src/ZF/qpair.thy
author paulson
Fri, 16 Feb 1996 18:00:47 +0100
changeset 1512 ce37c64244c0
parent 124 858ab9a9b047
permissions -rw-r--r--
Elimination of fully-functorial style. Type tactic changed to a type abbrevation (from a datatype). Constructor tactic and function apply deleted.

(*  Title: 	ZF/qpair.thy
    ID:         $Id$
    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1993  University of Cambridge

Quine-inspired ordered pairs and disjoint sums, for non-well-founded data
structures in ZF.  Does not precisely follow Quine's construction.  Thanks
to Thomas Forster for suggesting this approach!

W. V. Quine, On Ordered Pairs and Relations, in Selected Logic Papers,
1966.
*)

QPair = Sum + "simpdata" +
consts
  QPair     :: "[i, i] => i"               	("<(_;/ _)>")
  qsplit    :: "[[i,i] => i, i] => i"
  qfsplit   :: "[[i,i] => o, i] => o"
  qconverse :: "i => i"
  "@QSUM"   :: "[idt, i, i] => i"               ("(3QSUM _:_./ _)" 10)
  " <*>"    :: "[i, i] => i"         		("(_ <*>/ _)" [81, 80] 80)
  QSigma    :: "[i, i => i] => i"

  "<+>"     :: "[i,i]=>i"      			(infixr 65)
  QInl,QInr :: "i=>i"
  qcase     :: "[i=>i, i=>i, i]=>i"

translations
  "QSUM x:A. B"  => "QSigma(A, %x. B)"
  "A <*> B"      => "QSigma(A, _K(B))"

rules
  QPair_def       "<a;b> == a+b"
  qsplit_def      "qsplit(c,p)  == THE y. EX a b. p=<a;b> & y=c(a,b)"
  qfsplit_def     "qfsplit(R,z) == EX x y. z=<x;y> & R(x,y)"
  qconverse_def   "qconverse(r) == {z. w:r, EX x y. w=<x;y> & z=<y;x>}"
  QSigma_def      "QSigma(A,B)  ==  UN x:A. UN y:B(x). {<x;y>}"

  qsum_def        "A <+> B      == ({0} <*> A) Un ({1} <*> B)"
  QInl_def        "QInl(a)      == <0;a>"
  QInr_def        "QInr(b)      == <1;b>"
  qcase_def       "qcase(c,d)   == qsplit(%y z. cond(y, d(z), c(z)))"
end

ML

val print_translation =
  [("QSigma", dependent_tr' ("@QSUM", " <*>"))];