1 (* Title: HOL/Divides.thy
3 Author: Lawrence C Paulson, Cambridge University Computer Laboratory
4 Copyright 1999 University of Cambridge
7 header {* The division operators div, mod and the divides relation "dvd" *}
10 imports Datatype Power
11 uses "~~/src/Provers/Arith/cancel_div_mod.ML"
14 (*We use the same class for div and mod;
15 moreover, dvd is defined whenever multiplication is*)
17 fixes div :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"
18 fixes mod :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"
22 div (infixl "\<^loc>div" 70)
25 mod (infixl "\<^loc>mod" 70)
35 instance nat :: Divides.div
36 div_def: "m div n == wfrec (pred_nat^+)
37 (%f j. if j<n | n=0 then 0 else Suc (f (j-n))) m"
38 mod_def: "m mod n == wfrec (pred_nat^+)
39 (%f j. if j<n | n=0 then j else f (j-n)) m" ..
42 (*The definition of dvd is polymorphic!*)
43 dvd :: "'a::times \<Rightarrow> 'a \<Rightarrow> bool" (infixl "dvd" 50) where
44 dvd_def: "m dvd n \<longleftrightarrow> (\<exists>k. n = m*k)"
47 quorem :: "(nat*nat) * (nat*nat) => bool" where
48 (*This definition helps prove the harder properties of div and mod.
49 It is copied from IntDiv.thy; should it be overloaded?*)
50 "quorem = (%((a,b), (q,r)).
52 (if 0<b then 0\<le>r & r<b else b<r & r \<le>0))"
56 subsection{*Initial Lemmas*}
58 lemmas wf_less_trans =
59 def_wfrec [THEN trans, OF eq_reflection wf_pred_nat [THEN wf_trancl],
62 lemma mod_eq: "(%m. m mod n) =
63 wfrec (pred_nat^+) (%f j. if j<n | n=0 then j else f (j-n))"
64 by (simp add: mod_def)
66 lemma div_eq: "(%m. m div n) = wfrec (pred_nat^+)
67 (%f j. if j<n | n=0 then 0 else Suc (f (j-n)))"
68 by (simp add: div_def)
71 (** Aribtrary definitions for division by zero. Useful to simplify
74 lemma DIVISION_BY_ZERO_DIV [simp]: "a div 0 = (0::nat)"
75 by (rule div_eq [THEN wf_less_trans], simp)
77 lemma DIVISION_BY_ZERO_MOD [simp]: "a mod 0 = (a::nat)"
78 by (rule mod_eq [THEN wf_less_trans], simp)
81 subsection{*Remainder*}
83 lemma mod_less [simp]: "m<n ==> m mod n = (m::nat)"
84 by (rule mod_eq [THEN wf_less_trans]) simp
86 lemma mod_geq: "~ m < (n::nat) ==> m mod n = (m-n) mod n"
89 apply (rule mod_eq [THEN wf_less_trans])
90 apply (simp add: cut_apply less_eq)
93 (*Avoids the ugly ~m<n above*)
94 lemma le_mod_geq: "(n::nat) \<le> m ==> m mod n = (m-n) mod n"
95 by (simp add: mod_geq linorder_not_less)
97 lemma mod_if: "m mod (n::nat) = (if m<n then m else (m-n) mod n)"
98 by (simp add: mod_geq)
100 lemma mod_1 [simp]: "m mod Suc 0 = 0"
101 by (induct m) (simp_all add: mod_geq)
103 lemma mod_self [simp]: "n mod n = (0::nat)"
104 by (cases "n = 0") (simp_all add: mod_geq)
106 lemma mod_add_self2 [simp]: "(m+n) mod n = m mod (n::nat)"
107 apply (subgoal_tac "(n + m) mod n = (n+m-n) mod n")
108 apply (simp add: add_commute)
109 apply (subst mod_geq [symmetric], simp_all)
112 lemma mod_add_self1 [simp]: "(n+m) mod n = m mod (n::nat)"
113 by (simp add: add_commute mod_add_self2)
115 lemma mod_mult_self1 [simp]: "(m + k*n) mod n = m mod (n::nat)"
116 by (induct k) (simp_all add: add_left_commute [of _ n])
118 lemma mod_mult_self2 [simp]: "(m + n*k) mod n = m mod (n::nat)"
119 by (simp add: mult_commute mod_mult_self1)
121 lemma mod_mult_distrib: "(m mod n) * (k::nat) = (m*k) mod (n*k)"
122 apply (cases "n = 0", simp)
123 apply (cases "k = 0", simp)
124 apply (induct m rule: nat_less_induct)
125 apply (subst mod_if, simp)
126 apply (simp add: mod_geq diff_mult_distrib)
129 lemma mod_mult_distrib2: "(k::nat) * (m mod n) = (k*m) mod (k*n)"
130 by (simp add: mult_commute [of k] mod_mult_distrib)
132 lemma mod_mult_self_is_0 [simp]: "(m*n) mod n = (0::nat)"
