src/HOL/Finite.ML
 author paulson Wed, 23 Sep 1998 10:12:01 +0200 changeset 5537 c2bd39a2c0ee parent 5516 d80e9aeb4a2b child 5616 497eeeace3fc permissions -rw-r--r--
deleted needless parentheses
```
(*  Title:      HOL/Finite.thy
ID:         \$Id\$
Author:     Lawrence C Paulson & Tobias Nipkow
Copyright   1995  University of Cambridge & TU Muenchen

Finite sets and their cardinality
*)

section "finite";

(*Discharging ~ x:y entails extra work*)
val major::prems = Goal
"[| finite F;  P({}); \
\       !!F x. [| finite F;  x ~: F;  P(F) |] ==> P(insert x F) \
\    |] ==> P(F)";
by (rtac (major RS Finites.induct) 1);
by (excluded_middle_tac "a:A" 2);
by (etac (insert_absorb RS ssubst) 3 THEN assume_tac 3);   (*backtracking!*)
by (REPEAT (ares_tac prems 1));
qed "finite_induct";

val major::subs::prems = Goal
"[| finite F;  F <= A; \
\       P({}); \
\       !!F a. [| finite F; a:A; a ~: F;  P(F) |] ==> P(insert a F) \
\    |] ==> P(F)";
by (rtac (subs RS rev_mp) 1);
by (rtac (major RS finite_induct) 1);
by (ALLGOALS (blast_tac (claset() addIs prems)));
qed "finite_subset_induct";

(*The union of two finite sets is finite*)
Goal "[| finite F;  finite G |] ==> finite(F Un G)";
by (etac finite_induct 1);
by (ALLGOALS Asm_simp_tac);
qed "finite_UnI";

(*Every subset of a finite set is finite*)
Goal "finite B ==> ALL A. A<=B --> finite A";
by (etac finite_induct 1);
by (Simp_tac 1);
by (safe_tac (claset() addSDs [subset_insert_iff RS iffD1]));
by (eres_inst_tac [("t","A")] (insert_Diff RS subst) 2);
by (ALLGOALS Asm_simp_tac);
val lemma = result();

Goal "[| A<=B;  finite B |] ==> finite A";
by (dtac lemma 1);
by (Blast_tac 1);
qed "finite_subset";

Goal "finite(F Un G) = (finite F & finite G)";
by (blast_tac (claset()
finite_UnI]) 1);
qed "finite_Un";

Goal "finite F ==> finite(F Int G)";
by (blast_tac (claset() addIs [finite_subset]) 1);
qed "finite_Int1";

Goal "finite G ==> finite(F Int G)";
by (blast_tac (claset() addIs [finite_subset]) 1);
qed "finite_Int2";

Goal "finite(insert a A) = finite A";
by (stac insert_is_Un 1);
by (simp_tac (HOL_ss addsimps [finite_Un]) 1);
by (Blast_tac 1);
qed "finite_insert";

(*The image of a finite set is finite *)
Goal  "finite F ==> finite(h``F)";
by (etac finite_induct 1);
by (Simp_tac 1);
by (Asm_simp_tac 1);
qed "finite_imageI";

val major::prems = Goal
"[| finite c;  finite b;                                  \
\       P(b);                                                   \
\       !!x y. [| finite y;  x:y;  P(y) |] ==> P(y-{x}) \
\    |] ==> c<=b --> P(b-c)";
by (rtac (major RS finite_induct) 1);
by (stac Diff_insert 2);
by (ALLGOALS (asm_simp_tac
val lemma = result();

val prems = Goal
"[| finite A;                                       \
\       P(A);                                           \
\       !!a A. [| finite A;  a:A;  P(A) |] ==> P(A-{a}) \
\    |] ==> P({})";
by (rtac (Diff_cancel RS subst) 1);
by (rtac (lemma RS mp) 1);
by (REPEAT (ares_tac (subset_refl::prems) 1));
qed "finite_empty_induct";

