symp intrel"
unfolding symp_def by auto
show "transp intrel"
unfolding transp_def by auto
qed

lemma eq_Abs_Integ [case_names Abs_Integ, cases type: int]:
"(!!x y. z = Abs_Integ (x, y) ==> P) ==> P"
by (induct z) auto

subsection \<open>Integers form a commutative ring\<close>

instantiation int :: comm_ring_1
begin

lift_definition zero_int :: "int" is "(0, 0)" .

lift_definition one_int :: "int" is "(1, 0)" .

lift_definition plus_int :: "int \<Rightarrow> int \<Rightarrow> int"
is "\<lambda>(x, y) (u, v). (x + u, y + v)"
by clarsimp

lift_definition uminus_int :: "int \<Rightarrow> int"
is "\<lambda>(x, y). (y, x)"
by clarsimp

lift_definition minus_int :: "int \<Rightarrow> int \<Rightarrow> int"
is "\<lambda>(x, y) (u, v). (x + v, y + u)"
by clarsimp

lift_definition times_int :: "int \<Rightarrow> int \<Rightarrow> int"
is "\<lambda>(x, y) (u, v). (x*u + y*v, x*v + y*u)"
proof (clarsimp)
fix s t u v w x y z :: nat
assume "s + v = u + t" and "w + z = y + x"
hence "(s + v) * w + (u + t) * x + u * (w + z) + v * (y + x)
= (u + t) * w + (s + v) * x + u * (y + x) + v * (w + z)"
by simp
thus "(s * w + t * x) + (u * z + v * y) = (u * y + v * z) + (s * x + t * w)"
qed

instance
by default (transfer, clarsimp simp: algebra_simps)+

end

abbreviation int :: "nat \<Rightarrow> int" where
"int \<equiv> of_nat"

lemma int_def: "int n = Abs_Integ (n, 0)"
by (induct n, simp add: zero_int.abs_eq,

lemma int_transfer [transfer_rule]:
"(rel_fun (op =) pcr_int) (\<lambda>n. (n, 0)) int"
unfolding rel_fun_def int.pcr_cr_eq cr_int_def int_def by simp

lemma int_diff_cases:
obtains (diff) m n where "z = int m - int n"
by transfer clarsimp

subsection \<open>Integers are totally ordered\<close>

instantiation int :: linorder
begin

lift_definition less_eq_int :: "int \<Rightarrow> int \<Rightarrow> bool"
is "\<lambda>(x, y) (u, v). x + v \<le> u + y"
by auto

lift_definition less_int :: "int \<Rightarrow> int \<Rightarrow> bool"
is "\<lambda>(x, y) (u, v). x + v < u + y"
by auto

instance
by default (transfer, force)+

end

instantiation int :: distrib_lattice
begin

definition
"(inf \<Colon> int \<Rightarrow> int \<Rightarrow> int) = min"

definition
"(sup \<Colon> int \<Rightarrow> int \<Rightarrow> int) = max"

instance
by intro_classes
(auto simp add: inf_int_def sup_int_def max_min_distrib2)

end

subsection \<open>Ordering properties of arithmetic operations\<close>

proof
fix i j k :: int
show "i \<le> j \<Longrightarrow> k + i \<le> k + j"
by transfer clarsimp
qed

text\<open>Strict Monotonicity of Multiplication\<close>

text\<open>strict, in 1st argument; proof is by induction on k>0\<close>
lemma zmult_zless_mono2_lemma:
"(i::int)<j ==> 0<k ==> int k * i < int k * j"
apply (induct k)
apply simp
apply (case_tac "k=0")
done

lemma zero_le_imp_eq_int: "(0::int) \<le> k ==> \<exists>n. k = int n"
apply transfer
apply clarsimp
apply (rule_tac x="a - b" in exI, simp)
done

lemma zero_less_imp_eq_int: "(0::int) < k ==> \<exists>n>0. k = int n"
apply transfer
apply clarsimp
apply (rule_tac x="a - b" in exI, simp)
done

lemma zmult_zless_mono2: "[| i<j;  (0::int) < k |] ==> k*i < k*j"
apply (drule zero_less_imp_eq_int)
done

text\<open>The integers form an ordered integral domain\<close>
instantiation int :: linordered_idom
begin

definition
zabs_def: "\<bar>i\<Colon>int\<bar> = (if i < 0 then - i else i)"

definition
zsgn_def: "sgn (i\<Colon>int) = (if i=0 then 0 else if 0<i then 1 else - 1)"

instance proof
fix i j k :: int
show "i < j \<Longrightarrow> 0 < k \<Longrightarrow> k * i < k * j"
by (rule zmult_zless_mono2)
show "\<bar>i\<bar> = (if i < 0 then -i else i)"
by (simp only: zabs_def)
show "sgn (i\<Colon>int) = (if i=0 then 0 else if 0<i then 1 else - 1)"
by (simp only: zsgn_def)
qed

end

lemma zless_imp_add1_zle: "w < z \<Longrightarrow> w + (1\<Colon>int) \<le> z"
by transfer clarsimp

"(w \<Colon> int) < z \<longleftrightarrow> (\<exists>n. z = w + int (Suc n))"
apply transfer
apply auto
apply (rename_tac a b c d)
apply (rule_tac x="c+b - Suc(a+d)" in exI)
apply arith
done

lemmas int_distrib =
distrib_right [of z1 z2 w]
distrib_left [of w z1 z2]
left_diff_distrib [of z1 z2 w]
right_diff_distrib [of w z1 z2]
for z1 z2 w :: int

subsection \<open>Embedding of the Integers into any @{text ring_1}: @{text of_int}\<close>

context ring_1
begin

lift_definition of_int :: "int \<Rightarrow> 'a" is "\<lambda>(i, j). of_nat i - of_nat j"

lemma of_int_0 [simp]: "of_int 0 = 0"
by transfer simp

lemma of_int_1 [simp]: "of_int 1 = 1"
by transfer simp

lemma of_int_add [simp]: "of_int (w+z) = of_int w + of_int z"
by transfer (clarsimp simp add: algebra_simps)

lemma of_int_minus [simp]: "of_int (-z) = - (of_int z)"
by (transfer fixing: uminus) clarsimp

lemma of_int_diff [simp]: "of_int (w - z) = of_int w - of_int z"
using of_int_add [of w "- z"] by simp

lemma of_int_mult [simp]: "of_int (w*z) = of_int w * of_int z"
by (transfer fixing: times) (clarsimp simp add: algebra_simps of_nat_mult)

text\<open>Collapse nested embeddings\<close>
lemma of_int_of_nat_eq [simp]: "of_int (int n) = of_nat n"
by (induct n) auto

lemma of_int_numeral [simp, code_post]: "of_int (numeral k) = numeral k"
by (simp add: of_nat_numeral [symmetric] of_int_of_nat_eq [symmetric])

lemma of_int_neg_numeral [code_post]: "of_int (- numeral k) = - numeral k"
by simp

lemma of_int_power:
"of_int (z ^ n) = of_int z ^ n"
by (induct n) simp_all

end

context ring_char_0
begin

lemma of_int_eq_iff [simp]:
"of_int w = of_int z \<longleftrightarrow> w = z"
by transfer (clarsimp simp add: algebra_simps

text\<open>Special cases where either operand is zero\<close>
lemma of_int_eq_0_iff [simp]:
"of_int z = 0 \<longleftrightarrow> z = 0"
using of_int_eq_iff [of z 0] by simp

lemma of_int_0_eq_iff [simp]:
"0 = of_int z \<longleftrightarrow> z = 0"
using of_int_eq_iff [of 0 z] by simp

end

context linordered_idom
begin

text\<open>Every @{text linordered_idom} has characteristic zero.\<close>
subclass ring_char_0 ..

