1 (* Title: HOL/Library/Convex.thy
2 Author: Armin Heller, TU Muenchen
3 Author: Johannes Hoelzl, TU Muenchen
6 section {* Convexity in real vector spaces *}
12 subsection {* Convexity. *}
14 definition convex :: "'a::real_vector set \<Rightarrow> bool"
15 where "convex s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s)"
18 assumes "\<And>x y u v. x \<in> s \<Longrightarrow> y \<in> s \<Longrightarrow> 0 \<le> u \<Longrightarrow> 0 \<le> v \<Longrightarrow> u + v = 1 \<Longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s"
20 using assms unfolding convex_def by fast
23 assumes "convex s" and "x \<in> s" and "y \<in> s" and "0 \<le> u" and "0 \<le> v" and "u + v = 1"
24 shows "u *\<^sub>R x + v *\<^sub>R y \<in> s"
25 using assms unfolding convex_def by fast
28 "convex s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u. 0 \<le> u \<and> u \<le> 1 \<longrightarrow> ((1 - u) *\<^sub>R x + u *\<^sub>R y) \<in> s)"
29 (is "_ \<longleftrightarrow> ?alt")
31 assume alt[rule_format]: ?alt
33 fix x y and u v :: real
34 assume mem: "x \<in> s" "y \<in> s"
35 assume "0 \<le> u" "0 \<le> v"
38 then have "u = 1 - v" by auto
39 ultimately have "u *\<^sub>R x + v *\<^sub>R y \<in> s"
40 using alt[OF mem] by auto
43 unfolding convex_def by auto
44 qed (auto simp: convex_def)
47 assumes "convex s" "a \<in> s" "b \<in> s" "0 \<le> u" "u \<le> 1"
48 shows "((1 - u) *\<^sub>R a + u *\<^sub>R b) \<in> s"
49 using assms unfolding convex_alt by auto
51 lemma convex_empty[intro]: "convex {}"
52 unfolding convex_def by simp
54 lemma convex_singleton[intro]: "convex {a}"
55 unfolding convex_def by (auto simp: scaleR_left_distrib[symmetric])
57 lemma convex_UNIV[intro]: "convex UNIV"
58 unfolding convex_def by auto
60 lemma convex_Inter: "(\<forall>s\<in>f. convex s) \<Longrightarrow> convex(\<Inter> f)"
61 unfolding convex_def by auto
63 lemma convex_Int: "convex s \<Longrightarrow> convex t \<Longrightarrow> convex (s \<inter> t)"
64 unfolding convex_def by auto
66 lemma convex_INT: "\<forall>i\<in>A. convex (B i) \<Longrightarrow> convex (\<Inter>i\<in>A. B i)"
67 unfolding convex_def by auto
69 lemma convex_Times: "convex s \<Longrightarrow> convex t \<Longrightarrow> convex (s \<times> t)"
70 unfolding convex_def by auto
72 lemma convex_halfspace_le: "convex {x. inner a x \<le> b}"
74 by (auto simp: inner_add intro!: convex_bound_le)
76 lemma convex_halfspace_ge: "convex {x. inner a x \<ge> b}"
78 have *: "{x. inner a x \<ge> b} = {x. inner (-a) x \<le> -b}"
81 unfolding * using convex_halfspace_le[of "-a" "-b"] by auto
84 lemma convex_hyperplane: "convex {x. inner a x = b}"
86 have *: "{x. inner a x = b} = {x. inner a x \<le> b} \<inter> {x. inner a x \<ge> b}"
88 show ?thesis using convex_halfspace_le convex_halfspace_ge
89 by (auto intro!: convex_Int simp: *)
92 lemma convex_halfspace_lt: "convex {x. inner a x < b}"
94 by (auto simp: convex_bound_lt inner_add)
96 lemma convex_halfspace_gt: "convex {x. inner a x > b}"
97 using convex_halfspace_lt[of "-a" "-b"] by auto
99 lemma convex_real_interval:
101 shows "convex {a..}" and "convex {..b}"
102 and "convex {a<..}" and "convex {..<b}"
103 and "convex {a..b}" and "convex {a<..b}"
104 and "convex {a..<b}" and "convex {a<..<b}"
106 have "{a..} = {x. a \<le> inner 1 x}" by auto
107 then show 1: "convex {a..}" by (simp only: convex_halfspace_ge)
