src/HOL/Metis.thy
author haftmann
Fri Oct 10 19:55:32 2014 +0200 (2014-10-10)
changeset 58646 cd63a4b12a33
parent 56946 10d9bd4ea94f
child 58818 ee85e7b82d00
permissions -rw-r--r--
specialized specification: avoid trivial instances
     1 (*  Title:      HOL/Metis.thy
     2     Author:     Lawrence C. Paulson, Cambridge University Computer Laboratory
     3     Author:     Jia Meng, Cambridge University Computer Laboratory and NICTA
     4     Author:     Jasmin Blanchette, TU Muenchen
     5 *)
     6 
     7 header {* Metis Proof Method *}
     8 
     9 theory Metis
    10 imports ATP
    11 begin
    12 
    13 declare [[ML_print_depth = 0]]
    14 ML_file "~~/src/Tools/Metis/metis.ML"
    15 declare [[ML_print_depth = 10]]
    16 
    17 
    18 subsection {* Literal selection and lambda-lifting helpers *}
    19 
    20 definition select :: "'a \<Rightarrow> 'a" where
    21 "select = (\<lambda>x. x)"
    22 
    23 lemma not_atomize: "(\<not> A \<Longrightarrow> False) \<equiv> Trueprop A"
    24 by (cut_tac atomize_not [of "\<not> A"]) simp
    25 
    26 lemma atomize_not_select: "(A \<Longrightarrow> select False) \<equiv> Trueprop (\<not> A)"
    27 unfolding select_def by (rule atomize_not)
    28 
    29 lemma not_atomize_select: "(\<not> A \<Longrightarrow> select False) \<equiv> Trueprop A"
    30 unfolding select_def by (rule not_atomize)
    31 
    32 lemma select_FalseI: "False \<Longrightarrow> select False" by simp
    33 
    34 definition lambda :: "'a \<Rightarrow> 'a" where
    35 "lambda = (\<lambda>x. x)"
    36 
    37 lemma eq_lambdaI: "x \<equiv> y \<Longrightarrow> x \<equiv> lambda y"
    38 unfolding lambda_def by assumption
    39 
    40 
    41 subsection {* Metis package *}
    42 
    43 ML_file "Tools/Metis/metis_generate.ML"
    44 ML_file "Tools/Metis/metis_reconstruct.ML"
    45 ML_file "Tools/Metis/metis_tactic.ML"
    46 
    47 setup {* Metis_Tactic.setup *}
    48 
    49 hide_const (open) select fFalse fTrue fNot fComp fconj fdisj fimplies fAll fEx fequal lambda
    50 hide_fact (open) select_def not_atomize atomize_not_select not_atomize_select select_FalseI
    51   fFalse_def fTrue_def fNot_def fconj_def fdisj_def fimplies_def fAll_def fEx_def fequal_def
    52   fTrue_ne_fFalse fNot_table fconj_table fdisj_table fimplies_table fAll_table fEx_table
    53   fequal_table fAll_table fEx_table fNot_law fComp_law fconj_laws fdisj_laws fimplies_laws
    54   fequal_laws fAll_law fEx_law lambda_def eq_lambdaI
    55 
    56 end