src/HOL/cladata.ML
author wenzelm
Tue Dec 04 02:01:31 2001 +0100 (2001-12-04)
changeset 12355 c8d3c3d09080
parent 11753 02b257ef0ee2
child 15570 8d8c70b41bab
permissions -rw-r--r--
hyp_subst_tac';
     1 (*  Title:      HOL/cladata.ML
     2     ID:         $Id$
     3     Author:     Tobias Nipkow
     4     Copyright   1996  University of Cambridge
     5 
     6 Setting up the classical reasoner.
     7 *)
     8 
     9 
    10 (** Applying HypsubstFun to generate hyp_subst_tac **)
    11 section "Classical Reasoner";
    12 
    13 structure Hypsubst_Data =
    14   struct
    15   structure Simplifier = Simplifier
    16   (*Take apart an equality judgement; otherwise raise Match!*)
    17   fun dest_eq (Const("op =",T)  $ t $ u) = (t, u, domain_type T)
    18   val dest_Trueprop = HOLogic.dest_Trueprop
    19   val dest_imp = HOLogic.dest_imp
    20   val eq_reflection = eq_reflection
    21   val rev_eq_reflection = def_imp_eq
    22   val imp_intr = impI
    23   val rev_mp = rev_mp
    24   val subst = subst
    25   val sym = sym
    26   val thin_refl = prove_goal (the_context ())
    27 		  "!!X. [|x=x; PROP W|] ==> PROP W" (K [atac 1]);
    28   end;
    29 
    30 structure Hypsubst = HypsubstFun(Hypsubst_Data);
    31 open Hypsubst;
    32 
    33 (*prevent substitution on bool*)
    34 fun hyp_subst_tac' i thm = if i <= Thm.nprems_of thm andalso
    35   Term.exists_Const (fn ("op =", Type (_, [T, _])) => T <> Type ("bool", []) | _ => false)
    36     (Library.nth_elem (i - 1, Thm.prems_of thm)) then hyp_subst_tac i thm else no_tac thm;
    37 
    38 
    39 
    40 (*** Applying Make_Elim_Fun to create a classical "make_elim" rule ***)
    41 structure Make_Elim = Make_Elim_Fun (val classical = classical);
    42 
    43 (*we don't redeclare the original make_elim (Tactic.make_elim) for 
    44   compatibliity with strange things done in many existing proofs *)
    45 val cla_make_elim = Make_Elim.make_elim;
    46 
    47 (*** Applying ClassicalFun to create a classical prover ***)
    48 structure Classical_Data = 
    49   struct
    50   val make_elim = cla_make_elim
    51   val mp        = mp
    52   val not_elim  = notE
    53   val classical = classical
    54   val sizef     = size_of_thm
    55   val hyp_subst_tacs=[hyp_subst_tac]
    56   end;
    57 
    58 structure Classical = ClassicalFun(Classical_Data);
    59 
    60 structure BasicClassical: BASIC_CLASSICAL = Classical; 
    61 open BasicClassical;
    62 
    63 bind_thm ("contrapos_np", inst "Pa" "?Q" swap);
    64 
    65 (*Propositional rules*)
    66 val prop_cs = empty_cs addSIs [refl,TrueI,conjI,disjCI,impI,notI,iffI]
    67                        addSEs [conjE,disjE,impCE,FalseE,iffCE];
    68 
    69 (*Quantifier rules*)
    70 val HOL_cs = prop_cs addSIs [allI,ex_ex1I] addIs [exI, the_equality] 
    71                      addSEs [exE] addEs [allE];
    72 
    73 val clasetup = [fn thy => (claset_ref_of thy := HOL_cs; thy)];