133 apply (cases "n = 0", simp)
134 apply (induct m, simp)
136 apply (cut_tac m = "k * n" and n = n in mod_add_self2)
137 apply (simp add: add_commute)
140 lemma mod_mult_self1_is_0 [simp]: "(n*m) mod n = (0::nat)"
141 by (simp add: mult_commute mod_mult_self_is_0)
144 subsection{*Quotient*}
146 lemma div_less [simp]: "m<n ==> m div n = (0::nat)"
147 by (rule div_eq [THEN wf_less_trans], simp)
149 lemma div_geq: "[| 0<n; ~m<n |] ==> m div n = Suc((m-n) div n)"
150 apply (rule div_eq [THEN wf_less_trans])
151 apply (simp add: cut_apply less_eq)
154 (*Avoids the ugly ~m<n above*)
155 lemma le_div_geq: "[| 0<n; n\<le>m |] ==> m div n = Suc((m-n) div n)"
156 by (simp add: div_geq linorder_not_less)
158 lemma div_if: "0<n ==> m div n = (if m<n then 0 else Suc((m-n) div n))"
159 by (simp add: div_geq)
162 (*Main Result about quotient and remainder.*)
163 lemma mod_div_equality: "(m div n)*n + m mod n = (m::nat)"
164 apply (cases "n = 0", simp)
165 apply (induct m rule: nat_less_induct)
167 apply (simp_all add: add_assoc div_geq add_diff_inverse)
170 lemma mod_div_equality2: "n * (m div n) + m mod n = (m::nat)"
171 apply (cut_tac m = m and n = n in mod_div_equality)
172 apply (simp add: mult_commute)
175 subsection{*Simproc for Cancelling Div and Mod*}
177 lemma div_mod_equality: "((m div n)*n + m mod n) + k = (m::nat) + k"
178 by (simp add: mod_div_equality)
180 lemma div_mod_equality2: "(n*(m div n) + m mod n) + k = (m::nat) + k"
181 by (simp add: mod_div_equality2)
185 structure CancelDivModData =
188 val div_name = @{const_name Divides.div};
189 val mod_name = @{const_name Divides.mod};
190 val mk_binop = HOLogic.mk_binop;
191 val mk_sum = NatArithUtils.mk_sum;
192 val dest_sum = NatArithUtils.dest_sum;
196 val div_mod_eqs = map mk_meta_eq [@{thm div_mod_equality}, @{thm div_mod_equality2}]
201 let val simps = @{thm add_0} :: @{thm add_0_right} :: @{thms add_ac}
202 in NatArithUtils.prove_conv all_tac (NatArithUtils.simp_all_tac simps) end;
206 structure CancelDivMod = CancelDivModFun(CancelDivModData);
208 val cancel_div_mod_proc = NatArithUtils.prep_simproc
209 ("cancel_div_mod", ["(m::nat) + n"], K CancelDivMod.proc);
211 Addsimprocs[cancel_div_mod_proc];
215 (* a simple rearrangement of mod_div_equality: *)
216 lemma mult_div_cancel: "(n::nat) * (m div n) = m - (m mod n)"
217 by (cut_tac m = m and n = n in mod_div_equality2, arith)
219 lemma mod_less_divisor [simp]: "0<n ==> m mod n < (n::nat)"
220 apply (induct m rule: nat_less_induct)
222 apply (case_tac "m<n", simp)
223 txt{*case @{term "n \<le> m"}*}
224 apply (simp add: mod_geq)
227 lemma mod_le_divisor[simp]: "0 < n \<Longrightarrow> m mod n \<le> (n::nat)"
228 apply (drule mod_less_divisor [where m = m])
232 lemma div_mult_self_is_m [simp]: "0<n ==> (m*n) div n = (m::nat)"
233 by (cut_tac m = "m*n" and n = n in mod_div_equality, auto)
235 lemma div_mult_self1_is_m [simp]: "0<n ==> (n*m) div n = (m::nat)"
236 by (simp add: mult_commute div_mult_self_is_m)
238 (*mod_mult_distrib2 above is the counterpart for remainder*)
241 subsection{*Proving facts about Quotient and Remainder*}
243 lemma unique_quotient_lemma:
244 "[| b*q' + r' \<le> b*q + r; x < b; r < b |]
245 ==> q' \<le> (q::nat)"
247 apply (subst less_iff_Suc_add)
248 apply (auto simp add: add_mult_distrib2)
251 lemma unique_quotient:
252 "[| quorem ((a,b), (q,r)); quorem ((a,b), (q',r')); 0 < b |]
254 apply (simp add: split_ifs quorem_def)
255 apply (blast intro: order_antisym
256 dest: order_eq_refl [THEN unique_quotient_lemma] sym)
259 lemma unique_remainder:
260 "[| quorem ((a,b), (q,r)); quorem ((a,b), (q',r')); 0 < b |]
262 apply (subgoal_tac "q = q'")