(* finite B ==> finite (B - Ba) *)
bind_thm ("finite_Diff", Diff_subset RS finite_subset);

Goal "finite(A-{a}) = finite(A)";
by (case_tac "a:A" 1);
by (rtac (finite_insert RS sym RS trans) 1);
by (stac insert_Diff 1);
by (ALLGOALS Asm_simp_tac);
qed "finite_Diff_singleton";

(*Lemma for proving finite_imageD*)
Goal "finite B ==> !A. f``A = B --> inj_on f A --> finite A";
by (etac finite_induct 1);
by (ALLGOALS Asm_simp_tac);
by (Clarify_tac 1);
by (subgoal_tac "EX y:A. f y = x & F = f``(A-{y})" 1);
by (Clarify_tac 1);
by (full_simp_tac (simpset() addsimps [inj_on_def]) 1);
by (Blast_tac 1);
by (thin_tac "ALL A. ?PP(A)" 1);
by (forward_tac [[equalityD2, insertI1] MRS subsetD] 1);
by (Clarify_tac 1);
by (res_inst_tac [("x","xa")] bexI 1);
by (ALLGOALS
val lemma = result();

Goal "[| finite(f``A);  inj_on f A |] ==> finite A";
by (dtac lemma 1);
by (Blast_tac 1);
qed "finite_imageD";

(** The finite UNION of finite sets **)

Goal "finite A ==> (!a:A. finite(B a)) --> finite(UN a:A. B a)";
by (etac finite_induct 1);
by (ALLGOALS Asm_simp_tac);
bind_thm("finite_UnionI", ballI RSN (2, result() RS mp));

(** Sigma of finite sets **)

Goalw [Sigma_def]
"[| finite A; !a:A. finite(B a) |] ==> finite(SIGMA a:A. B a)";
by (blast_tac (claset() addSIs [finite_UnionI]) 1);
bind_thm("finite_SigmaI", ballI RSN (2,result()));

(** The powerset of a finite set **)

Goal "finite(Pow A) ==> finite A";
by (subgoal_tac "finite ((%x.{x})``A)" 1);
by (rtac finite_subset 2);
by (assume_tac 3);
by (ALLGOALS
(fast_tac (claset() addSDs [rewrite_rule [inj_on_def] finite_imageD])));
val lemma = result();

Goal "finite(Pow A) = finite A";
by (rtac iffI 1);
by (etac lemma 1);
(*Opposite inclusion: finite A ==> finite (Pow A) *)
by (etac finite_induct 1);
by (ALLGOALS
(asm_simp_tac
qed "finite_Pow_iff";

Goal "finite(r^-1) = finite r";
by (subgoal_tac "r^-1 = (%(x,y).(y,x))``r" 1);
by (Asm_simp_tac 1);
by (rtac iffI 1);
by (etac (rewrite_rule [inj_on_def] finite_imageD) 1);
by (simp_tac (simpset() addsplits [split_split]) 1);
by (etac finite_imageI 1);
by (simp_tac (simpset() addsimps [converse_def,image_def]) 1);
by Auto_tac;
by (rtac bexI 1);
by  (assume_tac 2);
by (Simp_tac 1);
qed "finite_converse";

section "Finite cardinality -- 'card'";

Goal "{f i |i. (P i | i=n)} = insert (f n) {f i|i. P i}";
by (Blast_tac 1);
val Collect_conv_insert = result();

Goalw [card_def] "card {} = 0";
by (rtac Least_equality 1);
by (ALLGOALS Asm_full_simp_tac);
qed "card_empty";

Goal "finite A ==> ? (n::nat) f. A = {f i |i. i<n}";
by (etac finite_induct 1);
by (res_inst_tac [("x","0")] exI 1);
by (Simp_tac 1);
by (etac exE 1);
by (etac exE 1);
by (hyp_subst_tac 1);
by (res_inst_tac [("x","Suc n")] exI 1);
by (res_inst_tac [("x","%i. if i<n then f i else x")] exI 1);
by (asm_simp_tac (simpset() addsimps [Collect_conv_insert, less_Suc_eq]
qed "finite_has_card";

Goal "[| x ~: A; insert x A = {f i|i. i<n} |]  \
\     ==> ? m::nat. m<n & (? g. A = {g i|i. i<m})";
by (exhaust_tac "n" 1);
by (hyp_subst_tac 1);
by (Asm_full_simp_tac 1);