108 have "{..b} = {x. inner 1 x \<le> b}" by auto
109 then show 2: "convex {..b}" by (simp only: convex_halfspace_le)
110 have "{a<..} = {x. a < inner 1 x}" by auto
111 then show 3: "convex {a<..}" by (simp only: convex_halfspace_gt)
112 have "{..<b} = {x. inner 1 x < b}" by auto
113 then show 4: "convex {..<b}" by (simp only: convex_halfspace_lt)
114 have "{a..b} = {a..} \<inter> {..b}" by auto
115 then show "convex {a..b}" by (simp only: convex_Int 1 2)
116 have "{a<..b} = {a<..} \<inter> {..b}" by auto
117 then show "convex {a<..b}" by (simp only: convex_Int 3 2)
118 have "{a..<b} = {a..} \<inter> {..<b}" by auto
119 then show "convex {a..<b}" by (simp only: convex_Int 1 4)
120 have "{a<..<b} = {a<..} \<inter> {..<b}" by auto
121 then show "convex {a<..<b}" by (simp only: convex_Int 3 4)
124 subsection {* Explicit expressions for convexity in terms of arbitrary sums. *}
127 fixes C :: "'a::real_vector set"
130 and "(\<Sum> i \<in> s. a i) = 1"
131 assumes "\<And>i. i \<in> s \<Longrightarrow> a i \<ge> 0"
132 and "\<And>i. i \<in> s \<Longrightarrow> y i \<in> C"
133 shows "(\<Sum> j \<in> s. a j *\<^sub>R y j) \<in> C"
135 proof (induct arbitrary: a set: finite)
137 then show ?case by simp
139 case (insert i s) note IH = this(3)
140 have "a i + setsum a s = 1"
142 and "\<forall>j\<in>s. 0 \<le> a j"
144 and "\<forall>j\<in>s. y j \<in> C"
145 using insert.hyps(1,2) insert.prems by simp_all
146 then have "0 \<le> setsum a s"
147 by (simp add: setsum_nonneg)
148 have "a i *\<^sub>R y i + (\<Sum>j\<in>s. a j *\<^sub>R y j) \<in> C"
150 assume z: "setsum a s = 0"
151 with `a i + setsum a s = 1` have "a i = 1"
153 from setsum_nonneg_0 [OF `finite s` _ z] `\<forall>j\<in>s. 0 \<le> a j` have "\<forall>j\<in>s. a j = 0"
155 show ?thesis using `a i = 1` and `\<forall>j\<in>s. a j = 0` and `y i \<in> C`
158 assume nz: "setsum a s \<noteq> 0"
159 with `0 \<le> setsum a s` have "0 < setsum a s"
161 then have "(\<Sum>j\<in>s. (a j / setsum a s) *\<^sub>R y j) \<in> C"
162 using `\<forall>j\<in>s. 0 \<le> a j` and `\<forall>j\<in>s. y j \<in> C`
163 by (simp add: IH setsum_divide_distrib [symmetric])
164 from `convex C` and `y i \<in> C` and this and `0 \<le> a i`
165 and `0 \<le> setsum a s` and `a i + setsum a s = 1`
166 have "a i *\<^sub>R y i + setsum a s *\<^sub>R (\<Sum>j\<in>s. (a j / setsum a s) *\<^sub>R y j) \<in> C"
169 by (simp add: scaleR_setsum_right nz)
171 then show ?case using `finite s` and `i \<notin> s`
176 "convex s \<longleftrightarrow> (\<forall>(k::nat) u x. (\<forall>i. 1\<le>i \<and> i\<le>k \<longrightarrow> 0 \<le> u i \<and> x i \<in>s) \<and> (setsum u {1..k} = 1)
177 \<longrightarrow> setsum (\<lambda>i. u i *\<^sub>R x i) {1..k} \<in> s)"
180 fix u :: "nat \<Rightarrow> real"
183 "\<forall>i. 1 \<le> i \<and> i \<le> k \<longrightarrow> 0 \<le> u i \<and> x i \<in> s"
184 "setsum u {1..k} = 1"
185 from this convex_setsum[of "{1 .. k}" s]
186 show "(\<Sum>j\<in>{1 .. k}. u j *\<^sub>R x j) \<in> s"
189 assume asm: "\<forall>k u x. (\<forall> i :: nat. 1 \<le> i \<and> i \<le> k \<longrightarrow> 0 \<le> u i \<and> x i \<in> s) \<and> setsum u {1..k} = 1
190 \<longrightarrow> (\<Sum>i = 1..k. u i *\<^sub>R (x i :: 'a)) \<in> s"
194 assume xy: "x \<in> s" "y \<in> s"
195 assume mu: "\<mu> \<ge> 0" "\<mu> \<le> 1"
196 let ?u = "\<lambda>i. if (i :: nat) = 1 then \<mu> else 1 - \<mu>"