263 prefer 2 apply (blast intro: unique_quotient)
264 apply (simp add: quorem_def)
267 lemma quorem_div_mod: "0 < b ==> quorem ((a, b), (a div b, a mod b))"
268 unfolding quorem_def by simp
270 lemma quorem_div: "[| quorem((a,b),(q,r)); 0 < b |] ==> a div b = q"
271 by (simp add: quorem_div_mod [THEN unique_quotient])
273 lemma quorem_mod: "[| quorem((a,b),(q,r)); 0 < b |] ==> a mod b = r"
274 by (simp add: quorem_div_mod [THEN unique_remainder])
276 (** A dividend of zero **)
278 lemma div_0 [simp]: "0 div m = (0::nat)"
279 by (cases "m = 0") simp_all
281 lemma mod_0 [simp]: "0 mod m = (0::nat)"
282 by (cases "m = 0") simp_all
284 (** proving (a*b) div c = a * (b div c) + a * (b mod c) **)
286 lemma quorem_mult1_eq:
287 "[| quorem((b,c),(q,r)); 0 < c |]
288 ==> quorem ((a*b, c), (a*q + a*r div c, a*r mod c))"
289 by (auto simp add: split_ifs mult_ac quorem_def add_mult_distrib2)
291 lemma div_mult1_eq: "(a*b) div c = a*(b div c) + a*(b mod c) div (c::nat)"
292 apply (cases "c = 0", simp)
293 apply (blast intro: quorem_div_mod [THEN quorem_mult1_eq, THEN quorem_div])
296 lemma mod_mult1_eq: "(a*b) mod c = a*(b mod c) mod (c::nat)"
297 apply (cases "c = 0", simp)
298 apply (blast intro: quorem_div_mod [THEN quorem_mult1_eq, THEN quorem_mod])
301 lemma mod_mult1_eq': "(a*b) mod (c::nat) = ((a mod c) * b) mod c"
303 apply (rule_tac s = "b*a mod c" in trans)
304 apply (rule_tac [2] mod_mult1_eq)
305 apply (simp_all add: mult_commute)
308 lemma mod_mult_distrib_mod: "(a*b) mod (c::nat) = ((a mod c) * (b mod c)) mod c"
309 apply (rule mod_mult1_eq' [THEN trans])
310 apply (rule mod_mult1_eq)
313 (** proving (a+b) div c = a div c + b div c + ((a mod c + b mod c) div c) **)
315 lemma quorem_add1_eq:
316 "[| quorem((a,c),(aq,ar)); quorem((b,c),(bq,br)); 0 < c |]
317 ==> quorem ((a+b, c), (aq + bq + (ar+br) div c, (ar+br) mod c))"
318 by (auto simp add: split_ifs mult_ac quorem_def add_mult_distrib2)
320 (*NOT suitable for rewriting: the RHS has an instance of the LHS*)
322 "(a+b) div (c::nat) = a div c + b div c + ((a mod c + b mod c) div c)"
323 apply (cases "c = 0", simp)
324 apply (blast intro: quorem_add1_eq [THEN quorem_div] quorem_div_mod quorem_div_mod)
327 lemma mod_add1_eq: "(a+b) mod (c::nat) = (a mod c + b mod c) mod c"
328 apply (cases "c = 0", simp)
329 apply (blast intro: quorem_div_mod quorem_div_mod quorem_add1_eq [THEN quorem_mod])
333 subsection{*Proving @{term "a div (b*c) = (a div b) div c"}*}
335 (** first, a lemma to bound the remainder **)
337 lemma mod_lemma: "[| (0::nat) < c; r < b |] ==> b * (q mod c) + r < b * c"
338 apply (cut_tac m = q and n = c in mod_less_divisor)
339 apply (drule_tac [2] m = "q mod c" in less_imp_Suc_add, auto)
340 apply (erule_tac P = "%x. ?lhs < ?rhs x" in ssubst)
341 apply (simp add: add_mult_distrib2)
344 lemma quorem_mult2_eq: "[| quorem ((a,b), (q,r)); 0 < b; 0 < c |]
345 ==> quorem ((a, b*c), (q div c, b*(q mod c) + r))"
346 by (auto simp add: mult_ac quorem_def add_mult_distrib2 [symmetric] mod_lemma)
348 lemma div_mult2_eq: "a div (b*c) = (a div b) div (c::nat)"
349 apply (cases "b = 0", simp)
350 apply (cases "c = 0", simp)
351 apply (force simp add: quorem_div_mod [THEN quorem_mult2_eq, THEN quorem_div])
354 lemma mod_mult2_eq: "a mod (b*c) = b*(a div b mod c) + a mod (b::nat)"
355 apply (cases "b = 0", simp)
356 apply (cases "c = 0", simp)
357 apply (auto simp add: mult_commute quorem_div_mod [THEN quorem_mult2_eq, THEN quorem_mod])
361 subsection{*Cancellation of Common Factors in Division*}
363 lemma div_mult_mult_lemma:
364 "[| (0::nat) < b; 0 < c |] ==> (c*a) div (c*b) = a div b"
365 by (auto simp add: div_mult2_eq)