lemma of_int_le_iff [simp]:
"of_int w \<le> of_int z \<longleftrightarrow> w \<le> z"
by (transfer fixing: less_eq) (clarsimp simp add: algebra_simps

lemma of_int_less_iff [simp]:
"of_int w < of_int z \<longleftrightarrow> w < z"

lemma of_int_0_le_iff [simp]:
"0 \<le> of_int z \<longleftrightarrow> 0 \<le> z"
using of_int_le_iff [of 0 z] by simp

lemma of_int_le_0_iff [simp]:
"of_int z \<le> 0 \<longleftrightarrow> z \<le> 0"
using of_int_le_iff [of z 0] by simp

lemma of_int_0_less_iff [simp]:
"0 < of_int z \<longleftrightarrow> 0 < z"
using of_int_less_iff [of 0 z] by simp

lemma of_int_less_0_iff [simp]:
"of_int z < 0 \<longleftrightarrow> z < 0"
using of_int_less_iff [of z 0] by simp

end

lemma of_nat_less_of_int_iff:
"(of_nat n::'a::linordered_idom) < of_int x \<longleftrightarrow> int n < x"
by (metis of_int_of_nat_eq of_int_less_iff)

lemma of_int_eq_id [simp]: "of_int = id"
proof
fix z show "of_int z = id z"
by (cases z rule: int_diff_cases, simp)
qed

instance int :: no_top
apply default
apply (rule_tac x="x + 1" in exI)
apply simp
done

instance int :: no_bot
apply default
apply (rule_tac x="x - 1" in exI)
apply simp
done

subsection \<open>Magnitude of an Integer, as a Natural Number: @{text nat}\<close>

lift_definition nat :: "int \<Rightarrow> nat" is "\<lambda>(x, y). x - y"
by auto

lemma nat_int [simp]: "nat (int n) = n"
by transfer simp

lemma int_nat_eq [simp]: "int (nat z) = (if 0 \<le> z then z else 0)"
by transfer clarsimp

corollary nat_0_le: "0 \<le> z ==> int (nat z) = z"
by simp

lemma nat_le_0 [simp]: "z \<le> 0 ==> nat z = 0"
by transfer clarsimp

lemma nat_le_eq_zle: "0 < w | 0 \<le> z ==> (nat w \<le> nat z) = (w\<le>z)"
by transfer (clarsimp, arith)

text\<open>An alternative condition is @{term "0 \<le> w"}\<close>
corollary nat_mono_iff: "0 < z ==> (nat w < nat z) = (w < z)"
by (simp add: nat_le_eq_zle linorder_not_le [symmetric])

corollary nat_less_eq_zless: "0 \<le> w ==> (nat w < nat z) = (w<z)"
by (simp add: nat_le_eq_zle linorder_not_le [symmetric])

lemma zless_nat_conj [simp]: "(nat w < nat z) = (0 < z & w < z)"
by transfer (clarsimp, arith)

lemma nonneg_eq_int:
fixes z :: int
assumes "0 \<le> z" and "\<And>m. z = int m \<Longrightarrow> P"
shows P
using assms by (blast dest: nat_0_le sym)

lemma nat_eq_iff:
"nat w = m \<longleftrightarrow> (if 0 \<le> w then w = int m else m = 0)"

corollary nat_eq_iff2:
"m = nat w \<longleftrightarrow> (if 0 \<le> w then w = int m else m = 0)"
using nat_eq_iff [of w m] by auto

lemma nat_0 [simp]:
"nat 0 = 0"

lemma nat_1 [simp]:
"nat 1 = Suc 0"

lemma nat_numeral [simp]:
"nat (numeral k) = numeral k"

lemma nat_neg_numeral [simp]:
"nat (- numeral k) = 0"
by simp

lemma nat_2: "nat 2 = Suc (Suc 0)"
by simp

lemma nat_less_iff: "0 \<le> w ==> (nat w < m) = (w < of_nat m)"
by transfer (clarsimp, arith)

lemma nat_le_iff: "nat x \<le> n \<longleftrightarrow> x \<le> int n"
by transfer (clarsimp simp add: le_diff_conv)

lemma nat_mono: "x \<le> y \<Longrightarrow> nat x \<le> nat y"
by transfer auto

lemma nat_0_iff[simp]: "nat(i::int) = 0 \<longleftrightarrow> i\<le>0"
by transfer clarsimp

lemma int_eq_iff: "(of_nat m = z) = (m = nat z & 0 \<le> z)"

lemma zero_less_nat_eq [simp]: "(0 < nat z) = (0 < z)"
by (insert zless_nat_conj [of 0], auto)

"0 \<le> z \<Longrightarrow> 0 \<le> z' \<Longrightarrow> nat (z + z') = nat z + nat z'"
by transfer clarsimp

lemma nat_diff_distrib':
"0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> nat (x - y) = nat x - nat y"
by transfer clarsimp

lemma nat_diff_distrib:
"0 \<le> z' \<Longrightarrow> z' \<le> z \<Longrightarrow> nat (z - z') = nat z - nat z'"
by (rule nat_diff_distrib') auto

lemma nat_zminus_int [simp]: "nat (- int n) = 0"
by transfer simp

lemma le_nat_iff:
"k \<ge> 0 \<Longrightarrow> n \<le> nat k \<longleftrightarrow> int n \<le> k"
by transfer auto

lemma zless_nat_eq_int_zless: "(m < nat z) = (int m < z)"
by transfer (clarsimp simp add: less_diff_conv)

context ring_1
begin

lemma of_nat_nat: "0 \<le> z \<Longrightarrow> of_nat (nat z) = of_int z"
by transfer (clarsimp simp add: of_nat_diff)

end

lemma diff_nat_numeral [simp]:
"(numeral v :: nat) - numeral v' = nat (numeral v - numeral v')"
by (simp only: nat_diff_distrib' zero_le_numeral nat_numeral)

text \<open>For termination proofs:\<close>
lemma measure_function_int[measure_function]: "is_measure (nat o abs)" ..

subsection\<open>Lemmas about the Function @{term of_nat} and Orderings\<close>

lemma negative_zless_0: "- (int (Suc n)) < (0 \<Colon> int)"
by (simp add: order_less_le del: of_nat_Suc)

lemma negative_zless [iff]: "- (int (Suc n)) < int m"
by (rule negative_zless_0 [THEN order_less_le_trans], simp)

lemma negative_zle_0: "- int n \<le> 0"

lemma negative_zle [iff]: "- int n \<le> int m"
by (rule order_trans [OF negative_zle_0 of_nat_0_le_iff])

lemma not_zle_0_negative [simp]: "~ (0 \<le> - (int (Suc n)))"
by (subst le_minus_iff, simp del: of_nat_Suc)

lemma int_zle_neg: "(int n \<le> - int m) = (n = 0 & m = 0)"
by transfer simp

lemma not_int_zless_negative [simp]: "~ (int n < - int m)"

lemma negative_eq_positive [simp]: "(- int n = of_nat m) = (n = 0 & m = 0)"
by (force simp add: order_eq_iff [of "- of_nat n"] int_zle_neg)

lemma zle_iff_zadd: "w \<le> z \<longleftrightarrow> (\<exists>n. z = w + int n)"
proof -
have "(w \<le> z) = (0 \<le> z - w)"
also have "\<dots> = (\<exists>n. z - w = of_nat n)"
by (auto elim: zero_le_imp_eq_int)
also have "\<dots> = (\<exists>n. z = w + of_nat n)"
by (simp only: algebra_simps)
finally show ?thesis .
qed

