src/HOL/Wellfounded.thy
 author haftmann Thu Oct 13 23:02:59 2011 +0200 (2011-10-13) changeset 45139 bdcaa3f3a2f4 parent 45137 6e422d180de8 child 45970 b6d0cff57d96 permissions -rw-r--r--
moved acyclic predicate up in hierarchy
1 (*  Title:      HOL/Wellfounded.thy
2     Author:     Tobias Nipkow
3     Author:     Lawrence C Paulson
4     Author:     Konrad Slind
5     Author:     Alexander Krauss
6 *)
8 header {*Well-founded Recursion*}
10 theory Wellfounded
11 imports Transitive_Closure
12 uses ("Tools/Function/size.ML")
13 begin
15 subsection {* Basic Definitions *}
17 definition wf :: "('a * 'a) set => bool" where
18   "wf r \<longleftrightarrow> (!P. (!x. (!y. (y,x):r --> P(y)) --> P(x)) --> (!x. P(x)))"
20 definition wfP :: "('a => 'a => bool) => bool" where
21   "wfP r \<longleftrightarrow> wf {(x, y). r x y}"
23 lemma wfP_wf_eq [pred_set_conv]: "wfP (\<lambda>x y. (x, y) \<in> r) = wf r"
24   by (simp add: wfP_def)
26 lemma wfUNIVI:
27    "(!!P x. (ALL x. (ALL y. (y,x) : r --> P(y)) --> P(x)) ==> P(x)) ==> wf(r)"
28   unfolding wf_def by blast
30 lemmas wfPUNIVI = wfUNIVI [to_pred]
32 text{*Restriction to domain @{term A} and range @{term B}.  If @{term r} is
33     well-founded over their intersection, then @{term "wf r"}*}
34 lemma wfI:
35  "[| r \<subseteq> A <*> B;
36      !!x P. [|\<forall>x. (\<forall>y. (y,x) : r --> P y) --> P x;  x : A; x : B |] ==> P x |]
37   ==>  wf r"
38   unfolding wf_def by blast
40 lemma wf_induct:
41     "[| wf(r);
42         !!x.[| ALL y. (y,x): r --> P(y) |] ==> P(x)
43      |]  ==>  P(a)"
44   unfolding wf_def by blast
46 lemmas wfP_induct = wf_induct [to_pred]
48 lemmas wf_induct_rule = wf_induct [rule_format, consumes 1, case_names less, induct set: wf]
50 lemmas wfP_induct_rule = wf_induct_rule [to_pred, induct set: wfP]
52 lemma wf_not_sym: "wf r ==> (a, x) : r ==> (x, a) ~: r"
53   by (induct a arbitrary: x set: wf) blast
55 lemma wf_asym:
56   assumes "wf r" "(a, x) \<in> r"
57   obtains "(x, a) \<notin> r"
58   by (drule wf_not_sym[OF assms])
60 lemma wf_not_refl [simp]: "wf r ==> (a, a) ~: r"
61   by (blast elim: wf_asym)
63 lemma wf_irrefl: assumes "wf r" obtains "(a, a) \<notin> r"
64 by (drule wf_not_refl[OF assms])
66 lemma wf_wellorderI:
67   assumes wf: "wf {(x::'a::ord, y). x < y}"
68   assumes lin: "OFCLASS('a::ord, linorder_class)"
69   shows "OFCLASS('a::ord, wellorder_class)"
70 using lin by (rule wellorder_class.intro)
71   (blast intro: class.wellorder_axioms.intro wf_induct_rule [OF wf])
73 lemma (in wellorder) wf:
74   "wf {(x, y). x < y}"
75 unfolding wf_def by (blast intro: less_induct)
78 subsection {* Basic Results *}
80 text {* Point-free characterization of well-foundedness *}
82 lemma wfE_pf:
83   assumes wf: "wf R"
84   assumes a: "A \<subseteq> R `` A"
85   shows "A = {}"
86 proof -
87   { fix x
88     from wf have "x \<notin> A"
89     proof induct
90       fix x assume "\<And>y. (y, x) \<in> R \<Longrightarrow> y \<notin> A"
91       then have "x \<notin> R `` A" by blast
92       with a show "x \<notin> A" by blast
93     qed
94   } thus ?thesis by auto
95 qed
97 lemma wfI_pf:
98   assumes a: "\<And>A. A \<subseteq> R `` A \<Longrightarrow> A = {}"
99   shows "wf R"
100 proof (rule wfUNIVI)
101   fix P :: "'a \<Rightarrow> bool" and x
102   let ?A = "{x. \<not> P x}"
103   assume "\<forall>x. (\<forall>y. (y, x) \<in> R \<longrightarrow> P y) \<longrightarrow> P x"
104   then have "?A \<subseteq> R `` ?A" by blast