by (rename_tac "m" 1);
by (hyp_subst_tac 1);
by (case_tac "? a. a:A" 1);
by (res_inst_tac [("x","0")] exI 2);
by (Simp_tac 2);
by (Blast_tac 2);
by (etac exE 1);
by (simp_tac (simpset() addsimps [less_Suc_eq]) 1);
by (rtac exI 1);
by (rtac (refl RS disjI2 RS conjI) 1);
by (etac equalityE 1);
by (asm_full_simp_tac
by Safe_tac;
by (Asm_full_simp_tac 1);
by (res_inst_tac [("x","%i. if f i = f m then a else f i")] exI 1);
by (SELECT_GOAL Safe_tac 1);
by (subgoal_tac "x ~= f m" 1);
by (Blast_tac 2);
by (subgoal_tac "? k. f k = x & k<m" 1);
by (Blast_tac 2);
by (SELECT_GOAL Safe_tac 1);
by (res_inst_tac [("x","k")] exI 1);
by (Asm_simp_tac 1);
by (Simp_tac 1);
by (Blast_tac 1);
by (dtac sym 1);
by (rotate_tac ~1 1);
by (Asm_full_simp_tac 1);
by (res_inst_tac [("x","%i. if f i = f m then a else f i")] exI 1);
by (SELECT_GOAL Safe_tac 1);
by (subgoal_tac "x ~= f m" 1);
by (Blast_tac 2);
by (subgoal_tac "? k. f k = x & k<m" 1);
by (Blast_tac 2);
by (SELECT_GOAL Safe_tac 1);
by (res_inst_tac [("x","k")] exI 1);
by (Asm_simp_tac 1);
by (Simp_tac 1);
by (Blast_tac 1);
by (res_inst_tac [("x","%j. if f j = f i then f m else f j")] exI 1);
by (SELECT_GOAL Safe_tac 1);
by (subgoal_tac "x ~= f i" 1);
by (Blast_tac 2);
by (case_tac "x = f m" 1);
by (res_inst_tac [("x","i")] exI 1);
by (Asm_simp_tac 1);
by (subgoal_tac "? k. f k = x & k<m" 1);
by (Blast_tac 2);
by (SELECT_GOAL Safe_tac 1);
by (res_inst_tac [("x","k")] exI 1);
by (Asm_simp_tac 1);
by (Simp_tac 1);
by (Blast_tac 1);
val lemma = result();

Goal "[| finite A; x ~: A |] ==> \
\ (LEAST n. ? f. insert x A = {f i|i. i<n}) = Suc(LEAST n. ? f. A={f i|i. i<n})";
by (rtac Least_equality 1);
by (dtac finite_has_card 1);
by (etac exE 1);
by (dres_inst_tac [("P","%n.? f. A={f i|i. i<n}")] LeastI 1);
by (etac exE 1);
by (res_inst_tac
[("x","%i. if i<(LEAST n. ? f. A={f i |i. i < n}) then f i else x")] exI 1);
by (simp_tac
by (etac subst 1);
by (rtac refl 1);
by (rtac notI 1);
by (etac exE 1);
by (dtac lemma 1);
by (assume_tac 1);
by (etac exE 1);
by (etac conjE 1);
by (dres_inst_tac [("P","%x. ? g. A = {g i |i. i < x}")] Least_le 1);
by (dtac le_less_trans 1 THEN atac 1);
by (asm_full_simp_tac (simpset() addsimps [less_Suc_eq]) 1);
by (etac disjE 1);
by (etac less_asym 1 THEN atac 1);
by (hyp_subst_tac 1);
by (Asm_full_simp_tac 1);
val lemma = result();

Goalw [card_def] "[| finite A; x ~: A |] ==> card(insert x A) = Suc(card A)";
by (etac lemma 1);
by (assume_tac 1);
qed "card_insert_disjoint";

Goal "finite A ==> card A <= card (insert x A)";
by (case_tac "x: A" 1);
by (ALLGOALS (asm_simp_tac (simpset() addsimps [insert_absorb])));
qed "card_insert_le";

Goal  "finite A ==> !B. B <= A --> card(B) <= card(A)";
by (etac finite_induct 1);
by (Simp_tac 1);
by (Clarify_tac 1);
by (case_tac "x:B" 1);
by (dres_inst_tac [("A","B")] mk_disjoint_insert 1);
by (asm_full_simp_tac (simpset() addsimps [subset_insert_iff]) 2);
delsimps [insert_subset])) 1);
qed_spec_mp "card_mono";

Goal "[| finite A; finite B |] \