lemma zadd_int_left: "int m + (int n + z) = int (m + n) + z"
by simp

lemma int_Suc0_eq_1: "int (Suc 0) = 1"
by simp

text\<open>This version is proved for all ordered rings, not just integers!
It is proved here because attribute @{text arith_split} is not available
in theory @{text Rings}.
But is it really better than just rewriting with @{text abs_if}?\<close>
lemma abs_split [arith_split, no_atp]:
"P(abs(a::'a::linordered_idom)) = ((0 \<le> a --> P a) & (a < 0 --> P(-a)))"
by (force dest: order_less_le_trans simp add: abs_if linorder_not_less)

lemma negD: "x < 0 \<Longrightarrow> \<exists>n. x = - (int (Suc n))"
apply transfer
apply clarsimp
apply (rule_tac x="b - Suc a" in exI, arith)
done

subsection \<open>Cases and induction\<close>

text\<open>Now we replace the case analysis rule by a more conventional one:
whether an integer is negative or not.\<close>

text\<open>This version is symmetric in the two subgoals.\<close>
theorem int_cases2 [case_names nonneg nonpos, cases type: int]:
"\<lbrakk>!! n. z = int n \<Longrightarrow> P;  !! n. z = - (int n) \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P"
apply (cases "z < 0")
apply (auto simp add: linorder_not_less dest!: negD nat_0_le [THEN sym])
done

text\<open>This is the default, with a negative case.\<close>
theorem int_cases [case_names nonneg neg, cases type: int]:
"[|!! n. z = int n ==> P;  !! n. z = - (int (Suc n)) ==> P |] ==> P"
apply (cases "z < 0")
apply (blast dest!: negD)
apply (simp add: linorder_not_less del: of_nat_Suc)
apply auto
apply (blast dest: nat_0_le [THEN sym])
done

lemma int_cases3 [case_names zero pos neg]:
fixes k :: int
assumes "k = 0 \<Longrightarrow> P" and "\<And>n. k = int n \<Longrightarrow> n > 0 \<Longrightarrow> P"
and "\<And>n. k = - int n \<Longrightarrow> n > 0 \<Longrightarrow> P"
shows "P"
proof (cases k "0::int" rule: linorder_cases)
case equal with assms(1) show P by simp
next
case greater
then have "nat k > 0" by simp
moreover from this have "k = int (nat k)" by auto
ultimately show P using assms(2) by blast
next
case less
then have "nat (- k) > 0" by simp
moreover from this have "k = - int (nat (- k))" by auto
ultimately show P using assms(3) by blast
qed

theorem int_of_nat_induct [case_names nonneg neg, induct type: int]:
"[|!! n. P (int n);  !!n. P (- (int (Suc n))) |] ==> P z"
by (cases z) auto

lemma nonneg_int_cases:
assumes "0 \<le> k" obtains n where "k = int n"
using assms by (rule nonneg_eq_int)

lemma Let_numeral [simp]: "Let (numeral v) f = f (numeral v)"
-- \<open>Unfold all @{text let}s involving constants\<close>
by (fact Let_numeral) -- \<open>FIXME drop\<close>

lemma Let_neg_numeral [simp]: "Let (- numeral v) f = f (- numeral v)"
-- \<open>Unfold all @{text let}s involving constants\<close>
by (fact Let_neg_numeral) -- \<open>FIXME drop\<close>

text \<open>Unfold @{text min} and @{text max} on numerals.\<close>

lemmas max_number_of [simp] =
max_def [of "numeral u" "numeral v"]
max_def [of "numeral u" "- numeral v"]
max_def [of "- numeral u" "numeral v"]
max_def [of "- numeral u" "- numeral v"] for u v

lemmas min_number_of [simp] =
min_def [of "numeral u" "numeral v"]
min_def [of "numeral u" "- numeral v"]
min_def [of "- numeral u" "numeral v"]
min_def [of "- numeral u" "- numeral v"] for u v

subsubsection \<open>Binary comparisons\<close>

text \<open>Preliminaries\<close>

lemma le_imp_0_less:
assumes le: "0 \<le> z"
shows "(0::int) < 1 + z"
proof -
have "0 \<le> z" by fact
also have "... < z + 1" by (rule less_add_one)
also have "... = 1 + z" by (simp add: ac_simps)
finally show "0 < 1 + z" .
qed

lemma odd_less_0_iff:
"(1 + z + z < 0) = (z < (0::int))"
proof (cases z)
case (nonneg n)
le_imp_0_less [THEN order_less_imp_le])
next
case (neg n)
thus ?thesis by (simp del: of_nat_Suc of_nat_add of_nat_1
qed

subsubsection \<open>Comparisons, for Ordered Rings\<close>

lemmas double_eq_0_iff = double_zero

lemma odd_nonzero:
"1 + z + z \<noteq> (0::int)"
proof (cases z)
case (nonneg n)
thus ?thesis using  le_imp_0_less [OF le]
next
case (neg n)
show ?thesis
proof
assume eq: "1 + z + z = 0"
have "(0::int) < 1 + (int n + int n)"
also have "... = - (1 + z + z)"
also have "... = 0" by (simp add: eq)
finally have "0<0" ..
thus False by blast
qed
qed

subsection \<open>The Set of Integers\<close>

context ring_1
begin

definition Ints :: "'a set"  ("\<int>")
where "\<int> = range of_int"

lemma Ints_of_int [simp]: "of_int z \<in> \<int>"

lemma Ints_of_nat [simp]: "of_nat n \<in> \<int>"
using Ints_of_int [of "of_nat n"] by simp

lemma Ints_0 [simp]: "0 \<in> \<int>"
using Ints_of_int [of "0"] by simp

lemma Ints_1 [simp]: "1 \<in> \<int>"
using Ints_of_int [of "1"] by simp

lemma Ints_add [simp]: "a \<in> \<int> \<Longrightarrow> b \<in> \<int> \<Longrightarrow> a + b \<in> \<int>"
apply (rule range_eqI)
done

lemma Ints_minus [simp]: "a \<in> \<int> \<Longrightarrow> -a \<in> \<int>"
apply (rule range_eqI)
apply (rule of_int_minus [symmetric])
done

lemma Ints_diff [simp]: "a \<in> \<int> \<Longrightarrow> b \<in> \<int> \<Longrightarrow> a - b \<in> \<int>"
apply (rule range_eqI)
apply (rule of_int_diff [symmetric])
done

lemma Ints_mult [simp]: "a \<in> \<int> \<Longrightarrow> b \<in> \<int> \<Longrightarrow> a * b \<in> \<int>"
apply (rule range_eqI)
apply (rule of_int_mult [symmetric])
done

lemma Ints_power [simp]: "a \<in> \<int> \<Longrightarrow> a ^ n \<in> \<int>"
by (induct n) simp_all

lemma Ints_cases [cases set: Ints]:
assumes "q \<in> \<int>"
obtains (of_int) z where "q = of_int z"
unfolding Ints_def
proof -
from \<open>q \<in> \<int>\<close> have "q \<in> range of_int" unfolding Ints_def .
then obtain z where "q = of_int z" ..
then show thesis ..
qed

lemma Ints_induct [case_names of_int, induct set: Ints]:
"q \<in> \<int> \<Longrightarrow> (\<And>z. P (of_int z)) \<Longrightarrow> P q"
by (rule Ints_cases) auto

end

text \<open>The premise involving @{term Ints} prevents @{term "a = 1/2"}.\<close>