367 lemma div_mult_mult1 [simp]: "(0::nat) < c ==> (c*a) div (c*b) = a div b"
368 apply (cases "b = 0")
369 apply (auto simp add: linorder_neq_iff [of b] div_mult_mult_lemma)
372 lemma div_mult_mult2 [simp]: "(0::nat) < c ==> (a*c) div (b*c) = a div b"
373 apply (drule div_mult_mult1)
374 apply (auto simp add: mult_commute)
378 subsection{*Further Facts about Quotient and Remainder*}
380 lemma div_1 [simp]: "m div Suc 0 = m"
381 by (induct m) (simp_all add: div_geq)
383 lemma div_self [simp]: "0<n ==> n div n = (1::nat)"
384 by (simp add: div_geq)
386 lemma div_add_self2: "0<n ==> (m+n) div n = Suc (m div n)"
387 apply (subgoal_tac "(n + m) div n = Suc ((n+m-n) div n) ")
388 apply (simp add: add_commute)
389 apply (subst div_geq [symmetric], simp_all)
392 lemma div_add_self1: "0<n ==> (n+m) div n = Suc (m div n)"
393 by (simp add: add_commute div_add_self2)
395 lemma div_mult_self1 [simp]: "!!n::nat. 0<n ==> (m + k*n) div n = k + m div n"
396 apply (subst div_add1_eq)
397 apply (subst div_mult1_eq, simp)
400 lemma div_mult_self2 [simp]: "0<n ==> (m + n*k) div n = k + m div (n::nat)"
401 by (simp add: mult_commute div_mult_self1)
404 (* Monotonicity of div in first argument *)
405 lemma div_le_mono [rule_format (no_asm)]:
406 "\<forall>m::nat. m \<le> n --> (m div k) \<le> (n div k)"
407 apply (case_tac "k=0", simp)
408 apply (induct "n" rule: nat_less_induct, clarify)
409 apply (case_tac "n<k")
413 apply (case_tac "m<k")
417 apply (simp add: div_geq diff_le_mono)
420 (* Antimonotonicity of div in second argument *)
421 lemma div_le_mono2: "!!m::nat. [| 0<m; m\<le>n |] ==> (k div n) \<le> (k div m)"
422 apply (subgoal_tac "0<n")
424 apply (induct_tac k rule: nat_less_induct)
425 apply (rename_tac "k")
426 apply (case_tac "k<n", simp)
427 apply (subgoal_tac "~ (k<m) ")
429 apply (simp add: div_geq)
430 apply (subgoal_tac "(k-n) div n \<le> (k-m) div n")
432 apply (blast intro: div_le_mono diff_le_mono2)
433 apply (rule le_trans, simp)
437 lemma div_le_dividend [simp]: "m div n \<le> (m::nat)"
438 apply (case_tac "n=0", simp)
439 apply (subgoal_tac "m div n \<le> m div 1", simp)
440 apply (rule div_le_mono2)
441 apply (simp_all (no_asm_simp))
444 (* Similar for "less than" *)
445 lemma div_less_dividend [rule_format]:
446 "!!n::nat. 1<n ==> 0 < m --> m div n < m"
447 apply (induct_tac m rule: nat_less_induct)
448 apply (rename_tac "m")
449 apply (case_tac "m<n", simp)
450 apply (subgoal_tac "0<n")
452 apply (simp add: div_geq)
453 apply (case_tac "n<m")
454 apply (subgoal_tac "(m-n) div n < (m-n) ")
455 apply (rule impI less_trans_Suc)+
460 declare div_less_dividend [simp]
462 text{*A fact for the mutilated chess board*}
463 lemma mod_Suc: "Suc(m) mod n = (if Suc(m mod n) = n then 0 else Suc(m mod n))"
464 apply (case_tac "n=0", simp)
465 apply (induct "m" rule: nat_less_induct)
466 apply (case_tac "Suc (na) <n")
467 (* case Suc(na) < n *)
468 apply (frule lessI [THEN less_trans], simp add: less_not_refl3)
469 (* case n \<le> Suc(na) *)
470 apply (simp add: linorder_not_less le_Suc_eq mod_geq)
471 apply (auto simp add: Suc_diff_le le_mod_geq)
474 lemma nat_mod_div_trivial [simp]: "m mod n div n = (0 :: nat)"
475 by (cases "n = 0") auto
477 lemma nat_mod_mod_trivial [simp]: "m mod n mod n = (m mod n :: nat)"
478 by (cases "n = 0") auto
481 subsection{*The Divides Relation*}
483 lemma dvdI [intro?]: "n = m * k ==> m dvd n"
484 unfolding dvd_def by blast
486 lemma dvdE [elim?]: "!!P. [|m dvd n; !!k. n = m*k ==> P|] ==> P"
487 unfolding dvd_def by blast
489 lemma dvd_0_right [iff]: "m dvd (0::nat)"
490 unfolding dvd_def by (blast intro: mult_0_right [symmetric])
492 lemma dvd_0_left: "0 dvd m ==> m = (0::nat)"