105   with a show "P x" by blast
106 qed
108 text{*Minimal-element characterization of well-foundedness*}
110 lemma wfE_min:
111   assumes wf: "wf R" and Q: "x \<in> Q"
112   obtains z where "z \<in> Q" "\<And>y. (y, z) \<in> R \<Longrightarrow> y \<notin> Q"
113   using Q wfE_pf[OF wf, of Q] by blast
115 lemma wfI_min:
116   assumes a: "\<And>x Q. x \<in> Q \<Longrightarrow> \<exists>z\<in>Q. \<forall>y. (y, z) \<in> R \<longrightarrow> y \<notin> Q"
117   shows "wf R"
118 proof (rule wfI_pf)
119   fix A assume b: "A \<subseteq> R `` A"
120   { fix x assume "x \<in> A"
121     from a[OF this] b have "False" by blast
122   }
123   thus "A = {}" by blast
124 qed
126 lemma wf_eq_minimal: "wf r = (\<forall>Q x. x\<in>Q --> (\<exists>z\<in>Q. \<forall>y. (y,z)\<in>r --> y\<notin>Q))"
127 apply auto
128 apply (erule wfE_min, assumption, blast)
129 apply (rule wfI_min, auto)
130 done
132 lemmas wfP_eq_minimal = wf_eq_minimal [to_pred]
134 text{* Well-foundedness of transitive closure *}
136 lemma wf_trancl:
137   assumes "wf r"
138   shows "wf (r^+)"
139 proof -
140   {
141     fix P and x
142     assume induct_step: "!!x. (!!y. (y, x) : r^+ ==> P y) ==> P x"
143     have "P x"
144     proof (rule induct_step)
145       fix y assume "(y, x) : r^+"
146       with `wf r` show "P y"
147       proof (induct x arbitrary: y)
148         case (less x)
149         note hyp = `\<And>x' y'. (x', x) : r ==> (y', x') : r^+ ==> P y'`
150         from `(y, x) : r^+` show "P y"
151         proof cases
152           case base
153           show "P y"
154           proof (rule induct_step)
155             fix y' assume "(y', y) : r^+"
156             with `(y, x) : r` show "P y'" by (rule hyp [of y y'])
157           qed
158         next
159           case step
160           then obtain x' where "(x', x) : r" and "(y, x') : r^+" by simp
161           then show "P y" by (rule hyp [of x' y])
162         qed
163       qed
164     qed
165   } then show ?thesis unfolding wf_def by blast
166 qed
168 lemmas wfP_trancl = wf_trancl [to_pred]
170 lemma wf_converse_trancl: "wf (r^-1) ==> wf ((r^+)^-1)"
171   apply (subst trancl_converse [symmetric])
172   apply (erule wf_trancl)
173   done
175 text {* Well-foundedness of subsets *}
177 lemma wf_subset: "[| wf(r);  p<=r |] ==> wf(p)"
178   apply (simp (no_asm_use) add: wf_eq_minimal)
179   apply fast
180   done
182 lemmas wfP_subset = wf_subset [to_pred]
184 text {* Well-foundedness of the empty relation *}
186 lemma wf_empty [iff]: "wf {}"
187   by (simp add: wf_def)
189 lemma wfP_empty [iff]:
190   "wfP (\<lambda>x y. False)"
191 proof -
192   have "wfP bot" by (fact wf_empty [to_pred bot_empty_eq2])
193   then show ?thesis by (simp add: bot_fun_def)
194 qed
196 lemma wf_Int1: "wf r ==> wf (r Int r')"
197   apply (erule wf_subset)
198   apply (rule Int_lower1)
199   done
201 lemma wf_Int2: "wf r ==> wf (r' Int r)"
202   apply (erule wf_subset)
203   apply (rule Int_lower2)
204   done
206 text {* Exponentiation *}
208 lemma wf_exp:
209   assumes "wf (R ^^ n)"
210   shows "wf R"
211 proof (rule wfI_pf)
212   fix A assume "A \<subseteq> R `` A"
213   then have "A \<subseteq> (R ^^ n) `` A" by (induct n) force+
214   with `wf (R ^^ n)`
215   show "A = {}" by (rule wfE_pf)
216 qed
218 text {* Well-foundedness of insert *}
220 lemma wf_insert [iff]: "wf(insert (y,x) r) = (wf(r) & (x,y) ~: r^*)"
221 apply (rule iffI)
222  apply (blast elim: wf_trancl [THEN wf_irrefl]