lemma Ints_double_eq_0_iff:
assumes in_Ints: "a \<in> \<int>"
shows "(a + a = 0) = (a = (0::'a::ring_char_0))"
proof -
from in_Ints have "a \<in> range of_int" unfolding Ints_def [symmetric] .
then obtain z where a: "a = of_int z" ..
show ?thesis
proof
assume "a = 0"
thus "a + a = 0" by simp
next
assume eq: "a + a = 0"
hence "of_int (z + z) = (of_int 0 :: 'a)" by (simp add: a)
hence "z + z = 0" by (simp only: of_int_eq_iff)
hence "z = 0" by (simp only: double_eq_0_iff)
thus "a = 0" by (simp add: a)
qed
qed

lemma Ints_odd_nonzero:
assumes in_Ints: "a \<in> \<int>"
shows "1 + a + a \<noteq> (0::'a::ring_char_0)"
proof -
from in_Ints have "a \<in> range of_int" unfolding Ints_def [symmetric] .
then obtain z where a: "a = of_int z" ..
show ?thesis
proof
assume eq: "1 + a + a = 0"
hence "of_int (1 + z + z) = (of_int 0 :: 'a)" by (simp add: a)
hence "1 + z + z = 0" by (simp only: of_int_eq_iff)
with odd_nonzero show False by blast
qed
qed

lemma Nats_numeral [simp]: "numeral w \<in> \<nat>"
using of_nat_in_Nats [of "numeral w"] by simp

lemma Ints_odd_less_0:
assumes in_Ints: "a \<in> \<int>"
shows "(1 + a + a < 0) = (a < (0::'a::linordered_idom))"
proof -
from in_Ints have "a \<in> range of_int" unfolding Ints_def [symmetric] .
then obtain z where a: "a = of_int z" ..
hence "((1::'a) + a + a < 0) = (of_int (1 + z + z) < (of_int 0 :: 'a))"
also have "... = (z < 0)" by (simp only: of_int_less_iff odd_less_0_iff)
also have "... = (a < 0)" by (simp add: a)
finally show ?thesis .
qed

subsection \<open>@{term setsum} and @{term setprod}\<close>

lemma of_nat_setsum: "of_nat (setsum f A) = (\<Sum>x\<in>A. of_nat(f x))"
apply (cases "finite A")
apply (erule finite_induct, auto)
done

lemma of_int_setsum: "of_int (setsum f A) = (\<Sum>x\<in>A. of_int(f x))"
apply (cases "finite A")
apply (erule finite_induct, auto)
done

lemma of_nat_setprod: "of_nat (setprod f A) = (\<Prod>x\<in>A. of_nat(f x))"
apply (cases "finite A")
apply (erule finite_induct, auto simp add: of_nat_mult)
done

lemma of_int_setprod: "of_int (setprod f A) = (\<Prod>x\<in>A. of_int(f x))"
apply (cases "finite A")
apply (erule finite_induct, auto)
done

lemmas int_setsum = of_nat_setsum [where 'a=int]
lemmas int_setprod = of_nat_setprod [where 'a=int]

text \<open>Legacy theorems\<close>

lemmas zle_int = of_nat_le_iff [where 'a=int]
lemmas int_int_eq = of_nat_eq_iff [where 'a=int]
lemmas numeral_1_eq_1 = numeral_One

subsection \<open>Setting up simplification procedures\<close>

lemmas of_int_simps =

ML_file "Tools/int_arith.ML"
declaration \<open>K Int_Arith.setup\<close>

simproc_setup fast_arith ("(m::'a::linordered_idom) < n" |
"(m::'a::linordered_idom) <= n" |
"(m::'a::linordered_idom) = n") =
\<open>fn _ => fn ss => fn ct => Lin_Arith.simproc ss (Thm.term_of ct)\<close>

subsection\<open>More Inequality Reasoning\<close>

lemma zless_add1_eq: "(w < z + (1::int)) = (w<z | w=z)"
by arith

lemma add1_zle_eq: "(w + (1::int) \<le> z) = (w<z)"
by arith

lemma zle_diff1_eq [simp]: "(w \<le> z - (1::int)) = (w<z)"
by arith

lemma zle_add1_eq_le [simp]: "(w < z + (1::int)) = (w\<le>z)"
by arith

lemma int_one_le_iff_zero_less: "((1::int) \<le> z) = (0 < z)"
by arith

subsection\<open>The functions @{term nat} and @{term int}\<close>

text\<open>Simplify the term @{term "w + - z"}\<close>

lemma one_less_nat_eq [simp]: "(Suc 0 < nat z) = (1 < z)"
using zless_nat_conj [of 1 z] by auto

text\<open>This simplifies expressions of the form @{term "int n = z"} where
z is an integer literal.\<close>
lemmas int_eq_iff_numeral [simp] = int_eq_iff [of _ "numeral v"] for v

lemma split_nat [arith_split]:
"P(nat(i::int)) = ((\<forall>n. i = int n \<longrightarrow> P n) & (i < 0 \<longrightarrow> P 0))"
(is "?P = (?L & ?R)")
proof (cases "i < 0")
case True thus ?thesis by auto
next
case False
have "?P = ?L"
proof
assume ?P thus ?L using False by clarsimp
next
assume ?L thus ?P using False by simp
qed
with False show ?thesis by simp
qed

lemma nat_abs_int_diff: "nat \<bar>int a - int b\<bar> = (if a \<le> b then b - a else a - b)"
by auto

lemma nat_int_add: "nat (int a + int b) = a + b"
by auto

context ring_1
begin

lemma of_int_of_nat [nitpick_simp]:
"of_int k = (if k < 0 then - of_nat (nat (- k)) else of_nat (nat k))"
proof (cases "k < 0")
case True then have "0 \<le> - k" by simp
then have "of_nat (nat (- k)) = of_int (- k)" by (rule of_nat_nat)
with True show ?thesis by simp
next
case False then show ?thesis by (simp add: not_less of_nat_nat)
qed

end

lemma nat_mult_distrib:
fixes z z' :: int
assumes "0 \<le> z"
shows "nat (z * z') = nat z * nat z'"
proof (cases "0 \<le> z'")
case False with assms have "z * z' \<le> 0"
then have "nat (z * z') = 0" by simp
moreover from False have "nat z' = 0" by simp
ultimately show ?thesis by simp
next
case True with assms have ge_0: "z * z' \<ge> 0" by (simp add: zero_le_mult_iff)
show ?thesis
by (rule injD [of "of_nat :: nat \<Rightarrow> int", OF inj_of_nat])
(simp only: of_nat_mult of_nat_nat [OF True]
of_nat_nat [OF assms] of_nat_nat [OF ge_0], simp)
qed

lemma nat_mult_distrib_neg: "z \<le> (0::int) ==> nat(z*z') = nat(-z) * nat(-z')"
apply (rule trans)
apply (rule_tac  nat_mult_distrib, auto)
done

lemma nat_abs_mult_distrib: "nat (abs (w * z)) = nat (abs w) * nat (abs z)"
apply (cases "z=0 | w=0")
apply (auto simp add: abs_if nat_mult_distrib [symmetric]
nat_mult_distrib_neg [symmetric] mult_less_0_iff)
done

lemma int_in_range_abs [simp]:
"int n \<in> range abs"
proof (rule range_eqI)
show "int n = \<bar>int n\<bar>"
by simp
qed

lemma range_abs_Nats [simp]:
"range abs = (\<nat> :: int set)"
proof -
have "\<bar>k\<bar> \<in> \<nat>" for k :: int
by (cases k) simp_all
moreover have "k \<in> range abs" if "k \<in> \<nat>" for k :: int
using that by induct simp
ultimately show ?thesis by blast
qed