197 let ?x = "\<lambda>i. if (i :: nat) = 1 then x else y"
198 have "{1 :: nat .. 2} \<inter> - {x. x = 1} = {2}"
200 then have card: "card ({1 :: nat .. 2} \<inter> - {x. x = 1}) = 1"
202 then have "setsum ?u {1 .. 2} = 1"
203 using setsum.If_cases[of "{(1 :: nat) .. 2}" "\<lambda> x. x = 1" "\<lambda> x. \<mu>" "\<lambda> x. 1 - \<mu>"]
205 with asm[rule_format, of "2" ?u ?x] have s: "(\<Sum>j \<in> {1..2}. ?u j *\<^sub>R ?x j) \<in> s"
207 have grarr: "(\<Sum>j \<in> {Suc (Suc 0)..2}. ?u j *\<^sub>R ?x j) = (1 - \<mu>) *\<^sub>R y"
208 using setsum_head_Suc[of "Suc (Suc 0)" 2 "\<lambda> j. (1 - \<mu>) *\<^sub>R y"] by auto
209 from setsum_head_Suc[of "Suc 0" 2 "\<lambda> j. ?u j *\<^sub>R ?x j", simplified this]
210 have "(\<Sum>j \<in> {1..2}. ?u j *\<^sub>R ?x j) = \<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y"
212 then have "(1 - \<mu>) *\<^sub>R y + \<mu> *\<^sub>R x \<in> s"
213 using s by (auto simp:add.commute)
216 unfolding convex_alt by auto
220 lemma convex_explicit:
221 fixes s :: "'a::real_vector set"
222 shows "convex s \<longleftrightarrow>
223 (\<forall>t u. finite t \<and> t \<subseteq> s \<and> (\<forall>x\<in>t. 0 \<le> u x) \<and> setsum u t = 1 \<longrightarrow> setsum (\<lambda>x. u x *\<^sub>R x) t \<in> s)"
226 fix u :: "'a \<Rightarrow> real"
229 and "t \<subseteq> s" "\<forall>x\<in>t. 0 \<le> u x" "setsum u t = 1"
230 then show "(\<Sum>x\<in>t. u x *\<^sub>R x) \<in> s"
231 using convex_setsum[of t s u "\<lambda> x. x"] by auto
233 assume asm0: "\<forall>t. \<forall> u. finite t \<and> t \<subseteq> s \<and> (\<forall>x\<in>t. 0 \<le> u x) \<and>
234 setsum u t = 1 \<longrightarrow> (\<Sum>x\<in>t. u x *\<^sub>R x) \<in> s"
240 assume asm: "x \<in> s" "y \<in> s" "0 \<le> \<mu>" "\<mu> \<le> 1"
242 assume "x \<noteq> y"
243 then have "(1 - \<mu>) *\<^sub>R x + \<mu> *\<^sub>R y \<in> s"
244 using asm0[rule_format, of "{x, y}" "\<lambda> z. if z = x then 1 - \<mu> else \<mu>"]
250 then have "(1 - \<mu>) *\<^sub>R x + \<mu> *\<^sub>R y \<in> s"
251 using asm0[rule_format, of "{x, y}" "\<lambda> z. 1"]
252 asm by (auto simp: field_simps real_vector.scale_left_diff_distrib)
254 ultimately show "(1 - \<mu>) *\<^sub>R x + \<mu> *\<^sub>R y \<in> s"
261 shows "convex s \<longleftrightarrow> (\<forall>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<longrightarrow> setsum (\<lambda>x. u x *\<^sub>R x) s \<in> s)"
262 unfolding convex_explicit
265 assume sum: "\<forall>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<longrightarrow> (\<Sum>x\<in>s. u x *\<^sub>R x) \<in> s"
266 and as: "finite t" "t \<subseteq> s" "\<forall>x\<in>t. 0 \<le> u x" "setsum u t = (1::real)"
267 have *: "s \<inter> t = t"
269 have if_distrib_arg: "\<And>P f g x. (if P then f else g) x = (if P then f x else g x)"
271 show "(\<Sum>x\<in>t. u x *\<^sub>R x) \<in> s"
272 using sum[THEN spec[where x="\<lambda>x. if x\<in>t then u x else 0"]] as *
273 by (auto simp: assms setsum.If_cases if_distrib if_distrib_arg)
274 qed (erule_tac x=s in allE, erule_tac x=u in allE, auto)
277 subsection {* Functions that are convex on a set *}
279 definition convex_on :: "'a::real_vector set \<Rightarrow> ('a \<Rightarrow> real) \<Rightarrow> bool"
280 where "convex_on s f \<longleftrightarrow>
281 (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y)"
283 lemma convex_on_subset: "convex_on t f \<Longrightarrow> s \<subseteq> t \<Longrightarrow> convex_on s f"