223               intro: rtrancl_into_trancl1 wf_subset
224                      rtrancl_mono [THEN  rev_subsetD])
225 apply (simp add: wf_eq_minimal, safe)
226 apply (rule allE, assumption, erule impE, blast)
227 apply (erule bexE)
228 apply (rename_tac "a", case_tac "a = x")
229  prefer 2
230 apply blast
231 apply (case_tac "y:Q")
232  prefer 2 apply blast
233 apply (rule_tac x = "{z. z:Q & (z,y) : r^*}" in allE)
234  apply assumption
235 apply (erule_tac V = "ALL Q. (EX x. x : Q) --> ?P Q" in thin_rl)
236   --{*essential for speed*}
237 txt{*Blast with new substOccur fails*}
238 apply (fast intro: converse_rtrancl_into_rtrancl)
239 done
241 text{*Well-foundedness of image*}
243 lemma wf_map_pair_image: "[| wf r; inj f |] ==> wf(map_pair f f ` r)"
244 apply (simp only: wf_eq_minimal, clarify)
245 apply (case_tac "EX p. f p : Q")
246 apply (erule_tac x = "{p. f p : Q}" in allE)
247 apply (fast dest: inj_onD, blast)
248 done
251 subsection {* Well-Foundedness Results for Unions *}
253 lemma wf_union_compatible:
254   assumes "wf R" "wf S"
255   assumes "R O S \<subseteq> R"
256   shows "wf (R \<union> S)"
257 proof (rule wfI_min)
258   fix x :: 'a and Q
259   let ?Q' = "{x \<in> Q. \<forall>y. (y, x) \<in> R \<longrightarrow> y \<notin> Q}"
260   assume "x \<in> Q"
261   obtain a where "a \<in> ?Q'"
262     by (rule wfE_min [OF `wf R` `x \<in> Q`]) blast
263   with `wf S`
264   obtain z where "z \<in> ?Q'" and zmin: "\<And>y. (y, z) \<in> S \<Longrightarrow> y \<notin> ?Q'" by (erule wfE_min)
265   {
266     fix y assume "(y, z) \<in> S"
267     then have "y \<notin> ?Q'" by (rule zmin)
269     have "y \<notin> Q"
270     proof
271       assume "y \<in> Q"
272       with `y \<notin> ?Q'`
273       obtain w where "(w, y) \<in> R" and "w \<in> Q" by auto
274       from `(w, y) \<in> R` `(y, z) \<in> S` have "(w, z) \<in> R O S" by (rule rel_compI)
275       with `R O S \<subseteq> R` have "(w, z) \<in> R" ..
276       with `z \<in> ?Q'` have "w \<notin> Q" by blast
277       with `w \<in> Q` show False by contradiction
278     qed
279   }
280   with `z \<in> ?Q'` show "\<exists>z\<in>Q. \<forall>y. (y, z) \<in> R \<union> S \<longrightarrow> y \<notin> Q" by blast
281 qed
284 text {* Well-foundedness of indexed union with disjoint domains and ranges *}
286 lemma wf_UN: "[| ALL i:I. wf(r i);
287          ALL i:I. ALL j:I. r i ~= r j --> Domain(r i) Int Range(r j) = {}
288       |] ==> wf(UN i:I. r i)"
289 apply (simp only: wf_eq_minimal, clarify)
290 apply (rename_tac A a, case_tac "EX i:I. EX a:A. EX b:A. (b,a) : r i")
291  prefer 2
292  apply force
293 apply clarify
294 apply (drule bspec, assumption)
295 apply (erule_tac x="{a. a:A & (EX b:A. (b,a) : r i) }" in allE)
296 apply (blast elim!: allE)
297 done
299 lemma wfP_SUP:
300   "\<forall>i. wfP (r i) \<Longrightarrow> \<forall>i j. r i \<noteq> r j \<longrightarrow> inf (DomainP (r i)) (RangeP (r j)) = bot \<Longrightarrow> wfP (SUPR UNIV r)"
301   by (rule wf_UN [where I=UNIV and r="\<lambda>i. {(x, y). r i x y}", to_pred SUP_UN_eq2])
302     (simp_all add: Collect_def)
304 lemma wf_Union:
305  "[| ALL r:R. wf r;
306      ALL r:R. ALL s:R. r ~= s --> Domain r Int Range s = {}
307   |] ==> wf(Union R)"
308   using wf_UN[of R "\<lambda>i. i"] by (simp add: SUP_def)
310 (*Intuition: we find an (R u S)-min element of a nonempty subset A
311              by case distinction.
312   1. There is a step a -R-> b with a,b : A.