lemma Suc_nat_eq_nat_zadd1: "(0::int) <= z ==> Suc (nat z) = nat (1 + z)"
apply (rule sym)
done

lemma diff_nat_eq_if:
"nat z - nat z' =
(if z' < 0 then nat z
else let d = z-z' in
if d < 0 then 0 else nat d)"
by (simp add: Let_def nat_diff_distrib [symmetric])

lemma nat_numeral_diff_1 [simp]:
"numeral v - (1::nat) = nat (numeral v - 1)"
using diff_nat_numeral [of v Num.One] by simp

subsection "Induction principles for int"

text\<open>Well-founded segments of the integers\<close>

definition
int_ge_less_than  ::  "int => (int * int) set"
where
"int_ge_less_than d = {(z',z). d \<le> z' & z' < z}"

theorem wf_int_ge_less_than: "wf (int_ge_less_than d)"
proof -
have "int_ge_less_than d \<subseteq> measure (%z. nat (z-d))"
thus ?thesis
by (rule wf_subset [OF wf_measure])
qed

text\<open>This variant looks odd, but is typical of the relations suggested
by RankFinder.\<close>

definition
int_ge_less_than2 ::  "int => (int * int) set"
where
"int_ge_less_than2 d = {(z',z). d \<le> z & z' < z}"

theorem wf_int_ge_less_than2: "wf (int_ge_less_than2 d)"
proof -
have "int_ge_less_than2 d \<subseteq> measure (%z. nat (1+z-d))"
thus ?thesis
by (rule wf_subset [OF wf_measure])
qed

(* `set:int': dummy construction *)
theorem int_ge_induct [case_names base step, induct set: int]:
fixes i :: int
assumes ge: "k \<le> i" and
base: "P k" and
step: "\<And>i. k \<le> i \<Longrightarrow> P i \<Longrightarrow> P (i + 1)"
shows "P i"
proof -
{ fix n
have "\<And>i::int. n = nat (i - k) \<Longrightarrow> k \<le> i \<Longrightarrow> P i"
proof (induct n)
case 0
hence "i = k" by arith
thus "P i" using base by simp
next
case (Suc n)
then have "n = nat((i - 1) - k)" by arith
moreover
have ki1: "k \<le> i - 1" using Suc.prems by arith
ultimately
have "P (i - 1)" by (rule Suc.hyps)
from step [OF ki1 this] show ?case by simp
qed
}
with ge show ?thesis by fast
qed

(* `set:int': dummy construction *)
theorem int_gr_induct [case_names base step, induct set: int]:
assumes gr: "k < (i::int)" and
base: "P(k+1)" and
step: "\<And>i. \<lbrakk>k < i; P i\<rbrakk> \<Longrightarrow> P(i+1)"
shows "P i"
apply(rule int_ge_induct[of "k + 1"])
using gr apply arith
apply(rule base)
apply (rule step, simp+)
done

theorem int_le_induct [consumes 1, case_names base step]:
assumes le: "i \<le> (k::int)" and
base: "P(k)" and
step: "\<And>i. \<lbrakk>i \<le> k; P i\<rbrakk> \<Longrightarrow> P(i - 1)"
shows "P i"
proof -
{ fix n
have "\<And>i::int. n = nat(k-i) \<Longrightarrow> i \<le> k \<Longrightarrow> P i"
proof (induct n)
case 0
hence "i = k" by arith
thus "P i" using base by simp
next
case (Suc n)
hence "n = nat (k - (i + 1))" by arith
moreover
have ki1: "i + 1 \<le> k" using Suc.prems by arith
ultimately
have "P (i + 1)" by(rule Suc.hyps)
from step[OF ki1 this] show ?case by simp
qed
}
with le show ?thesis by fast
qed

theorem int_less_induct [consumes 1, case_names base step]:
assumes less: "(i::int) < k" and
base: "P(k - 1)" and
step: "\<And>i. \<lbrakk>i < k; P i\<rbrakk> \<Longrightarrow> P(i - 1)"
shows "P i"
apply(rule int_le_induct[of _ "k - 1"])
using less apply arith
apply(rule base)
apply (rule step, simp+)
done

theorem int_induct [case_names base step1 step2]:
fixes k :: int
assumes base: "P k"
and step1: "\<And>i. k \<le> i \<Longrightarrow> P i \<Longrightarrow> P (i + 1)"
and step2: "\<And>i. k \<ge> i \<Longrightarrow> P i \<Longrightarrow> P (i - 1)"
shows "P i"
proof -
have "i \<le> k \<or> i \<ge> k" by arith
then show ?thesis
proof
assume "i \<ge> k"
then show ?thesis using base
by (rule int_ge_induct) (fact step1)
next
assume "i \<le> k"
then show ?thesis using base
by (rule int_le_induct) (fact step2)
qed
qed

subsection\<open>Intermediate value theorems\<close>

lemma int_val_lemma:
"(\<forall>i<n::nat. abs(f(i+1) - f i) \<le> 1) -->
f 0 \<le> k --> k \<le> f n --> (\<exists>i \<le> n. f i = (k::int))"
unfolding One_nat_def
apply (induct n)
apply simp
apply (intro strip)
apply (erule impE, simp)
apply (erule_tac x = n in allE, simp)
apply (case_tac "k = f (Suc n)")
apply force
apply (erule impE)
apply (blast intro: le_SucI)
done

lemmas nat0_intermed_int_val = int_val_lemma [rule_format (no_asm)]

lemma nat_intermed_int_val:
"[| \<forall>i. m \<le> i & i < n --> abs(f(i + 1::nat) - f i) \<le> 1; m < n;
f m \<le> k; k \<le> f n |] ==> ? i. m \<le> i & i \<le> n & f i = (k::int)"
apply (cut_tac n = "n-m" and f = "%i. f (i+m) " and k = k
in int_val_lemma)
unfolding One_nat_def
apply simp
apply (erule exE)
apply (rule_tac x = "i+m" in exI, arith)
done

subsection\<open>Products and 1, by T. M. Rasmussen\<close>

lemma zabs_less_one_iff [simp]: "(\<bar>z\<bar> < 1) = (z = (0::int))"
by arith

lemma abs_zmult_eq_1:
assumes mn: "\<bar>m * n\<bar> = 1"
shows "\<bar>m\<bar> = (1::int)"
proof -
have 0: "m \<noteq> 0 & n \<noteq> 0" using mn
by auto
have "~ (2 \<le> \<bar>m\<bar>)"
proof
assume "2 \<le> \<bar>m\<bar>"
hence "2*\<bar>n\<bar> \<le> \<bar>m\<bar>*\<bar>n\<bar>"
also have "... = \<bar>m*n\<bar>"
also have "... = 1"
finally have "2*\<bar>n\<bar> \<le> 1" .
thus "False" using 0
by arith
qed
thus ?thesis using 0
by auto
qed

lemma pos_zmult_eq_1_iff_lemma: "(m * n = 1) ==> m = (1::int) | m = -1"
by (insert abs_zmult_eq_1 [of m n], arith)

lemma pos_zmult_eq_1_iff:
assumes "0 < (m::int)" shows "(m * n = 1) = (m = 1 & n = 1)"
proof -
from assms have "m * n = 1 ==> m = 1" by (auto dest: pos_zmult_eq_1_iff_lemma)
thus ?thesis by (auto dest: pos_zmult_eq_1_iff_lemma)
qed

lemma zmult_eq_1_iff: "(m*n = (1::int)) = ((m = 1 & n = 1) | (m = -1 & n = -1))"
apply (rule iffI)
apply (frule pos_zmult_eq_1_iff_lemma)
apply (simp add: mult.commute [of m])
apply (frule pos_zmult_eq_1_iff_lemma, auto)
done