284 unfolding convex_on_def by auto
286 lemma convex_on_add [intro]:
287 assumes "convex_on s f"
289 shows "convex_on s (\<lambda>x. f x + g x)"
293 assume "x \<in> s" "y \<in> s"
296 assume "0 \<le> u" "0 \<le> v" "u + v = 1"
298 have "f (u *\<^sub>R x + v *\<^sub>R y) + g (u *\<^sub>R x + v *\<^sub>R y) \<le> (u * f x + v * f y) + (u * g x + v * g y)"
299 using assms unfolding convex_on_def by (auto simp add: add_mono)
300 then have "f (u *\<^sub>R x + v *\<^sub>R y) + g (u *\<^sub>R x + v *\<^sub>R y) \<le> u * (f x + g x) + v * (f y + g y)"
301 by (simp add: field_simps)
304 unfolding convex_on_def by auto
307 lemma convex_on_cmul [intro]:
311 shows "convex_on s (\<lambda>x. c * f x)"
313 have *: "\<And>u c fx v fy ::real. u * (c * fx) + v * (c * fy) = c * (u * fx + v * fy)"
314 by (simp add: field_simps)
315 show ?thesis using assms(2) and mult_left_mono [OF _ assms(1)]
316 unfolding convex_on_def and * by auto
320 assumes "convex_on s f"
326 shows "f (u *\<^sub>R x + v *\<^sub>R y) \<le> max (f x) (f y)"
328 let ?m = "max (f x) (f y)"
329 have "u * f x + v * f y \<le> u * max (f x) (f y) + v * max (f x) (f y)"
330 using assms(4,5) by (auto simp add: mult_left_mono add_mono)
331 also have "\<dots> = max (f x) (f y)"
332 using assms(6) unfolding distrib[symmetric] by auto
334 using assms unfolding convex_on_def by fastforce
337 lemma convex_on_dist [intro]:
338 fixes s :: "'a::real_normed_vector set"
339 shows "convex_on s (\<lambda>x. dist a x)"
340 proof (auto simp add: convex_on_def dist_norm)
342 assume "x \<in> s" "y \<in> s"
347 have "a = u *\<^sub>R a + v *\<^sub>R a"
348 unfolding scaleR_left_distrib[symmetric] and `u + v = 1` by simp
349 then have *: "a - (u *\<^sub>R x + v *\<^sub>R y) = (u *\<^sub>R (a - x)) + (v *\<^sub>R (a - y))"
350 by (auto simp add: algebra_simps)
351 show "norm (a - (u *\<^sub>R x + v *\<^sub>R y)) \<le> u * norm (a - x) + v * norm (a - y)"
352 unfolding * using norm_triangle_ineq[of "u *\<^sub>R (a - x)" "v *\<^sub>R (a - y)"]
353 using `0 \<le> u` `0 \<le> v` by auto
357 subsection {* Arithmetic operations on sets preserve convexity. *}
359 lemma convex_linear_image:
362 shows "convex (f ` s)"
364 interpret f: linear f by fact
365 from `convex s` show "convex (f ` s)"
366 by (simp add: convex_def f.scaleR [symmetric] f.add [symmetric])
369 lemma convex_linear_vimage:
372 shows "convex (f -` s)"
374 interpret f: linear f by fact
375 from `convex s` show "convex (f -` s)"
376 by (simp add: convex_def f.add f.scaleR)
379 lemma convex_scaling:
381 shows "convex ((\<lambda>x. c *\<^sub>R x) ` s)"
383 have "linear (\<lambda>x. c *\<^sub>R x)"
384 by (simp add: linearI scaleR_add_right)
386 using `convex s` by (rule convex_linear_image)
389 lemma convex_negations:
391 shows "convex ((\<lambda>x. - x) ` s)"
393 have "linear (\<lambda>x. - x)"
394 by (simp add: linearI)
396 using `convex s` by (rule convex_linear_image)
402 shows "convex {x + y| x y. x \<in> s \<and> y \<in> t}"
404 have "linear (\<lambda>(x, y). x + y)"
405 by (auto intro: linearI simp add: scaleR_add_right)
406 with assms have "convex ((\<lambda>(x, y). x + y) ` (s \<times> t))"
407 by (intro convex_linear_image convex_Times)
408 also have "((\<lambda>(x, y). x + y) ` (s \<times> t)) = {x + y| x y. x \<in> s \<and> y \<in> t}"
410 finally show ?thesis .