493 by (force simp add: dvd_def)
495 lemma dvd_0_left_iff [iff]: "(0 dvd (m::nat)) = (m = 0)"
496 by (blast intro: dvd_0_left)
498 lemma dvd_1_left [iff]: "Suc 0 dvd k"
499 unfolding dvd_def by simp
501 lemma dvd_1_iff_1 [simp]: "(m dvd Suc 0) = (m = Suc 0)"
502 by (simp add: dvd_def)
504 lemma dvd_refl [simp]: "m dvd (m::nat)"
505 unfolding dvd_def by (blast intro: mult_1_right [symmetric])
507 lemma dvd_trans [trans]: "[| m dvd n; n dvd p |] ==> m dvd (p::nat)"
508 unfolding dvd_def by (blast intro: mult_assoc)
510 lemma dvd_anti_sym: "[| m dvd n; n dvd m |] ==> m = (n::nat)"
512 by (force dest: mult_eq_self_implies_10 simp add: mult_assoc mult_eq_1_iff)
514 lemma dvd_add: "[| k dvd m; k dvd n |] ==> k dvd (m+n :: nat)"
516 by (blast intro: add_mult_distrib2 [symmetric])
518 lemma dvd_diff: "[| k dvd m; k dvd n |] ==> k dvd (m-n :: nat)"
520 by (blast intro: diff_mult_distrib2 [symmetric])
522 lemma dvd_diffD: "[| k dvd m-n; k dvd n; n\<le>m |] ==> k dvd (m::nat)"
523 apply (erule linorder_not_less [THEN iffD2, THEN add_diff_inverse, THEN subst])
524 apply (blast intro: dvd_add)
527 lemma dvd_diffD1: "[| k dvd m-n; k dvd m; n\<le>m |] ==> k dvd (n::nat)"
528 by (drule_tac m = m in dvd_diff, auto)
530 lemma dvd_mult: "k dvd n ==> k dvd (m*n :: nat)"
531 unfolding dvd_def by (blast intro: mult_left_commute)
533 lemma dvd_mult2: "k dvd m ==> k dvd (m*n :: nat)"
534 apply (subst mult_commute)
535 apply (erule dvd_mult)
538 lemma dvd_triv_right [iff]: "k dvd (m*k :: nat)"
539 by (rule dvd_refl [THEN dvd_mult])
541 lemma dvd_triv_left [iff]: "k dvd (k*m :: nat)"
542 by (rule dvd_refl [THEN dvd_mult2])
544 lemma dvd_reduce: "(k dvd n + k) = (k dvd (n::nat))"
546 apply (erule_tac [2] dvd_add)
547 apply (rule_tac [2] dvd_refl)
548 apply (subgoal_tac "n = (n+k) -k")
551 apply (erule dvd_diff)
552 apply (rule dvd_refl)
555 lemma dvd_mod: "!!n::nat. [| f dvd m; f dvd n |] ==> f dvd m mod n"
557 apply (case_tac "n = 0", auto)
558 apply (blast intro: mod_mult_distrib2 [symmetric])
561 lemma dvd_mod_imp_dvd: "[| (k::nat) dvd m mod n; k dvd n |] ==> k dvd m"
562 apply (subgoal_tac "k dvd (m div n) *n + m mod n")
563 apply (simp add: mod_div_equality)
564 apply (simp only: dvd_add dvd_mult)
567 lemma dvd_mod_iff: "k dvd n ==> ((k::nat) dvd m mod n) = (k dvd m)"
568 by (blast intro: dvd_mod_imp_dvd dvd_mod)
570 lemma dvd_mult_cancel: "!!k::nat. [| k*m dvd k*n; 0<k |] ==> m dvd n"
573 apply (simp add: mult_ac)
576 lemma dvd_mult_cancel1: "0<m ==> (m*n dvd m) = (n = (1::nat))"
578 apply (subgoal_tac "m*n dvd m*1")
579 apply (drule dvd_mult_cancel, auto)
582 lemma dvd_mult_cancel2: "0<m ==> (n*m dvd m) = (n = (1::nat))"
583 apply (subst mult_commute)
584 apply (erule dvd_mult_cancel1)
587 lemma mult_dvd_mono: "[| i dvd m; j dvd n|] ==> i*j dvd (m*n :: nat)"
588 apply (unfold dvd_def, clarify)
589 apply (rule_tac x = "k*ka" in exI)
590 apply (simp add: mult_ac)
593 lemma dvd_mult_left: "(i*j :: nat) dvd k ==> i dvd k"
594 by (simp add: dvd_def mult_assoc, blast)
596 lemma dvd_mult_right: "(i*j :: nat) dvd k ==> j dvd k"
597 apply (unfold dvd_def, clarify)
598 apply (rule_tac x = "i*k" in exI)
599 apply (simp add: mult_ac)
602 lemma dvd_imp_le: "[| k dvd n; 0 < n |] ==> k \<le> (n::nat)"
603 apply (unfold dvd_def, clarify)
604 apply (simp_all (no_asm_use) add: zero_less_mult_iff)
606 apply (rule le_trans)
607 apply (rule_tac [2] le_refl [THEN mult_le_mono])
608 apply (erule_tac [2] Suc_leI, simp)
611 lemma dvd_eq_mod_eq_0: "!!k::nat. (k dvd n) = (n mod k = 0)"
612 apply (unfold dvd_def)
613 apply (case_tac "k=0", simp, safe)
614 apply (simp add: mult_commute)