313      Pick an R-min element z of the (nonempty) set {a:A | EX b:A. a -R-> b}.
314      By definition, there is z':A s.t. z -R-> z'. Because z is R-min in the
315      subset, z' must be R-min in A. Because z' has an R-predecessor, it cannot
316      have an S-successor and is thus S-min in A as well.
317   2. There is no such step.
318      Pick an S-min element of A. In this case it must be an R-min
319      element of A as well.
321 *)
322 lemma wf_Un:
323      "[| wf r; wf s; Domain r Int Range s = {} |] ==> wf(r Un s)"
324   using wf_union_compatible[of s r]
325   by (auto simp: Un_ac)
327 lemma wf_union_merge:
328   "wf (R \<union> S) = wf (R O R \<union> S O R \<union> S)" (is "wf ?A = wf ?B")
329 proof
330   assume "wf ?A"
331   with wf_trancl have wfT: "wf (?A^+)" .
332   moreover have "?B \<subseteq> ?A^+"
333     by (subst trancl_unfold, subst trancl_unfold) blast
334   ultimately show "wf ?B" by (rule wf_subset)
335 next
336   assume "wf ?B"
338   show "wf ?A"
339   proof (rule wfI_min)
340     fix Q :: "'a set" and x
341     assume "x \<in> Q"
343     with `wf ?B`
344     obtain z where "z \<in> Q" and "\<And>y. (y, z) \<in> ?B \<Longrightarrow> y \<notin> Q"
345       by (erule wfE_min)
346     then have A1: "\<And>y. (y, z) \<in> R O R \<Longrightarrow> y \<notin> Q"
347       and A2: "\<And>y. (y, z) \<in> S O R \<Longrightarrow> y \<notin> Q"
348       and A3: "\<And>y. (y, z) \<in> S \<Longrightarrow> y \<notin> Q"
349       by auto
351     show "\<exists>z\<in>Q. \<forall>y. (y, z) \<in> ?A \<longrightarrow> y \<notin> Q"
352     proof (cases "\<forall>y. (y, z) \<in> R \<longrightarrow> y \<notin> Q")
353       case True
354       with `z \<in> Q` A3 show ?thesis by blast
355     next
356       case False
357       then obtain z' where "z'\<in>Q" "(z', z) \<in> R" by blast
359       have "\<forall>y. (y, z') \<in> ?A \<longrightarrow> y \<notin> Q"
360       proof (intro allI impI)
361         fix y assume "(y, z') \<in> ?A"
362         then show "y \<notin> Q"
363         proof
364           assume "(y, z') \<in> R"
365           then have "(y, z) \<in> R O R" using `(z', z) \<in> R` ..
366           with A1 show "y \<notin> Q" .
367         next
368           assume "(y, z') \<in> S"
369           then have "(y, z) \<in> S O R" using  `(z', z) \<in> R` ..
370           with A2 show "y \<notin> Q" .
371         qed
372       qed
373       with `z' \<in> Q` show ?thesis ..
374     qed
375   qed
376 qed
378 lemma wf_comp_self: "wf R = wf (R O R)"  -- {* special case *}
379   by (rule wf_union_merge [where S = "{}", simplified])
382 subsection {* Acyclic relations *}
384 lemma wf_acyclic: "wf r ==> acyclic r"
385 apply (simp add: acyclic_def)
386 apply (blast elim: wf_trancl [THEN wf_irrefl])
387 done
389 lemmas wfP_acyclicP = wf_acyclic [to_pred]
391 text{* Wellfoundedness of finite acyclic relations*}
393 lemma finite_acyclic_wf [rule_format]: "finite r ==> acyclic r --> wf r"
394 apply (erule finite_induct, blast)
395 apply (simp (no_asm_simp) only: split_tupled_all)
396 apply simp
397 done
399 lemma finite_acyclic_wf_converse: "[|finite r; acyclic r|] ==> wf (r^-1)"
400 apply (erule finite_converse [THEN iffD2, THEN finite_acyclic_wf])
401 apply (erule acyclic_converse [THEN iffD2])
402 done
404 lemma wf_iff_acyclic_if_finite: "finite r ==> wf r = acyclic r"
405 by (blast intro: finite_acyclic_wf wf_acyclic)
408 subsection {* @{typ nat} is well-founded *}
410 lemma less_nat_rel: "op < = (\<lambda>m n. n = Suc m)^++"
411 proof (rule ext, rule ext, rule iffI)
412   fix n m :: nat
413   assume "m < n"
414   then show "(\<lambda>m n. n = Suc m)^++ m n"
415   proof (induct n)
416     case 0 then show ?case by auto
417   next
418     case (Suc n) then show ?case
419       by (auto simp add: less_Suc_eq_le le_less intro: tranclp.trancl_into_trancl)
420   qed
421 next
422   fix n m :: nat
423   assume "(\<lambda>m n. n = Suc m)^++ m n"
424   then show "m < n"
425     by (induct n)
426       (simp_all add: less_Suc_eq_le reflexive le_less)
427 qed
429 definition
430   pred_nat :: "(nat * nat) set" where
431   "pred_nat = {(m, n). n = Suc m}"
433 definition
434   less_than :: "(nat * nat) set" where