413 lemma convex_differences:
414 assumes "convex s" "convex t"
415 shows "convex {x - y| x y. x \<in> s \<and> y \<in> t}"
417 have "{x - y| x y. x \<in> s \<and> y \<in> t} = {x + y |x y. x \<in> s \<and> y \<in> uminus ` t}"
418 by (auto simp add: diff_conv_add_uminus simp del: add_uminus_conv_diff)
420 using convex_sums[OF assms(1) convex_negations[OF assms(2)]] by auto
423 lemma convex_translation:
425 shows "convex ((\<lambda>x. a + x) ` s)"
427 have "{a + y |y. y \<in> s} = (\<lambda>x. a + x) ` s"
430 using convex_sums[OF convex_singleton[of a] assms] by auto
433 lemma convex_affinity:
435 shows "convex ((\<lambda>x. a + c *\<^sub>R x) ` s)"
437 have "(\<lambda>x. a + c *\<^sub>R x) ` s = op + a ` op *\<^sub>R c ` s"
440 using convex_translation[OF convex_scaling[OF assms], of a c] by auto
443 lemma pos_is_convex: "convex {0 :: real <..}"
446 fix y x \<mu> :: real
447 assume asms: "y > 0" "x > 0" "\<mu> \<ge> 0" "\<mu> \<le> 1"
450 then have "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y = y" by simp
451 then have "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y > 0" using asms by simp
456 then have "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y > 0" using asms by simp
460 assume "\<mu> \<noteq> 1" "\<mu> \<noteq> 0"
461 then have "\<mu> > 0" "(1 - \<mu>) > 0" using asms by auto
462 then have "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y > 0" using asms
463 by (auto simp add: add_pos_pos)
465 ultimately show "(1 - \<mu>) *\<^sub>R y + \<mu> *\<^sub>R x > 0"
466 using assms by fastforce
469 lemma convex_on_setsum:
470 fixes a :: "'a \<Rightarrow> real"
471 and y :: "'a \<Rightarrow> 'b::real_vector"
472 and f :: "'b \<Rightarrow> real"
473 assumes "finite s" "s \<noteq> {}"
476 and "(\<Sum> i \<in> s. a i) = 1"
477 and "\<And>i. i \<in> s \<Longrightarrow> a i \<ge> 0"
478 and "\<And>i. i \<in> s \<Longrightarrow> y i \<in> C"
479 shows "f (\<Sum> i \<in> s. a i *\<^sub>R y i) \<le> (\<Sum> i \<in> s. a i * f (y i))"
481 proof (induct s arbitrary: a rule: finite_ne_induct)
483 then have ai: "a i = 1" by auto
484 then show ?case by auto
486 case (insert i s) note asms = this
487 then have "convex_on C f" by simp
488 from this[unfolded convex_on_def, rule_format]
489 have conv: "\<And>x y \<mu>. x \<in> C \<Longrightarrow> y \<in> C \<Longrightarrow> 0 \<le> \<mu> \<Longrightarrow> \<mu> \<le> 1 \<Longrightarrow>
490 f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y"
494 then have "(\<Sum> j \<in> s. a j) = 0"
496 then have "\<And>j. j \<in> s \<Longrightarrow> a j = 0"
497 using setsum_nonneg_0[where 'b=real] asms by fastforce
498 then have ?case using asms by auto
502 assume asm: "a i \<noteq> 1"
503 from asms have yai: "y i \<in> C" "a i \<ge> 0" by auto
504 have fis: "finite (insert i s)" using asms by auto
505 then have ai1: "a i \<le> 1" using setsum_nonneg_leq_bound[of "insert i s" a] asms by simp
506 then have "a i < 1" using asm by auto
507 then have i0: "1 - a i > 0" by auto
508 let ?a = "\<lambda>j. a j / (1 - a i)"
512 with i0 asms have "?a j \<ge> 0"
516 have "(\<Sum> j \<in> insert i s. a j) = 1" using asms by auto
517 then have "(\<Sum> j \<in> s. a j) = 1 - a i" using setsum.insert asms by fastforce
518 then have "(\<Sum> j \<in> s. a j) / (1 - a i) = 1" using i0 by auto
519 then have a1: "(\<Sum> j \<in> s. ?a j) = 1" unfolding setsum_divide_distrib by simp
520 have "convex C" using asms by auto
521 then have asum: "(\<Sum> j \<in> s. ?a j *\<^sub>R y j) \<in> C"
522 using asms convex_setsum[OF `finite s`
523 `convex C` a1 a_nonneg] by auto
524 have asum_le: "f (\<Sum> j \<in> s. ?a j *\<^sub>R y j) \<le> (\<Sum> j \<in> s. ?a j * f (y j))"
525 using a_nonneg a1 asms by blast