615 apply (rule_tac t = n and n1 = k in mod_div_equality [THEN subst])
616 apply (subst mult_commute, simp)
619 lemma dvd_mult_div_cancel: "n dvd m ==> n * (m div n) = (m::nat)"
620 apply (subgoal_tac "m mod n = 0")
621 apply (simp add: mult_div_cancel)
622 apply (simp only: dvd_eq_mod_eq_0)
625 lemma le_imp_power_dvd: "!!i::nat. m \<le> n ==> i^m dvd i^n"
626 apply (unfold dvd_def)
627 apply (erule linorder_not_less [THEN iffD2, THEN add_diff_inverse, THEN subst])
628 apply (simp add: power_add)
631 lemma nat_zero_less_power_iff [simp]: "(0 < x^n) = (x \<noteq> (0::nat) | n=0)"
634 lemma power_le_dvd [rule_format]: "k^j dvd n --> i\<le>j --> k^i dvd (n::nat)"
636 apply (simp_all add: le_Suc_eq)
637 apply (blast dest!: dvd_mult_right)
640 lemma power_dvd_imp_le: "[|i^m dvd i^n; (1::nat) < i|] ==> m \<le> n"
641 apply (rule power_le_imp_le_exp, assumption)
642 apply (erule dvd_imp_le, simp)
645 lemma mod_eq_0_iff: "(m mod d = 0) = (\<exists>q::nat. m = d*q)"
646 by (auto simp add: dvd_eq_mod_eq_0 [symmetric] dvd_def)
648 lemmas mod_eq_0D [dest!] = mod_eq_0_iff [THEN iffD1]
650 (*Loses information, namely we also have r<d provided d is nonzero*)
651 lemma mod_eqD: "(m mod d = r) ==> \<exists>q::nat. m = r + q*d"
652 apply (cut_tac m = m in mod_div_equality)
653 apply (simp only: add_ac)
654 apply (blast intro: sym)
660 ((k = 0 \<longrightarrow> P 0) \<and> (k \<noteq> 0 \<longrightarrow> (!i. !j<k. n = k*i + j \<longrightarrow> P i)))"
661 (is "?P = ?Q" is "_ = (_ \<and> (_ \<longrightarrow> ?R))")
667 with P show ?Q by(simp add:DIVISION_BY_ZERO_DIV)
669 assume not0: "k \<noteq> 0"
671 proof (simp, intro allI impI)
673 assume n: "n = k*i + j" and j: "j < k"
677 with n j P show "P i" by simp
679 assume "i \<noteq> 0"
680 with not0 n j P show "P i" by(simp add:add_ac)
689 with Q show ?P by(simp add:DIVISION_BY_ZERO_DIV)
691 assume not0: "k \<noteq> 0"
692 with Q have R: ?R by simp
693 from not0 R[THEN spec,of "n div k",THEN spec, of "n mod k"]
698 lemma split_div_lemma:
699 "0 < n \<Longrightarrow> (n * q \<le> m \<and> m < n * (Suc q)) = (q = ((m::nat) div n))"
701 apply (rule_tac a=m and r = "m - n * q" and r' = "m mod n" in unique_quotient)
702 prefer 3; apply assumption
703 apply (simp_all add: quorem_def) apply arith
705 apply (rule_tac P="%x. n * (m div n) \<le> x" in
706 subst [OF mod_div_equality [of _ n]])
707 apply (simp only: add: mult_ac)
708 apply (rule_tac P="%x. x < n + n * (m div n)" in
709 subst [OF mod_div_equality [of _ n]])
710 apply (simp only: add: mult_ac add_ac)
711 apply (rule add_less_mono1, simp)
715 "P ((m::nat) div n) = ((n = 0 \<and> P 0) \<or>
716 (\<exists>q. (n * q \<le> m \<and> m < n * (Suc q)) \<and> P q))"
717 apply (case_tac "0 < n")
718 apply (simp only: add: split_div_lemma)
719 apply (simp_all add: DIVISION_BY_ZERO_DIV)
724 ((k = 0 \<longrightarrow> P n) \<and> (k \<noteq> 0 \<longrightarrow> (!i. !j<k. n = k*i + j \<longrightarrow> P j)))"
725 (is "?P = ?Q" is "_ = (_ \<and> (_ \<longrightarrow> ?R))")
731 with P show ?Q by(simp add:DIVISION_BY_ZERO_MOD)
733 assume not0: "k \<noteq> 0"
735 proof (simp, intro allI impI)
737 assume "n = k*i + j" "j < k"
738 thus "P j" using not0 P by(simp add:add_ac mult_ac)
746 with Q show ?P by(simp add:DIVISION_BY_ZERO_MOD)
748 assume not0: "k \<noteq> 0"
749 with Q have R: ?R by simp
750 from not0 R[THEN spec,of "n div k",THEN spec, of "n mod k"]
755 theorem mod_div_equality': "(m::nat) mod n = m - (m div n) * n"
756 apply (rule_tac P="%x. m mod n = x - (m div n) * n" in
757 subst [OF mod_div_equality [of _ n]])
761 lemma div_mod_equality':
763 shows "m div n * n = m - m mod n"
765 have "m mod n \<le> m mod n" ..