lemma infinite_UNIV_int: "\<not> finite (UNIV::int set)"
proof
assume "finite (UNIV::int set)"
moreover have "inj (\<lambda>i\<Colon>int. 2 * i)"
by (rule injI) simp
ultimately have "surj (\<lambda>i\<Colon>int. 2 * i)"
by (rule finite_UNIV_inj_surj)
then obtain i :: int where "1 = 2 * i" by (rule surjE)
then show False by (simp add: pos_zmult_eq_1_iff)
qed

subsection \<open>Further theorems on numerals\<close>

subsubsection\<open>Special Simplification for Constants\<close>

text\<open>These distributive laws move literals inside sums and differences.\<close>

lemmas distrib_right_numeral [simp] = distrib_right [of _ _ "numeral v"] for v
lemmas distrib_left_numeral [simp] = distrib_left [of "numeral v"] for v
lemmas left_diff_distrib_numeral [simp] = left_diff_distrib [of _ _ "numeral v"] for v
lemmas right_diff_distrib_numeral [simp] = right_diff_distrib [of "numeral v"] for v

text\<open>These are actually for fields, like real: but where else to put them?\<close>

lemmas zero_less_divide_iff_numeral [simp, no_atp] = zero_less_divide_iff [of "numeral w"] for w
lemmas divide_less_0_iff_numeral [simp, no_atp] = divide_less_0_iff [of "numeral w"] for w
lemmas zero_le_divide_iff_numeral [simp, no_atp] = zero_le_divide_iff [of "numeral w"] for w
lemmas divide_le_0_iff_numeral [simp, no_atp] = divide_le_0_iff [of "numeral w"] for w

text \<open>Replaces @{text "inverse #nn"} by @{text "1/#nn"}.  It looks
strange, but then other simprocs simplify the quotient.\<close>

lemmas inverse_eq_divide_numeral [simp] =
inverse_eq_divide [of "numeral w"] for w

lemmas inverse_eq_divide_neg_numeral [simp] =
inverse_eq_divide [of "- numeral w"] for w

text \<open>These laws simplify inequalities, moving unary minus from a term
into the literal.\<close>

lemmas equation_minus_iff_numeral [no_atp] =
equation_minus_iff [of "numeral v"] for v

lemmas minus_equation_iff_numeral [no_atp] =
minus_equation_iff [of _ "numeral v"] for v

lemmas le_minus_iff_numeral [no_atp] =
le_minus_iff [of "numeral v"] for v

lemmas minus_le_iff_numeral [no_atp] =
minus_le_iff [of _ "numeral v"] for v

lemmas less_minus_iff_numeral [no_atp] =
less_minus_iff [of "numeral v"] for v

lemmas minus_less_iff_numeral [no_atp] =
minus_less_iff [of _ "numeral v"] for v

-- \<open>FIXME maybe simproc\<close>

text \<open>Cancellation of constant factors in comparisons (@{text "<"} and @{text "\<le>"})\<close>

lemmas mult_less_cancel_left_numeral [simp, no_atp] = mult_less_cancel_left [of "numeral v"] for v
lemmas mult_less_cancel_right_numeral [simp, no_atp] = mult_less_cancel_right [of _ "numeral v"] for v
lemmas mult_le_cancel_left_numeral [simp, no_atp] = mult_le_cancel_left [of "numeral v"] for v
lemmas mult_le_cancel_right_numeral [simp, no_atp] = mult_le_cancel_right [of _ "numeral v"] for v

text \<open>Multiplying out constant divisors in comparisons (@{text "<"}, @{text "\<le>"} and @{text "="})\<close>

lemmas le_divide_eq_numeral1 [simp] =
pos_le_divide_eq [of "numeral w", OF zero_less_numeral]
neg_le_divide_eq [of "- numeral w", OF neg_numeral_less_zero] for w

lemmas divide_le_eq_numeral1 [simp] =
pos_divide_le_eq [of "numeral w", OF zero_less_numeral]
neg_divide_le_eq [of "- numeral w", OF neg_numeral_less_zero] for w

lemmas less_divide_eq_numeral1 [simp] =
pos_less_divide_eq [of "numeral w", OF zero_less_numeral]
neg_less_divide_eq [of "- numeral w", OF neg_numeral_less_zero] for w

lemmas divide_less_eq_numeral1 [simp] =
pos_divide_less_eq [of "numeral w", OF zero_less_numeral]
neg_divide_less_eq [of "- numeral w", OF neg_numeral_less_zero] for w

lemmas eq_divide_eq_numeral1 [simp] =
eq_divide_eq [of _ _ "numeral w"]
eq_divide_eq [of _ _ "- numeral w"] for w

lemmas divide_eq_eq_numeral1 [simp] =
divide_eq_eq [of _ "numeral w"]
divide_eq_eq [of _ "- numeral w"] for w

subsubsection\<open>Optional Simplification Rules Involving Constants\<close>

text\<open>Simplify quotients that are compared with a literal constant.\<close>

lemmas le_divide_eq_numeral =
le_divide_eq [of "numeral w"]
le_divide_eq [of "- numeral w"] for w

lemmas divide_le_eq_numeral =
divide_le_eq [of _ _ "numeral w"]
divide_le_eq [of _ _ "- numeral w"] for w

lemmas less_divide_eq_numeral =
less_divide_eq [of "numeral w"]
less_divide_eq [of "- numeral w"] for w

lemmas divide_less_eq_numeral =
divide_less_eq [of _ _ "numeral w"]
divide_less_eq [of _ _ "- numeral w"] for w

lemmas eq_divide_eq_numeral =
eq_divide_eq [of "numeral w"]
eq_divide_eq [of "- numeral w"] for w

lemmas divide_eq_eq_numeral =
divide_eq_eq [of _ _ "numeral w"]
divide_eq_eq [of _ _ "- numeral w"] for w

text\<open>Not good as automatic simprules because they cause case splits.\<close>
lemmas divide_const_simps =
le_divide_eq_numeral divide_le_eq_numeral less_divide_eq_numeral
divide_less_eq_numeral eq_divide_eq_numeral divide_eq_eq_numeral
le_divide_eq_1 divide_le_eq_1 less_divide_eq_1 divide_less_eq_1

subsection \<open>The divides relation\<close>

lemma zdvd_antisym_nonneg:
"0 <= m ==> 0 <= n ==> m dvd n ==> n dvd m ==> m = (n::int)"
apply (auto simp add: mult.assoc zero_le_mult_iff zmult_eq_1_iff)
done

lemma zdvd_antisym_abs: assumes "(a::int) dvd b" and "b dvd a"
shows "\<bar>a\<bar> = \<bar>b\<bar>"
proof cases
assume "a = 0" with assms show ?thesis by simp
next
assume "a \<noteq> 0"
from \<open>a dvd b\<close> obtain k where k:"b = a*k" unfolding dvd_def by blast
from \<open>b dvd a\<close> obtain k' where k':"a = b*k'" unfolding dvd_def by blast
from k k' have "a = a*k*k'" by simp
with mult_cancel_left1[where c="a" and b="k*k'"]
have kk':"k*k' = 1" using \<open>a\<noteq>0\<close> by (simp add: mult.assoc)
hence "k = 1 \<and> k' = 1 \<or> k = -1 \<and> k' = -1" by (simp add: zmult_eq_1_iff)
thus ?thesis using k k' by auto
qed

lemma zdvd_zdiffD: "k dvd m - n ==> k dvd n ==> k dvd (m::int)"
using dvd_add_right_iff [of k "- n" m] by simp

