src/HOL/IMPP/Hoare.thy
 author wenzelm Sat, 17 Sep 2005 20:14:30 +0200 changeset 17477 ceb42ea2f223 parent 10834 a7897aebbffc child 19803 aa2581752afb permissions -rw-r--r--
converted to Isar theory format;

(*  Title:      HOL/IMPP/Hoare.thy
ID:         \$Id\$
Author:     David von Oheimb
*)

header {* Inductive definition of Hoare logic for partial correctness *}

theory Hoare
imports Natural
begin

text {*
Completeness is taken relative to completeness of the underlying logic.

Two versions of completeness proof: nested single recursion
vs. simultaneous recursion in call rule
*}

types 'a assn = "'a => state => bool"
translations
"a assn"   <= (type)"a => state => bool"

constdefs
state_not_singleton :: bool
"state_not_singleton == \<exists>s t::state. s ~= t" (* at least two elements *)

peek_and    :: "'a assn => (state => bool) => 'a assn" (infixr "&>" 35)
"peek_and P p == %Z s. P Z s & p s"

datatype 'a triple =
triple "'a assn"  com  "'a assn"       ("{(1_)}./ (_)/ .{(1_)}" [3,60,3] 58)

consts
triple_valid ::            "nat => 'a triple     => bool" ( "|=_:_" [0 , 58] 57)
hoare_valids ::  "'a triple set => 'a triple set => bool" ("_||=_"  [58, 58] 57)
hoare_derivs :: "('a triple set *  'a triple set)   set"
syntax
triples_valid::            "nat => 'a triple set => bool" ("||=_:_" [0 , 58] 57)
hoare_valid  ::  "'a triple set => 'a triple     => bool" ("_|=_"   [58, 58] 57)
"@hoare_derivs"::  "'a triple set => 'a triple set => bool" ("_||-_"  [58, 58] 57)
"@hoare_deriv" ::  "'a triple set => 'a triple     => bool" ("_|-_"   [58, 58] 57)

defs triple_valid_def: "|=n:t  ==  case t of {P}.c.{Q} =>
!Z s. P Z s --> (!s'. <c,s> -n-> s' --> Q Z s')"
translations          "||=n:G" == "Ball G (triple_valid n)"
defs hoare_valids_def: "G||=ts   ==  !n. ||=n:G --> ||=n:ts"
translations         "G |=t  " == " G||={t}"
"G||-ts"  == "(G,ts) : hoare_derivs"
"G |-t"   == " G||-{t}"

(* Most General Triples *)
constdefs MGT    :: "com => state triple"            ("{=}._.{->}" [60] 58)
"{=}.c.{->} == {%Z s0. Z = s0}. c .{%Z s1. <c,Z> -c-> s1}"

inductive hoare_derivs intros

empty:    "G||-{}"
insert: "[| G |-t;  G||-ts |]
==> G||-insert t ts"

asm:      "ts <= G ==>
G||-ts" (* {P}.BODY pn.{Q} instead of (general) t for SkipD_lemma *)

cut:   "[| G'||-ts; G||-G' |] ==> G||-ts" (* for convenience and efficiency *)

weaken: "[| G||-ts' ; ts <= ts' |] ==> G||-ts"

conseq: "!Z s. P  Z  s --> (? P' Q'. G|-{P'}.c.{Q'} &
(!s'. (!Z'. P' Z' s --> Q' Z' s') --> Q Z s'))
==> G|-{P}.c.{Q}"

Skip:  "G|-{P}. SKIP .{P}"

Ass:   "G|-{%Z s. P Z (s[X::=a s])}. X:==a .{P}"

Local: "G|-{P}. c .{%Z s. Q Z (s[Loc X::=s'<X>])}
==> G|-{%Z s. s'=s & P Z (s[Loc X::=a s])}. LOCAL X:=a IN c .{Q}"

Comp:  "[| G|-{P}.c.{Q};
G|-{Q}.d.{R} |]
==> G|-{P}. (c;;d) .{R}"

If:    "[| G|-{P &>        b }.c.{Q};
G|-{P &> (Not o b)}.d.{Q} |]
==> G|-{P}. IF b THEN c ELSE d .{Q}"

Loop:  "G|-{P &> b}.c.{P} ==>
G|-{P}. WHILE b DO c .{P &> (Not o b)}"

(*
BodyN: "(insert ({P}. BODY pn  .{Q}) G)
|-{P}.  the (body pn) .{Q} ==>
G|-{P}.       BODY pn  .{Q}"
*)
Body:  "[| G Un (%p. {P p}.      BODY p  .{Q p})`Procs
||-(%p. {P p}. the (body p) .{Q p})`Procs |]
==>  G||-(%p. {P p}.      BODY p  .{Q p})`Procs"

Call:     "G|-{P}. BODY pn .{%Z s. Q Z (setlocs s (getlocs s')[X::=s<Res>])}
==> G|-{%Z s. s'=s & P Z (setlocs s newlocs[Loc Arg::=a s])}.
X:=CALL pn(a) .{Q}"

ML {* use_legacy_bindings (the_context ()) *}

end