766 from div_mod_equality have
767 "m div n * n + m mod n - m mod n = m - m mod n" by simp
768 with diff_add_assoc [OF `m mod n \<le> m mod n`, of "m div n * n"] have
769 "m div n * n + (m mod n - m mod n) = m - m mod n"
771 then show ?thesis by simp
775 subsection {*An ``induction'' law for modulus arithmetic.*}
778 assumes step: "\<forall>i<p. P i \<longrightarrow> P ((Suc i) mod p)"
779 and base: "P i" and i: "i<p"
782 assume contra: "\<not>(P 0)"
783 from i have p: "0<p" by simp
784 have "\<forall>k. 0<k \<longrightarrow> \<not> P (p-k)" (is "\<forall>k. ?A k")
789 show "?A 0" by simp -- "by contradiction"
795 assume y: "P (p - Suc n)"
798 assume "\<not>(Suc n < p)"
799 hence "p - Suc n = 0"
801 with y contra show "False"
804 hence n2: "Suc (p - Suc n) = p-n" by arith
805 from p have "p - Suc n < p" by arith
806 with y step have z: "P ((Suc (p - Suc n)) mod p)"
811 with z n2 contra show ?thesis by simp
814 with p have "p-n < p" by arith
815 with z n2 False ih show ?thesis by simp
821 from i obtain k where "0<k \<and> i+k=p"
822 by (blast dest: less_imp_add_positive)
823 hence "0<k \<and> i=p-k" by auto
827 show "False" by blast
831 assumes step: "\<forall>i<p. P i \<longrightarrow> P ((Suc i) mod p)"
832 and base: "P i" and i: "i<p" and j: "j<p"
835 have "\<forall>j<p. P j"
838 show "j<p \<longrightarrow> P j" (is "?A j")
840 from step base i show "?A 0"
841 by (auto elim: mod_induct_0)
847 assume suc: "Suc k < p"
848 hence k: "k<p" by simp
849 with ih have "P k" ..
850 with step k have "P (Suc k mod p)"
853 from suc have "Suc k mod p = Suc k"
856 show "P (Suc k)" by simp
860 with j show ?thesis by blast
864 lemma mod_add_left_eq: "((a::nat) + b) mod c = (a mod c + b) mod c"
865 apply (rule trans [symmetric])
866 apply (rule mod_add1_eq, simp)
867 apply (rule mod_add1_eq [symmetric])
870 lemma mod_add_right_eq: "(a+b) mod (c::nat) = (a + (b mod c)) mod c"
871 apply (rule trans [symmetric])
872 apply (rule mod_add1_eq, simp)
873 apply (rule mod_add1_eq [symmetric])
876 lemma mod_div_decomp:
878 obtains m q where "m = n div k" and "q = n mod k"
881 from mod_div_equality have "n = n div k * k + n mod k" by auto
882 moreover have "n div k = n div k" ..
883 moreover have "n mod k = n mod k" ..
884 note that ultimately show thesis by blast
888 subsection {* Code generation for div, mod and dvd on nat *}
890 definition [code func del]:
891 "divmod (m\<Colon>nat) n = (m div n, m mod n)"
893 lemma divmod_zero [code]: "divmod m 0 = (0, m)"
894 unfolding divmod_def by simp
896 lemma divmod_succ [code]:
897 "divmod m (Suc k) = (if m < Suc k then (0, m) else
899 (p, q) = divmod (m - Suc k) (Suc k)
901 unfolding divmod_def Let_def split_def
902 by (auto intro: div_geq mod_geq)
904 lemma div_divmod [code]: "m div n = fst (divmod m n)"
905 unfolding divmod_def by simp
907 lemma mod_divmod [code]: "m mod n = snd (divmod m n)"
908 unfolding divmod_def by simp
911 dvd_nat :: "nat \<Rightarrow> nat \<Rightarrow> bool"
913 "dvd_nat m n \<longleftrightarrow> n mod m = (0 \<Colon> nat)"
917 by (auto simp add: dvd_nat_def dvd_eq_mod_eq_0 expand_fun_eq)
922 code_modulename OCaml
925 code_modulename Haskell
928 hide (open) const divmod dvd_nat
930 subsection {* Legacy bindings *}
934 val div_def = thm "div_def"
935 val mod_def = thm "mod_def"
936 val dvd_def = thm "dvd_def"
937 val quorem_def = thm "quorem_def"
939 val wf_less_trans = thm "wf_less_trans";
940 val mod_eq = thm "mod_eq";
941 val div_eq = thm "div_eq";
942 val DIVISION_BY_ZERO_DIV = thm "DIVISION_BY_ZERO_DIV";
943 val DIVISION_BY_ZERO_MOD = thm "DIVISION_BY_ZERO_MOD";
944 val mod_less = thm "mod_less";
945 val mod_geq = thm "mod_geq";
946 val le_mod_geq = thm "le_mod_geq";
947 val mod_if = thm "mod_if";
948 val mod_1 = thm "mod_1";
949 val mod_self = thm "mod_self";
950 val mod_add_self2 = thm "mod_add_self2";
951 val mod_add_self1 = thm "mod_add_self1";
952 val mod_mult_self1 = thm "mod_mult_self1";
953 val mod_mult_self2 = thm "mod_mult_self2";
954 val mod_mult_distrib = thm "mod_mult_distrib";