435   "less_than = pred_nat^+"
437 lemma less_eq: "(m, n) \<in> pred_nat^+ \<longleftrightarrow> m < n"
438   unfolding less_nat_rel pred_nat_def trancl_def by simp
440 lemma pred_nat_trancl_eq_le:
441   "(m, n) \<in> pred_nat^* \<longleftrightarrow> m \<le> n"
442   unfolding less_eq rtrancl_eq_or_trancl by auto
444 lemma wf_pred_nat: "wf pred_nat"
445   apply (unfold wf_def pred_nat_def, clarify)
446   apply (induct_tac x, blast+)
447   done
449 lemma wf_less_than [iff]: "wf less_than"
450   by (simp add: less_than_def wf_pred_nat [THEN wf_trancl])
452 lemma trans_less_than [iff]: "trans less_than"
453   by (simp add: less_than_def)
455 lemma less_than_iff [iff]: "((x,y): less_than) = (x<y)"
456   by (simp add: less_than_def less_eq)
458 lemma wf_less: "wf {(x, y::nat). x < y}"
459   using wf_less_than by (simp add: less_than_def less_eq [symmetric])
462 subsection {* Accessible Part *}
464 text {*
465  Inductive definition of the accessible part @{term "acc r"} of a
467 *}
469 inductive_set
470   acc :: "('a * 'a) set => 'a set"
471   for r :: "('a * 'a) set"
472   where
473     accI: "(!!y. (y, x) : r ==> y : acc r) ==> x : acc r"
475 abbreviation
476   termip :: "('a => 'a => bool) => 'a => bool" where
477   "termip r \<equiv> accp (r\<inverse>\<inverse>)"
479 abbreviation
480   termi :: "('a * 'a) set => 'a set" where
481   "termi r \<equiv> acc (r\<inverse>)"
483 lemmas accpI = accp.accI
485 text {* Induction rules *}
487 theorem accp_induct:
488   assumes major: "accp r a"
489   assumes hyp: "!!x. accp r x ==> \<forall>y. r y x --> P y ==> P x"
490   shows "P a"
491   apply (rule major [THEN accp.induct])
492   apply (rule hyp)
493    apply (rule accp.accI)
494    apply fast
495   apply fast
496   done
498 theorems accp_induct_rule = accp_induct [rule_format, induct set: accp]
500 theorem accp_downward: "accp r b ==> r a b ==> accp r a"
501   apply (erule accp.cases)
502   apply fast
503   done
505 lemma not_accp_down:
506   assumes na: "\<not> accp R x"
507   obtains z where "R z x" and "\<not> accp R z"
508 proof -
509   assume a: "\<And>z. \<lbrakk>R z x; \<not> accp R z\<rbrakk> \<Longrightarrow> thesis"
511   show thesis
512   proof (cases "\<forall>z. R z x \<longrightarrow> accp R z")
513     case True
514     hence "\<And>z. R z x \<Longrightarrow> accp R z" by auto
515     hence "accp R x"
516       by (rule accp.accI)
517     with na show thesis ..
518   next
519     case False then obtain z where "R z x" and "\<not> accp R z"
520       by auto
521     with a show thesis .
522   qed
523 qed
525 lemma accp_downwards_aux: "r\<^sup>*\<^sup>* b a ==> accp r a --> accp r b"
526   apply (erule rtranclp_induct)
527    apply blast
528   apply (blast dest: accp_downward)
529   done
531 theorem accp_downwards: "accp r a ==> r\<^sup>*\<^sup>* b a ==> accp r b"
532   apply (blast dest: accp_downwards_aux)
533   done
535 theorem accp_wfPI: "\<forall>x. accp r x ==> wfP r"
536   apply (rule wfPUNIVI)
537   apply (rule_tac P=P in accp_induct)
538    apply blast
539   apply blast
540   done
542 theorem accp_wfPD: "wfP r ==> accp r x"
543   apply (erule wfP_induct_rule)
544   apply (rule accp.accI)
545   apply blast
546   done
548 theorem wfP_accp_iff: "wfP r = (\<forall>x. accp r x)"
549   apply (blast intro: accp_wfPI dest: accp_wfPD)
550   done
553 text {* Smaller relations have bigger accessible parts: *}
555 lemma accp_subset:
556   assumes sub: "R1 \<le> R2"
557   shows "accp R2 \<le> accp R1"
558 proof (rule predicate1I)
559   fix x assume "accp R2 x"
560   then show "accp R1 x"
561   proof (induct x)
562     fix x
563     assume ih: "\<And>y. R2 y x \<Longrightarrow> accp R1 y"
564     with sub show "accp R1 x"
565       by (blast intro: accp.accI)
566   qed
567 qed
570 text {* This is a generalized induction theorem that works on
571   subsets of the accessible part. *}
573 lemma accp_subset_induct:
574   assumes subset: "D \<le> accp R"
575     and dcl: "\<And>x z. \<lbrakk>D x; R z x\<rbrakk> \<Longrightarrow> D z"
576     and "D x"
577     and istep: "\<And>x. \<lbrakk>D x; (\<And>z. R z x \<Longrightarrow> P z)\<rbrakk> \<Longrightarrow> P x"
578   shows "P x"
579 proof -
580   from subset and `D x`
581   have "accp R x" ..