\     ==> card A + card B = card (A Un B) + card (A Int B)";
by (etac finite_induct 1);
by (Simp_tac 1);
by (asm_simp_tac (simpset() addsimps [insert_absorb, Int_insert_left]) 1);
qed "card_Un_Int";

Goal "[| finite A; finite B; A Int B = {} |] \
\     ==> card (A Un B) = card A + card B";
by (asm_simp_tac (simpset() addsimps [card_Un_Int]) 1);
qed "card_Un_disjoint";

Goal "[| finite A; B<=A |] ==> card A - card B = card (A - B)";
by (subgoal_tac "(A-B) Un B = A" 1);
by (Blast_tac 2);
by (rtac (add_right_cancel RS iffD1) 1);
by (rtac (card_Un_disjoint RS subst) 1);
by (etac ssubst 4);
by (Blast_tac 3);
by (ALLGOALS
(asm_simp_tac
qed "card_Diff_subset";

Goal "[| finite A; x: A |] ==> Suc(card(A-{x})) = card A";
by (res_inst_tac [("t", "A")] (insert_Diff RS subst) 1);
by (assume_tac 1);
by (Asm_simp_tac 1);
qed "card_Suc_Diff";

Goal "[| finite A; x: A |] ==> card(A-{x}) < card A";
by (rtac Suc_less_SucD 1);
by (asm_simp_tac (simpset() addsimps [card_Suc_Diff]) 1);
qed "card_Diff";

Goal "finite A ==> card(A-{x}) <= card A";
by (case_tac "x: A" 1);
by (ALLGOALS (asm_simp_tac (simpset() addsimps [card_Diff, less_imp_le])));
qed "card_Diff_le";

(*** Cardinality of the Powerset ***)

Goal "finite A ==> card(insert x A) = Suc(card(A-{x}))";
by (case_tac "x:A" 1);
by (ALLGOALS
qed "card_insert";

Goal "finite(A) ==> inj_on f A --> card (f `` A) = card A";
by (etac finite_induct 1);
by (ALLGOALS Asm_simp_tac);
by Safe_tac;
by (rewtac inj_on_def);
by (Blast_tac 1);
by (stac card_insert_disjoint 1);
by (etac finite_imageI 1);
by (Blast_tac 1);
by (Blast_tac 1);
qed_spec_mp "card_image";

Goal "finite A ==> card (Pow A) = 2 ^ card A";
by (etac finite_induct 1);
by (ALLGOALS (asm_simp_tac (simpset() addsimps [Pow_insert])));
by (stac card_Un_disjoint 1);
by (EVERY (map (blast_tac (claset() addIs [finite_imageI])) [3,2,1]));
by (subgoal_tac "inj_on (insert x) (Pow F)" 1);
by (asm_simp_tac (simpset() addsimps [card_image, Pow_insert]) 1);
by (rewtac inj_on_def);
by (blast_tac (claset() addSEs [equalityE]) 1);
qed "card_Pow";

(*Proper subsets*)
Goalw [psubset_def] "finite B ==> !A. A < B --> card(A) < card(B)";
by (etac finite_induct 1);
by (Simp_tac 1);
by (Clarify_tac 1);
by (case_tac "x:A" 1);
(*1*)
by (dres_inst_tac [("A","A")]mk_disjoint_insert 1);
by (Clarify_tac 1);
by (rotate_tac ~3 1);
by (asm_full_simp_tac (simpset() addsimps [finite_subset]) 1);
by (Blast_tac 1);
(*2*)
by (eres_inst_tac [("P","?a<?b")] notE 1);
by (asm_full_simp_tac (simpset() addsimps [subset_insert_iff]) 1);
by (case_tac "A=F" 1);
by (ALLGOALS Asm_simp_tac);
qed_spec_mp "psubset_card" ;

(*Relates to equivalence classes.   Based on a theorem of F. Kammueller's.
The "finite C" premise is redundant*)
Goal "finite C ==> finite (Union C) --> \
\          (! c : C. k dvd card c) -->  \
\          (! c1: C. ! c2: C. c1 ~= c2 --> c1 Int c2 = {}) \
\          --> k dvd card(Union C)";
by (etac finite_induct 1);
by (ALLGOALS Asm_simp_tac);
by (Clarify_tac 1);
by (stac card_Un_disjoint 1);
by (ALLGOALS
(asm_full_simp_tac (simpset()