526 have "f (\<Sum> j \<in> insert i s. a j *\<^sub>R y j) = f ((\<Sum> j \<in> s. a j *\<^sub>R y j) + a i *\<^sub>R y i)"
527 using setsum.insert[of s i "\<lambda> j. a j *\<^sub>R y j", OF `finite s` `i \<notin> s`] asms
528 by (auto simp only:add.commute)
529 also have "\<dots> = f (((1 - a i) * inverse (1 - a i)) *\<^sub>R (\<Sum> j \<in> s. a j *\<^sub>R y j) + a i *\<^sub>R y i)"
531 also have "\<dots> = f ((1 - a i) *\<^sub>R (\<Sum> j \<in> s. (a j * inverse (1 - a i)) *\<^sub>R y j) + a i *\<^sub>R y i)"
532 using scaleR_right.setsum[of "inverse (1 - a i)" "\<lambda> j. a j *\<^sub>R y j" s, symmetric]
533 by (auto simp:algebra_simps)
534 also have "\<dots> = f ((1 - a i) *\<^sub>R (\<Sum> j \<in> s. ?a j *\<^sub>R y j) + a i *\<^sub>R y i)"
535 by (auto simp: divide_inverse)
536 also have "\<dots> \<le> (1 - a i) *\<^sub>R f ((\<Sum> j \<in> s. ?a j *\<^sub>R y j)) + a i * f (y i)"
537 using conv[of "y i" "(\<Sum> j \<in> s. ?a j *\<^sub>R y j)" "a i", OF yai(1) asum yai(2) ai1]
538 by (auto simp add:add.commute)
539 also have "\<dots> \<le> (1 - a i) * (\<Sum> j \<in> s. ?a j * f (y j)) + a i * f (y i)"
540 using add_right_mono[OF mult_left_mono[of _ _ "1 - a i",
541 OF asum_le less_imp_le[OF i0]], of "a i * f (y i)"] by simp
542 also have "\<dots> = (\<Sum> j \<in> s. (1 - a i) * ?a j * f (y j)) + a i * f (y i)"
543 unfolding setsum_right_distrib[of "1 - a i" "\<lambda> j. ?a j * f (y j)"] using i0 by auto
544 also have "\<dots> = (\<Sum> j \<in> s. a j * f (y j)) + a i * f (y i)" using i0 by auto
545 also have "\<dots> = (\<Sum> j \<in> insert i s. a j * f (y j))" using asms by auto
546 finally have "f (\<Sum> j \<in> insert i s. a j *\<^sub>R y j) \<le> (\<Sum> j \<in> insert i s. a j * f (y j))"
549 ultimately show ?case by auto
553 fixes C :: "'a::real_vector set"
555 shows "convex_on C f \<longleftrightarrow>
556 (\<forall>x \<in> C. \<forall> y \<in> C. \<forall> \<mu> :: real. \<mu> \<ge> 0 \<and> \<mu> \<le> 1 \<longrightarrow>
557 f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y)"
561 assume asms: "convex_on C f" "x \<in> C" "y \<in> C" "0 \<le> \<mu>" "\<mu> \<le> 1"
562 from this[unfolded convex_on_def, rule_format]
563 have "\<And>u v. 0 \<le> u \<Longrightarrow> 0 \<le> v \<Longrightarrow> u + v = 1 \<Longrightarrow> f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y"
565 from this[of "\<mu>" "1 - \<mu>", simplified] asms
566 show "f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y"
569 assume asm: "\<forall>x\<in>C. \<forall>y\<in>C. \<forall>\<mu>. 0 \<le> \<mu> \<and> \<mu> \<le> 1 \<longrightarrow>
570 f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y"
574 assume lasm: "x \<in> C" "y \<in> C" "u \<ge> 0" "v \<ge> 0" "u + v = 1"
575 then have[simp]: "1 - u = v" by auto
576 from asm[rule_format, of x y u]
577 have "f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y"
580 then show "convex_on C f"
581 unfolding convex_on_def by auto
584 lemma convex_on_diff:
585 fixes f :: "real \<Rightarrow> real"
586 assumes f: "convex_on I f"
587 and I: "x \<in> I" "y \<in> I"
588 and t: "x < t" "t < y"
589 shows "(f x - f t) / (x - t) \<le> (f x - f y) / (x - y)"
590 and "(f x - f y) / (x - y) \<le> (f t - f y) / (t - y)"
592 def a \<equiv> "(t - y) / (x - y)"
593 with t have "0 \<le> a" "0 \<le> 1 - a"
594 by (auto simp: field_simps)
595 with f `x \<in> I` `y \<in> I` have cvx: "f (a * x + (1 - a) * y) \<le> a * f x + (1 - a) * f y"
596 by (auto simp: convex_on_def)
597 have "a * x + (1 - a) * y = a * (x - y) + y"
598 by (simp add: field_simps)
599 also have "\<dots> = t"
600 unfolding a_def using `x < t` `t < y` by simp
601 finally have "f t \<le> a * f x + (1 - a) * f y"
603 also have "\<dots> = a * (f x - f y) + f y"