lemma zdvd_reduce: "(k dvd n + k * m) = (k dvd (n::int))"

lemma dvd_imp_le_int:
fixes d i :: int
assumes "i \<noteq> 0" and "d dvd i"
shows "\<bar>d\<bar> \<le> \<bar>i\<bar>"
proof -
from \<open>d dvd i\<close> obtain k where "i = d * k" ..
with \<open>i \<noteq> 0\<close> have "k \<noteq> 0" by auto
then have "1 \<le> \<bar>k\<bar>" and "0 \<le> \<bar>d\<bar>" by auto
then have "\<bar>d\<bar> * 1 \<le> \<bar>d\<bar> * \<bar>k\<bar>" by (rule mult_left_mono)
with \<open>i = d * k\<close> show ?thesis by (simp add: abs_mult)
qed

lemma zdvd_not_zless:
fixes m n :: int
assumes "0 < m" and "m < n"
shows "\<not> n dvd m"
proof
from assms have "0 < n" by auto
assume "n dvd m" then obtain k where k: "m = n * k" ..
with \<open>0 < m\<close> have "0 < n * k" by auto
with \<open>0 < n\<close> have "0 < k" by (simp add: zero_less_mult_iff)
with k \<open>0 < n\<close> \<open>m < n\<close> have "n * k < n * 1" by simp
with \<open>0 < n\<close> \<open>0 < k\<close> show False unfolding mult_less_cancel_left by auto
qed

lemma zdvd_mult_cancel: assumes d:"k * m dvd k * n" and kz:"k \<noteq> (0::int)"
shows "m dvd n"
proof-
from d obtain h where h: "k*n = k*m * h" unfolding dvd_def by blast
{assume "n \<noteq> m*h" hence "k* n \<noteq> k* (m*h)" using kz by simp
with h have False by (simp add: mult.assoc)}
hence "n = m * h" by blast
thus ?thesis by simp
qed

theorem zdvd_int: "(x dvd y) = (int x dvd int y)"
proof -
have "\<And>k. int y = int x * k \<Longrightarrow> x dvd y"
proof -
fix k
assume A: "int y = int x * k"
then show "x dvd y"
proof (cases k)
case (nonneg n)
with A have "y = x * n" by (simp add: of_nat_mult [symmetric])
then show ?thesis ..
next
case (neg n)
with A have "int y = int x * (- int (Suc n))" by simp
also have "\<dots> = - (int x * int (Suc n))" by (simp only: mult_minus_right)
also have "\<dots> = - int (x * Suc n)" by (simp only: of_nat_mult [symmetric])
finally have "- int (x * Suc n) = int y" ..
then show ?thesis by (simp only: negative_eq_positive) auto
qed
qed
then show ?thesis by (auto elim!: dvdE simp only: dvd_triv_left of_nat_mult)
qed

lemma zdvd1_eq[simp]: "(x::int) dvd 1 = (\<bar>x\<bar> = 1)"
proof
assume d: "x dvd 1" hence "int (nat \<bar>x\<bar>) dvd int (nat 1)" by simp
hence "nat \<bar>x\<bar> dvd 1" by (simp add: zdvd_int)
hence "nat \<bar>x\<bar> = 1"  by simp
thus "\<bar>x\<bar> = 1" by (cases "x < 0") auto
next
assume "\<bar>x\<bar>=1"
then have "x = 1 \<or> x = -1" by auto
then show "x dvd 1" by (auto intro: dvdI)
qed

lemma zdvd_mult_cancel1:
assumes mp:"m \<noteq>(0::int)" shows "(m * n dvd m) = (\<bar>n\<bar> = 1)"
proof
assume n1: "\<bar>n\<bar> = 1" thus "m * n dvd m"
by (cases "n >0") (auto simp add: minus_equation_iff)
next
assume H: "m * n dvd m" hence H2: "m * n dvd m * 1" by simp
from zdvd_mult_cancel[OF H2 mp] show "\<bar>n\<bar> = 1" by (simp only: zdvd1_eq)
qed

lemma int_dvd_iff: "(int m dvd z) = (m dvd nat (abs z))"
unfolding zdvd_int by (cases "z \<ge> 0") simp_all

lemma dvd_int_iff: "(z dvd int m) = (nat (abs z) dvd m)"
unfolding zdvd_int by (cases "z \<ge> 0") simp_all

lemma dvd_int_unfold_dvd_nat:
"k dvd l \<longleftrightarrow> nat \<bar>k\<bar> dvd nat \<bar>l\<bar>"
unfolding dvd_int_iff [symmetric] by simp

lemma nat_dvd_iff: "(nat z dvd m) = (if 0 \<le> z then (z dvd int m) else m = 0)"

lemma eq_nat_nat_iff:
"0 \<le> z \<Longrightarrow> 0 \<le> z' \<Longrightarrow> nat z = nat z' \<longleftrightarrow> z = z'"
by (auto elim!: nonneg_eq_int)

lemma nat_power_eq:
"0 \<le> z \<Longrightarrow> nat (z ^ n) = nat z ^ n"
by (induct n) (simp_all add: nat_mult_distrib)

lemma zdvd_imp_le: "[| z dvd n; 0 < n |] ==> z \<le> (n::int)"
apply (cases n)
apply (cases z)
done

lemma zdvd_period:
fixes a d :: int
assumes "a dvd d"
shows "a dvd (x + t) \<longleftrightarrow> a dvd ((x + c * d) + t)"
proof -
from assms obtain k where "d = a * k" by (rule dvdE)
show ?thesis
proof
assume "a dvd (x + t)"
then obtain l where "x + t = a * l" by (rule dvdE)
then have "x = a * l - t" by simp
with \<open>d = a * k\<close> show "a dvd x + c * d + t" by simp
next
assume "a dvd x + c * d + t"
then obtain l where "x + c * d + t = a * l" by (rule dvdE)
then have "x = a * l - c * d - t" by simp
with \<open>d = a * k\<close> show "a dvd (x + t)" by simp
qed
qed

subsection \<open>Finiteness of intervals\<close>

lemma finite_interval_int1 [iff]: "finite {i :: int. a <= i & i <= b}"
proof (cases "a <= b")
case True
from this show ?thesis
proof (induct b rule: int_ge_induct)
case base
have "{i. a <= i & i <= a} = {a}" by auto
from this show ?case by simp
next
case (step b)
from this have "{i. a <= i & i <= b + 1} = {i. a <= i & i <= b} \<union> {b + 1}" by auto
from this step show ?case by simp
qed
next
case False from this show ?thesis
by (metis (lifting, no_types) Collect_empty_eq finite.emptyI order_trans)
qed

lemma finite_interval_int2 [iff]: "finite {i :: int. a <= i & i < b}"
by (rule rev_finite_subset[OF finite_interval_int1[of "a" "b"]]) auto

lemma finite_interval_int3 [iff]: "finite {i :: int. a < i & i <= b}"
by (rule rev_finite_subset[OF finite_interval_int1[of "a" "b"]]) auto

lemma finite_interval_int4 [iff]: "finite {i :: int. a < i & i < b}"
by (rule rev_finite_subset[OF finite_interval_int1[of "a" "b"]]) auto

subsection \<open>Configuration of the code generator\<close>

text \<open>Constructors\<close>

definition Pos :: "num \<Rightarrow> int" where
[simp, code_abbrev]: "Pos = numeral"

definition Neg :: "num \<Rightarrow> int" where
[simp, code_abbrev]: "Neg n = - (Pos n)"

code_datatype "0::int" Pos Neg

text \<open>Auxiliary operations\<close>

definition dup :: "int \<Rightarrow> int" where
[simp]: "dup k = k + k"