955 val mod_mult_distrib2 = thm "mod_mult_distrib2";
956 val mod_mult_self_is_0 = thm "mod_mult_self_is_0";
957 val mod_mult_self1_is_0 = thm "mod_mult_self1_is_0";
958 val div_less = thm "div_less";
959 val div_geq = thm "div_geq";
960 val le_div_geq = thm "le_div_geq";
961 val div_if = thm "div_if";
962 val mod_div_equality = thm "mod_div_equality";
963 val mod_div_equality2 = thm "mod_div_equality2";
964 val div_mod_equality = thm "div_mod_equality";
965 val div_mod_equality2 = thm "div_mod_equality2";
966 val mult_div_cancel = thm "mult_div_cancel";
967 val mod_less_divisor = thm "mod_less_divisor";
968 val div_mult_self_is_m = thm "div_mult_self_is_m";
969 val div_mult_self1_is_m = thm "div_mult_self1_is_m";
970 val unique_quotient_lemma = thm "unique_quotient_lemma";
971 val unique_quotient = thm "unique_quotient";
972 val unique_remainder = thm "unique_remainder";
973 val div_0 = thm "div_0";
974 val mod_0 = thm "mod_0";
975 val div_mult1_eq = thm "div_mult1_eq";
976 val mod_mult1_eq = thm "mod_mult1_eq";
977 val mod_mult1_eq' = thm "mod_mult1_eq'";
978 val mod_mult_distrib_mod = thm "mod_mult_distrib_mod";
979 val div_add1_eq = thm "div_add1_eq";
980 val mod_add1_eq = thm "mod_add1_eq";
981 val mod_add_left_eq = thm "mod_add_left_eq";
982 val mod_add_right_eq = thm "mod_add_right_eq";
983 val mod_lemma = thm "mod_lemma";
984 val div_mult2_eq = thm "div_mult2_eq";
985 val mod_mult2_eq = thm "mod_mult2_eq";
986 val div_mult_mult_lemma = thm "div_mult_mult_lemma";
987 val div_mult_mult1 = thm "div_mult_mult1";
988 val div_mult_mult2 = thm "div_mult_mult2";
989 val div_1 = thm "div_1";
990 val div_self = thm "div_self";
991 val div_add_self2 = thm "div_add_self2";
992 val div_add_self1 = thm "div_add_self1";
993 val div_mult_self1 = thm "div_mult_self1";
994 val div_mult_self2 = thm "div_mult_self2";
995 val div_le_mono = thm "div_le_mono";
996 val div_le_mono2 = thm "div_le_mono2";
997 val div_le_dividend = thm "div_le_dividend";
998 val div_less_dividend = thm "div_less_dividend";
999 val mod_Suc = thm "mod_Suc";
1000 val dvdI = thm "dvdI";
1001 val dvdE = thm "dvdE";
1002 val dvd_0_right = thm "dvd_0_right";
1003 val dvd_0_left = thm "dvd_0_left";
1004 val dvd_0_left_iff = thm "dvd_0_left_iff";
1005 val dvd_1_left = thm "dvd_1_left";
1006 val dvd_1_iff_1 = thm "dvd_1_iff_1";
1007 val dvd_refl = thm "dvd_refl";
1008 val dvd_trans = thm "dvd_trans";
1009 val dvd_anti_sym = thm "dvd_anti_sym";
1010 val dvd_add = thm "dvd_add";
1011 val dvd_diff = thm "dvd_diff";
1012 val dvd_diffD = thm "dvd_diffD";
1013 val dvd_diffD1 = thm "dvd_diffD1";
1014 val dvd_mult = thm "dvd_mult";
1015 val dvd_mult2 = thm "dvd_mult2";
1016 val dvd_reduce = thm "dvd_reduce";
1017 val dvd_mod = thm "dvd_mod";
1018 val dvd_mod_imp_dvd = thm "dvd_mod_imp_dvd";
1019 val dvd_mod_iff = thm "dvd_mod_iff";
1020 val dvd_mult_cancel = thm "dvd_mult_cancel";
1021 val dvd_mult_cancel1 = thm "dvd_mult_cancel1";
1022 val dvd_mult_cancel2 = thm "dvd_mult_cancel2";
1023 val mult_dvd_mono = thm "mult_dvd_mono";
1024 val dvd_mult_left = thm "dvd_mult_left";
1025 val dvd_mult_right = thm "dvd_mult_right";
1026 val dvd_imp_le = thm "dvd_imp_le";
1027 val dvd_eq_mod_eq_0 = thm "dvd_eq_mod_eq_0";
1028 val dvd_mult_div_cancel = thm "dvd_mult_div_cancel";
1029 val mod_eq_0_iff = thm "mod_eq_0_iff";
1030 val mod_eqD = thm "mod_eqD";
1035 assumes m: "m \<noteq> 0"
1036 shows "P(n div m :: nat) = (!i. !j<m. n = m*i + j \<longrightarrow> P i)"
1041 proof (intro allI impI)
1043 assume n: "n = m*i + j" and j: "j < m"
1047 with n j P show "P i" by simp
1049 assume "i \<noteq> 0"
1050 with n j P show "P i" by (simp add:add_ac div_mult_self1)
1055 from m Q[THEN spec,of "n div m",THEN spec, of "n mod m"]
1060 assumes m: "m \<noteq> 0"
1061 shows "P(n mod m :: nat) = (!i. !j<m. n = m*i + j \<longrightarrow> P j)"
1066 proof (intro allI impI)
1068 assume "n = m*i + j" "j < m"
1069 thus "P j" using m P by(simp add:add_ac mult_ac)
1073 from m Q[THEN spec,of "n div m",THEN spec, of "n mod m"]