604 by (simp add: field_simps)
605 finally have "f t - f y \<le> a * (f x - f y)"
607 with t show "(f x - f t) / (x - t) \<le> (f x - f y) / (x - y)"
608 by (simp add: le_divide_eq divide_le_eq field_simps a_def)
609 with t show "(f x - f y) / (x - y) \<le> (f t - f y) / (t - y)"
610 by (simp add: le_divide_eq divide_le_eq field_simps)
613 lemma pos_convex_function:
614 fixes f :: "real \<Rightarrow> real"
616 and leq: "\<And>x y. x \<in> C \<Longrightarrow> y \<in> C \<Longrightarrow> f' x * (y - x) \<le> f y - f x"
617 shows "convex_on C f"
618 unfolding convex_on_alt[OF assms(1)]
621 fix x y \<mu> :: real
622 let ?x = "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y"
623 assume asm: "convex C" "x \<in> C" "y \<in> C" "\<mu> \<ge> 0" "\<mu> \<le> 1"
624 then have "1 - \<mu> \<ge> 0" by auto
625 then have xpos: "?x \<in> C"
626 using asm unfolding convex_alt by fastforce
627 have geq: "\<mu> * (f x - f ?x) + (1 - \<mu>) * (f y - f ?x) \<ge>
628 \<mu> * f' ?x * (x - ?x) + (1 - \<mu>) * f' ?x * (y - ?x)"
629 using add_mono[OF mult_left_mono[OF leq[OF xpos asm(2)] `\<mu> \<ge> 0`]
630 mult_left_mono[OF leq[OF xpos asm(3)] `1 - \<mu> \<ge> 0`]]
632 then have "\<mu> * f x + (1 - \<mu>) * f y - f ?x \<ge> 0"
633 by (auto simp add: field_simps)
634 then show "f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y"
635 using convex_on_alt by auto
638 lemma atMostAtLeast_subset_convex:
639 fixes C :: "real set"
641 and "x \<in> C" "y \<in> C" "x < y"
642 shows "{x .. y} \<subseteq> C"
644 fix z assume zasm: "z \<in> {x .. y}"
646 assume asm: "x < z" "z < y"
647 let ?\<mu> = "(y - z) / (y - x)"
648 have "0 \<le> ?\<mu>" "?\<mu> \<le> 1"
649 using assms asm by (auto simp add: field_simps)
650 then have comb: "?\<mu> * x + (1 - ?\<mu>) * y \<in> C"
651 using assms iffD1[OF convex_alt, rule_format, of C y x ?\<mu>]
652 by (simp add: algebra_simps)
653 have "?\<mu> * x + (1 - ?\<mu>) * y = (y - z) * x / (y - x) + (1 - (y - z) / (y - x)) * y"
654 by (auto simp add: field_simps)
655 also have "\<dots> = ((y - z) * x + (y - x - (y - z)) * y) / (y - x)"
656 using assms unfolding add_divide_distrib by (auto simp: field_simps)
657 also have "\<dots> = z"
658 using assms by (auto simp: field_simps)
659 finally have "z \<in> C"
663 show "z \<in> C" using zasm less assms
664 unfolding atLeastAtMost_iff le_less by auto
668 fixes f :: "real \<Rightarrow> real"
670 and f': "\<And>x. x \<in> C \<Longrightarrow> DERIV f x :> (f' x)"
671 and f'': "\<And>x. x \<in> C \<Longrightarrow> DERIV f' x :> (f'' x)"
672 and pos: "\<And>x. x \<in> C \<Longrightarrow> f'' x \<ge> 0"
673 and "x \<in> C" "y \<in> C"
674 shows "f' x * (y - x) \<le> f y - f x"
679 assume asm: "x \<in> C" "y \<in> C" "y > x"
680 then have ge: "y - x > 0" "y - x \<ge> 0" by auto
681 from asm have le: "x - y < 0" "x - y \<le> 0" by auto
682 then obtain z1 where z1: "z1 > x" "z1 < y" "f y - f x = (y - x) * f' z1"
683 using subsetD[OF atMostAtLeast_subset_convex[OF `convex C` `x \<in> C` `y \<in> C` `x < y`],
684 THEN f', THEN MVT2[OF `x < y`, rule_format, unfolded atLeastAtMost_iff[symmetric]]]
686 then have "z1 \<in> C" using atMostAtLeast_subset_convex
687 `convex C` `x \<in> C` `y \<in> C` `x < y` by fastforce
688 from z1 have z1': "f x - f y = (x - y) * f' z1"
689 by (simp add:field_simps)
690 obtain z2 where z2: "z2 > x" "z2 < z1" "f' z1 - f' x = (z1 - x) * f'' z2"
691 using subsetD[OF atMostAtLeast_subset_convex[OF `convex C` `x \<in> C` `z1 \<in> C` `x < z1`],
692 THEN f'', THEN MVT2[OF `x < z1`, rule_format, unfolded atLeastAtMost_iff[symmetric]]] z1
694 obtain z3 where z3: "z3 > z1" "z3 < y" "f' y - f' z1 = (y - z1) * f'' z3"
695 using subsetD[OF atMostAtLeast_subset_convex[OF `convex C` `z1 \<in> C` `y \<in> C` `z1 < y`],