582   then show "P x" using `D x`
583   proof (induct x)
584     fix x
585     assume "D x"
586       and "\<And>y. R y x \<Longrightarrow> D y \<Longrightarrow> P y"
587     with dcl and istep show "P x" by blast
588   qed
589 qed
592 text {* Set versions of the above theorems *}
594 lemmas acc_induct = accp_induct [to_set]
596 lemmas acc_induct_rule = acc_induct [rule_format, induct set: acc]
598 lemmas acc_downward = accp_downward [to_set]
600 lemmas not_acc_down = not_accp_down [to_set]
602 lemmas acc_downwards_aux = accp_downwards_aux [to_set]
604 lemmas acc_downwards = accp_downwards [to_set]
606 lemmas acc_wfI = accp_wfPI [to_set]
608 lemmas acc_wfD = accp_wfPD [to_set]
610 lemmas wf_acc_iff = wfP_accp_iff [to_set]
612 lemmas acc_subset = accp_subset [to_set pred_subset_eq]
614 lemmas acc_subset_induct = accp_subset_induct [to_set pred_subset_eq]
617 subsection {* Tools for building wellfounded relations *}
619 text {* Inverse Image *}
621 lemma wf_inv_image [simp,intro!]: "wf(r) ==> wf(inv_image r (f::'a=>'b))"
622 apply (simp (no_asm_use) add: inv_image_def wf_eq_minimal)
623 apply clarify
624 apply (subgoal_tac "EX (w::'b) . w : {w. EX (x::'a) . x: Q & (f x = w) }")
625 prefer 2 apply (blast del: allE)
626 apply (erule allE)
627 apply (erule (1) notE impE)
628 apply blast
629 done
631 text {* Measure functions into @{typ nat} *}
633 definition measure :: "('a => nat) => ('a * 'a)set"
634 where "measure = inv_image less_than"
636 lemma in_measure[simp]: "((x,y) : measure f) = (f x < f y)"
637   by (simp add:measure_def)
639 lemma wf_measure [iff]: "wf (measure f)"
640 apply (unfold measure_def)
641 apply (rule wf_less_than [THEN wf_inv_image])
642 done
644 lemma wf_if_measure: fixes f :: "'a \<Rightarrow> nat"
645 shows "(!!x. P x \<Longrightarrow> f(g x) < f x) \<Longrightarrow> wf {(y,x). P x \<and> y = g x}"
646 apply(insert wf_measure[of f])
647 apply(simp only: measure_def inv_image_def less_than_def less_eq)
648 apply(erule wf_subset)
649 apply auto
650 done
653 text{* Lexicographic combinations *}
655 definition lex_prod :: "('a \<times>'a) set \<Rightarrow> ('b \<times> 'b) set \<Rightarrow> (('a \<times> 'b) \<times> ('a \<times> 'b)) set" (infixr "<*lex*>" 80) where
656   "ra <*lex*> rb = {((a, b), (a', b')). (a, a') \<in> ra \<or> a = a' \<and> (b, b') \<in> rb}"
658 lemma wf_lex_prod [intro!]: "[| wf(ra); wf(rb) |] ==> wf(ra <*lex*> rb)"
659 apply (unfold wf_def lex_prod_def)
660 apply (rule allI, rule impI)
661 apply (simp (no_asm_use) only: split_paired_All)
662 apply (drule spec, erule mp)
663 apply (rule allI, rule impI)
664 apply (drule spec, erule mp, blast)
665 done
667 lemma in_lex_prod[simp]:
668   "(((a,b),(a',b')): r <*lex*> s) = ((a,a'): r \<or> (a = a' \<and> (b, b') : s))"
669   by (auto simp:lex_prod_def)
671 text{* @{term "op <*lex*>"} preserves transitivity *}
673 lemma trans_lex_prod [intro!]:
674     "[| trans R1; trans R2 |] ==> trans (R1 <*lex*> R2)"
675 by (unfold trans_def lex_prod_def, blast)
677 text {* lexicographic combinations with measure functions *}
679 definition
680   mlex_prod :: "('a \<Rightarrow> nat) \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set" (infixr "<*mlex*>" 80)
681 where
682   "f <*mlex*> R = inv_image (less_than <*lex*> R) (%x. (f x, x))"
684 lemma wf_mlex: "wf R \<Longrightarrow> wf (f <*mlex*> R)"
685 unfolding mlex_prod_def
686 by auto
