src/HOL/IMPP/EvenOdd.thy
author wenzelm
Sat, 17 Sep 2005 20:14:30 +0200
changeset 17477 ceb42ea2f223
parent 15354 9234f5765d9c
child 19803 aa2581752afb
permissions -rw-r--r--
converted to Isar theory format;

(*  Title:      HOL/IMPP/EvenOdd.thy
    ID:         $Id$
    Author:     David von Oheimb
    Copyright   1999 TUM
*)

header {* Example of mutually recursive procedures verified with Hoare logic *}

theory EvenOdd
imports Misc
begin

constdefs
  even :: "nat => bool"
  "even n == 2 dvd n"

consts
  Even :: pname
  Odd :: pname
axioms
  Even_neq_Odd: "Even ~= Odd"
  Arg_neq_Res:  "Arg  ~= Res"

constdefs
  evn :: com
 "evn == IF (%s. s<Arg> = 0)
         THEN Loc Res:==(%s. 0)
         ELSE(Loc Res:=CALL Odd(%s. s<Arg> - 1);;
              Loc Arg:=CALL Odd(%s. s<Arg> - 1);;
              Loc Res:==(%s. s<Res> * s<Arg>))"
  odd :: com
 "odd == IF (%s. s<Arg> = 0)
         THEN Loc Res:==(%s. 1)
         ELSE(Loc Res:=CALL Even (%s. s<Arg> - 1))"

defs
  bodies_def: "bodies == [(Even,evn),(Odd,odd)]"

consts
  Z_eq_Arg_plus   :: "nat => nat assn" ("Z=Arg+_" [50]50)
 "even_Z=(Res=0)" ::        "nat assn" ("Res'_ok")
defs
  Z_eq_Arg_plus_def: "Z=Arg+n == %Z s.      Z =  s<Arg>+n"
  Res_ok_def:       "Res_ok   == %Z s. even Z = (s<Res> = 0)"

ML {* use_legacy_bindings (the_context ()) *}

end