696 THEN f'', THEN MVT2[OF `z1 < y`, rule_format, unfolded atLeastAtMost_iff[symmetric]]] z1
698 have "f' y - (f x - f y) / (x - y) = f' y - f' z1"
699 using asm z1' by auto
700 also have "\<dots> = (y - z1) * f'' z3" using z3 by auto
701 finally have cool': "f' y - (f x - f y) / (x - y) = (y - z1) * f'' z3" by simp
702 have A': "y - z1 \<ge> 0" using z1 by auto
703 have "z3 \<in> C" using z3 asm atMostAtLeast_subset_convex
704 `convex C` `x \<in> C` `z1 \<in> C` `x < z1` by fastforce
705 then have B': "f'' z3 \<ge> 0" using assms by auto
706 from A' B' have "(y - z1) * f'' z3 \<ge> 0" by auto
707 from cool' this have "f' y - (f x - f y) / (x - y) \<ge> 0" by auto
708 from mult_right_mono_neg[OF this le(2)]
709 have "f' y * (x - y) - (f x - f y) / (x - y) * (x - y) \<le> 0 * (x - y)"
710 by (simp add: algebra_simps)
711 then have "f' y * (x - y) - (f x - f y) \<le> 0" using le by auto
712 then have res: "f' y * (x - y) \<le> f x - f y" by auto
713 have "(f y - f x) / (y - x) - f' x = f' z1 - f' x"
715 also have "\<dots> = (z1 - x) * f'' z2" using z2 by auto
716 finally have cool: "(f y - f x) / (y - x) - f' x = (z1 - x) * f'' z2" by simp
717 have A: "z1 - x \<ge> 0" using z1 by auto
718 have "z2 \<in> C" using z2 z1 asm atMostAtLeast_subset_convex
719 `convex C` `z1 \<in> C` `y \<in> C` `z1 < y` by fastforce
720 then have B: "f'' z2 \<ge> 0" using assms by auto
721 from A B have "(z1 - x) * f'' z2 \<ge> 0" by auto
722 from cool this have "(f y - f x) / (y - x) - f' x \<ge> 0" by auto
723 from mult_right_mono[OF this ge(2)]
724 have "(f y - f x) / (y - x) * (y - x) - f' x * (y - x) \<ge> 0 * (y - x)"
725 by (simp add: algebra_simps)
726 then have "f y - f x - f' x * (y - x) \<ge> 0" using ge by auto
727 then have "f y - f x \<ge> f' x * (y - x)" "f' y * (x - y) \<le> f x - f y"
728 using res by auto } note less_imp = this
731 assume "x \<in> C" "y \<in> C" "x \<noteq> y"
732 then have"f y - f x \<ge> f' x * (y - x)"
733 unfolding neq_iff using less_imp by auto
738 assume asm: "x \<in> C" "y \<in> C" "x = y"
739 then have "f y - f x \<ge> f' x * (y - x)" by auto
741 ultimately show ?thesis using assms by blast
744 lemma f''_ge0_imp_convex:
745 fixes f :: "real \<Rightarrow> real"
746 assumes conv: "convex C"
747 and f': "\<And>x. x \<in> C \<Longrightarrow> DERIV f x :> (f' x)"
748 and f'': "\<And>x. x \<in> C \<Longrightarrow> DERIV f' x :> (f'' x)"
749 and pos: "\<And>x. x \<in> C \<Longrightarrow> f'' x \<ge> 0"
750 shows "convex_on C f"
751 using f''_imp_f'[OF conv f' f'' pos] assms pos_convex_function
754 lemma minus_log_convex:
757 shows "convex_on {0 <..} (\<lambda> x. - log b x)"
759 have "\<And>z. z > 0 \<Longrightarrow> DERIV (log b) z :> 1 / (ln b * z)"
760 using DERIV_log by auto
761 then have f': "\<And>z. z > 0 \<Longrightarrow> DERIV (\<lambda> z. - log b z) z :> - 1 / (ln b * z)"
762 by (auto simp: DERIV_minus)
763 have "\<And>z :: real. z > 0 \<Longrightarrow> DERIV inverse z :> - (inverse z ^ Suc (Suc 0))"
764 using less_imp_neq[THEN not_sym, THEN DERIV_inverse] by auto
765 from this[THEN DERIV_cmult, of _ "- 1 / ln b"]
766 have "\<And>z :: real. z > 0 \<Longrightarrow>
767 DERIV (\<lambda> z. (- 1 / ln b) * inverse z) z :> (- 1 / ln b) * (- (inverse z ^ Suc (Suc 0)))"
769 then have f''0: "\<And>z::real. z > 0 \<Longrightarrow>
770 DERIV (\<lambda> z. - 1 / (ln b * z)) z :> 1 / (ln b * z * z)"
771 unfolding inverse_eq_divide by (auto simp add: mult.assoc)
772 have f''_ge0: "\<And>z::real. z > 0 \<Longrightarrow> 1 / (ln b * z * z) \<ge> 0"
773 using `b > 1` by (auto intro!:less_imp_le)
774 from f''_ge0_imp_convex[OF pos_is_convex,
775 unfolded greaterThan_iff, OF f' f''0 f''_ge0]