688 lemma mlex_less: "f x < f y \<Longrightarrow> (x, y) \<in> f <*mlex*> R"
689 unfolding mlex_prod_def by simp
691 lemma mlex_leq: "f x \<le> f y \<Longrightarrow> (x, y) \<in> R \<Longrightarrow> (x, y) \<in> f <*mlex*> R"
692 unfolding mlex_prod_def by auto
694 text {* proper subset relation on finite sets *}
696 definition finite_psubset  :: "('a set * 'a set) set"
697 where "finite_psubset = {(A,B). A < B & finite B}"
699 lemma wf_finite_psubset[simp]: "wf(finite_psubset)"
700 apply (unfold finite_psubset_def)
701 apply (rule wf_measure [THEN wf_subset])
702 apply (simp add: measure_def inv_image_def less_than_def less_eq)
703 apply (fast elim!: psubset_card_mono)
704 done
706 lemma trans_finite_psubset: "trans finite_psubset"
707 by (simp add: finite_psubset_def less_le trans_def, blast)
709 lemma in_finite_psubset[simp]: "(A, B) \<in> finite_psubset = (A < B & finite B)"
710 unfolding finite_psubset_def by auto
712 text {* max- and min-extension of order to finite sets *}
714 inductive_set max_ext :: "('a \<times> 'a) set \<Rightarrow> ('a set \<times> 'a set) set"
715 for R :: "('a \<times> 'a) set"
716 where
717   max_extI[intro]: "finite X \<Longrightarrow> finite Y \<Longrightarrow> Y \<noteq> {} \<Longrightarrow> (\<And>x. x \<in> X \<Longrightarrow> \<exists>y\<in>Y. (x, y) \<in> R) \<Longrightarrow> (X, Y) \<in> max_ext R"
719 lemma max_ext_wf:
720   assumes wf: "wf r"
721   shows "wf (max_ext r)"
722 proof (rule acc_wfI, intro allI)
723   fix M show "M \<in> acc (max_ext r)" (is "_ \<in> ?W")
724   proof cases
725     assume "finite M"
726     thus ?thesis
727     proof (induct M)
728       show "{} \<in> ?W"
729         by (rule accI) (auto elim: max_ext.cases)
730     next
731       fix M a assume "M \<in> ?W" "finite M"
732       with wf show "insert a M \<in> ?W"
733       proof (induct arbitrary: M)
734         fix M a
735         assume "M \<in> ?W"  and  [intro]: "finite M"
736         assume hyp: "\<And>b M. (b, a) \<in> r \<Longrightarrow> M \<in> ?W \<Longrightarrow> finite M \<Longrightarrow> insert b M \<in> ?W"
737         {
738           fix N M :: "'a set"
739           assume "finite N" "finite M"
740           then
741           have "\<lbrakk>M \<in> ?W ; (\<And>y. y \<in> N \<Longrightarrow> (y, a) \<in> r)\<rbrakk> \<Longrightarrow>  N \<union> M \<in> ?W"
742             by (induct N arbitrary: M) (auto simp: hyp)
743         }
744         note add_less = this
746         show "insert a M \<in> ?W"
747         proof (rule accI)
748           fix N assume Nless: "(N, insert a M) \<in> max_ext r"
749           hence asm1: "\<And>x. x \<in> N \<Longrightarrow> (x, a) \<in> r \<or> (\<exists>y \<in> M. (x, y) \<in> r)"
750             by (auto elim!: max_ext.cases)
752           let ?N1 = "{ n \<in> N. (n, a) \<in> r }"
753           let ?N2 = "{ n \<in> N. (n, a) \<notin> r }"
754           have N: "?N1 \<union> ?N2 = N" by (rule set_eqI) auto
755           from Nless have "finite N" by (auto elim: max_ext.cases)
756           then have finites: "finite ?N1" "finite ?N2" by auto
758           have "?N2 \<in> ?W"
759           proof cases
760             assume [simp]: "M = {}"
761             have Mw: "{} \<in> ?W" by (rule accI) (auto elim: max_ext.cases)
763             from asm1 have "?N2 = {}" by auto
764             with Mw show "?N2 \<in> ?W" by (simp only:)
765           next