lemma dup_code [code]:
"dup 0 = 0"
"dup (Pos n) = Pos (Num.Bit0 n)"
"dup (Neg n) = Neg (Num.Bit0 n)"
unfolding Pos_def Neg_def

definition sub :: "num \<Rightarrow> num \<Rightarrow> int" where
[simp]: "sub m n = numeral m - numeral n"

lemma sub_code [code]:
"sub Num.One Num.One = 0"
"sub (Num.Bit0 m) Num.One = Pos (Num.BitM m)"
"sub (Num.Bit1 m) Num.One = Pos (Num.Bit0 m)"
"sub Num.One (Num.Bit0 n) = Neg (Num.BitM n)"
"sub Num.One (Num.Bit1 n) = Neg (Num.Bit0 n)"
"sub (Num.Bit0 m) (Num.Bit0 n) = dup (sub m n)"
"sub (Num.Bit1 m) (Num.Bit1 n) = dup (sub m n)"
"sub (Num.Bit1 m) (Num.Bit0 n) = dup (sub m n) + 1"
"sub (Num.Bit0 m) (Num.Bit1 n) = dup (sub m n) - 1"
apply (simp_all only: sub_def dup_def numeral.simps Pos_def Neg_def numeral_BitM)
apply (simp_all only: algebra_simps minus_diff_eq)
apply (simp_all only: add.commute [of _ "- (numeral n + numeral n)"])
done

text \<open>Implementations\<close>

lemma one_int_code [code, code_unfold]:
"1 = Pos Num.One"
by simp

lemma plus_int_code [code]:
"k + 0 = (k::int)"
"0 + l = (l::int)"
"Pos m + Pos n = Pos (m + n)"
"Pos m + Neg n = sub m n"
"Neg m + Pos n = sub n m"
"Neg m + Neg n = Neg (m + n)"
by simp_all

lemma uminus_int_code [code]:
"uminus 0 = (0::int)"
"uminus (Pos m) = Neg m"
"uminus (Neg m) = Pos m"
by simp_all

lemma minus_int_code [code]:
"k - 0 = (k::int)"
"0 - l = uminus (l::int)"
"Pos m - Pos n = sub m n"
"Pos m - Neg n = Pos (m + n)"
"Neg m - Pos n = Neg (m + n)"
"Neg m - Neg n = sub n m"
by simp_all

lemma times_int_code [code]:
"k * 0 = (0::int)"
"0 * l = (0::int)"
"Pos m * Pos n = Pos (m * n)"
"Pos m * Neg n = Neg (m * n)"
"Neg m * Pos n = Neg (m * n)"
"Neg m * Neg n = Pos (m * n)"
by simp_all

instantiation int :: equal
begin

definition
"HOL.equal k l \<longleftrightarrow> k = (l::int)"

instance by default (rule equal_int_def)

end

lemma equal_int_code [code]:
"HOL.equal 0 (0::int) \<longleftrightarrow> True"
"HOL.equal 0 (Pos l) \<longleftrightarrow> False"
"HOL.equal 0 (Neg l) \<longleftrightarrow> False"
"HOL.equal (Pos k) 0 \<longleftrightarrow> False"
"HOL.equal (Pos k) (Pos l) \<longleftrightarrow> HOL.equal k l"
"HOL.equal (Pos k) (Neg l) \<longleftrightarrow> False"
"HOL.equal (Neg k) 0 \<longleftrightarrow> False"
"HOL.equal (Neg k) (Pos l) \<longleftrightarrow> False"
"HOL.equal (Neg k) (Neg l) \<longleftrightarrow> HOL.equal k l"

lemma equal_int_refl [code nbe]:
"HOL.equal (k::int) k \<longleftrightarrow> True"
by (fact equal_refl)

lemma less_eq_int_code [code]:
"0 \<le> (0::int) \<longleftrightarrow> True"
"0 \<le> Pos l \<longleftrightarrow> True"
"0 \<le> Neg l \<longleftrightarrow> False"
"Pos k \<le> 0 \<longleftrightarrow> False"
"Pos k \<le> Pos l \<longleftrightarrow> k \<le> l"
"Pos k \<le> Neg l \<longleftrightarrow> False"
"Neg k \<le> 0 \<longleftrightarrow> True"
"Neg k \<le> Pos l \<longleftrightarrow> True"
"Neg k \<le> Neg l \<longleftrightarrow> l \<le> k"
by simp_all

lemma less_int_code [code]:
"0 < (0::int) \<longleftrightarrow> False"
"0 < Pos l \<longleftrightarrow> True"
"0 < Neg l \<longleftrightarrow> False"
"Pos k < 0 \<longleftrightarrow> False"
"Pos k < Pos l \<longleftrightarrow> k < l"
"Pos k < Neg l \<longleftrightarrow> False"
"Neg k < 0 \<longleftrightarrow> True"
"Neg k < Pos l \<longleftrightarrow> True"
"Neg k < Neg l \<longleftrightarrow> l < k"
by simp_all

lemma nat_code [code]:
"nat (Int.Neg k) = 0"
"nat 0 = 0"
"nat (Int.Pos k) = nat_of_num k"

lemma (in ring_1) of_int_code [code]:
"of_int (Int.Neg k) = - numeral k"
"of_int 0 = 0"
"of_int (Int.Pos k) = numeral k"
by simp_all

text \<open>Serializer setup\<close>

code_identifier
code_module Int \<rightharpoonup> (SML) Arith and (OCaml) Arith and (Haskell) Arith

quickcheck_params [default_type = int]

hide_const (open) Pos Neg sub dup

subsection \<open>Legacy theorems\<close>

lemmas inj_int = inj_of_nat [where 'a=int]
lemmas int_mult = of_nat_mult [where 'a=int]
lemmas zmult_int = of_nat_mult [where 'a=int, symmetric]
lemmas int_eq_0_conv = of_nat_eq_0_iff [where 'a=int and m="n"] for n
lemmas zless_int = of_nat_less_iff [where 'a=int]
lemmas int_less_0_conv = of_nat_less_0_iff [where 'a=int and m="k"] for k
lemmas zero_less_int_conv = of_nat_0_less_iff [where 'a=int]
lemmas zero_zle_int = of_nat_0_le_iff [where 'a=int]
lemmas int_le_0_conv = of_nat_le_0_iff [where 'a=int and m="n"] for n
lemmas int_0 = of_nat_0 [where 'a=int]
lemmas int_1 = of_nat_1 [where 'a=int]
lemmas int_Suc = of_nat_Suc [where 'a=int]
lemmas int_numeral = of_nat_numeral [where 'a=int]
lemmas abs_int_eq = abs_of_nat [where 'a=int and n="m"] for m
lemmas of_int_int_eq = of_int_of_nat_eq [where 'a=int]
lemmas zdiff_int = of_nat_diff [where 'a=int, symmetric]
lemmas zpower_numeral_even = power_numeral_even [where 'a=int]
lemmas zpower_numeral_odd = power_numeral_odd [where 'a=int]

lemma zpower_zpower:
"(x ^ y) ^ z = (x ^ (y * z)::int)"
by (rule power_mult [symmetric])

lemma int_power:
"int (m ^ n) = int m ^ n"
by (fact of_nat_power)

lemmas zpower_int = int_power [symmetric]

text \<open>De-register @{text "int"} as a quotient type:\<close>

lifting_update int.lifting
lifting_forget int.lifting

text\<open>Also the class for fields with characteristic zero.\<close>
class field_char_0 = field + ring_char_0
subclass (in linordered_field) field_char_0 ..

end
```