766             assume "M \<noteq> {}"
767             have N2: "(?N2, M) \<in> max_ext r"
768               by (rule max_extI[OF _ _ `M \<noteq> {}`]) (insert asm1, auto intro: finites)
770             with `M \<in> ?W` show "?N2 \<in> ?W" by (rule acc_downward)
771           qed
772           with finites have "?N1 \<union> ?N2 \<in> ?W"
773             by (rule add_less) simp
774           then show "N \<in> ?W" by (simp only: N)
775         qed
776       qed
777     qed
778   next
779     assume [simp]: "\<not> finite M"
780     show ?thesis
781       by (rule accI) (auto elim: max_ext.cases)
782   qed
783 qed
786  "(A, B) \<in> max_ext R \<Longrightarrow> (C, D) \<in> max_ext R \<Longrightarrow>
787   (A \<union> C, B \<union> D) \<in> max_ext R"
788 by (force elim!: max_ext.cases)
791 definition min_ext :: "('a \<times> 'a) set \<Rightarrow> ('a set \<times> 'a set) set"  where
792   "min_ext r = {(X, Y) | X Y. X \<noteq> {} \<and> (\<forall>y \<in> Y. (\<exists>x \<in> X. (x, y) \<in> r))}"
794 lemma min_ext_wf:
795   assumes "wf r"
796   shows "wf (min_ext r)"
797 proof (rule wfI_min)
798   fix Q :: "'a set set"
799   fix x
800   assume nonempty: "x \<in> Q"
801   show "\<exists>m \<in> Q. (\<forall> n. (n, m) \<in> min_ext r \<longrightarrow> n \<notin> Q)"
802   proof cases
803     assume "Q = {{}}" thus ?thesis by (simp add: min_ext_def)
804   next
805     assume "Q \<noteq> {{}}"
806     with nonempty
807     obtain e x where "x \<in> Q" "e \<in> x" by force
808     then have eU: "e \<in> \<Union>Q" by auto
809     with `wf r`
810     obtain z where z: "z \<in> \<Union>Q" "\<And>y. (y, z) \<in> r \<Longrightarrow> y \<notin> \<Union>Q"
811       by (erule wfE_min)
812     from z obtain m where "m \<in> Q" "z \<in> m" by auto
813     from `m \<in> Q`
814     show ?thesis
815     proof (rule, intro bexI allI impI)
816       fix n
817       assume smaller: "(n, m) \<in> min_ext r"
818       with `z \<in> m` obtain y where y: "y \<in> n" "(y, z) \<in> r" by (auto simp: min_ext_def)
819       then show "n \<notin> Q" using z(2) by auto
820     qed
821   qed
822 qed
824 text{* Bounded increase must terminate: *}
826 lemma wf_bounded_measure:
827 fixes ub :: "'a \<Rightarrow> nat" and f :: "'a \<Rightarrow> nat"
828 assumes "!!a b. (b,a) : r \<Longrightarrow> ub b \<le> ub a & ub a \<ge> f b & f b > f a"
829 shows "wf r"
830 apply(rule wf_subset[OF wf_measure[of "%a. ub a - f a"]])
831 apply (auto dest: assms)
832 done
834 lemma wf_bounded_set:
835 fixes ub :: "'a \<Rightarrow> 'b set" and f :: "'a \<Rightarrow> 'b set"
836 assumes "!!a b. (b,a) : r \<Longrightarrow>
837   finite(ub a) & ub b \<subseteq> ub a & ub a \<supseteq> f b & f b \<supset> f a"
838 shows "wf r"
839 apply(rule wf_bounded_measure[of r "%a. card(ub a)" "%a. card(f a)"])
840 apply(drule assms)
841 apply (blast intro: card_mono finite_subset psubset_card_mono dest: psubset_eq[THEN iffD2])
842 done
845 subsection {* size of a datatype value *}
847 use "Tools/Function/size.ML"
849 setup Size.setup
851 lemma size_bool [code]:
852   "size (b\<Colon>bool) = 0" by (cases b) auto
854 lemma nat_size [simp, code]: "size (n\<Colon>nat) = n"
855   by (induct n) simp_all
857 declare "prod.size" [no_atp]
859 lemma [code]:
860   "size (P :: 'a Predicate.pred) = 0" by (cases P) simp
862 lemma [code]:
863   "pred_size f P = 0" by (cases P) simp
865 end